Previous

HFLAV-Tau 2023 Report

Next

7 Measurements of |Vus|

The CKM matrix element magnitude |Vus| is most precisely determined from kaon decays [93] (see Figure 4), and its precision is limited by the uncertainties of the lattice QCD estimates of the meson form factor f+Kπ(0) and decay-constant ratio fK±/fπ±. The following sections report alternative determinations of |Vus| based on the experimental measurements of the τ branching fractions.

7.1 |Vus| from B(τ → Xsν)

|Vus| is computed using the inclusive τ branching fraction to strange hadronic final states as [94, 95]

     
 |Vus| τ-OPE-1
 = 
Rus/


Rud
|Vud| 2
 −  δ Rτ-SU(3)-break


 = 0.2184 ± 0.0021 ,
        (21)

where Rus = Bus / Beuni = 0.1632 ± 0.0027, Bus = 2.908 ± 0.048 is the inclusive τ branching fraction to strange hadronic final states (see also Table 6), Rud = Rhad uniRus = 3.470 ± 0.008, and |Vud| = 0.97384 ± 0.00026 is taken from a recent average of measurements of superallowed nuclear β decays, neutron decay measurements [96], and the correction δ Rτ-SU(3)-break accounts for the SU(3)-breaking effects due to the difference between the strange, up and down quark masses. δ Rτ-SU(3)-break is determined using perturbative QCD and experimental low energy scattering measurements [97, 98, 99]. In this report, we compute δ Rτ-SU(3)-break = 0.239 ± 0.032 using Ref. [97] and the s-quark mass ms = 93 ± 7 MeV  [8]. Ref. [97] estimates a δ Rτ-SU(3)-break uncertainty that is intermediate with respect to the other two assessments [98, 99]. The uncertainty on δ Rτ-SU(3)-break contributes a 0.47% systematic contribution on |Vus| τ-OPE-1. The above-mentioned δ Rτ-SU(3)-break calculations have been criticized for falling short in dealing with the biases and uncertainties in the low-energy regime of QCD [100]. However, the community has not reached yet a consensus on the matter. In order to obtain more reliable QCD uncertainties, alternative procedures for computing |Vus| using τ decays have been proposed, which involve the τ spectral functions [100] and lattice QCD methods [101]. Because of the complexity of these two last proposed procedures, the effort that is required to use them to compute |Vus| using the current HFLAV-Tau branching fractions exceeds the scope of this report. Therefore, we just report the most recent updates:

     
  |Vus| τ-OPE-2 = 0.2219(22) [102, 103]         (22)
|Vus| τ-latt-disp = 0.2240(18) [101, 103]         (23)

We also use a recently reported lattice QCD calculation of the inclusive τ hadronic decay rate [104] to compute an additional determination of |Vus|,

     
 |Vus| τ-latt-incl
 =



|Vus| 2
Rus



 



latt-incl
· Rus
 = 0.2189 ± 0.0019 ,
        (24)

where (Rus / |Vus| 2)latt-incl = 3.407 ± 0.022 [104]. It is worth noting that all calculations of the τ inclusive decay rate to hadrons are not presently including the long-distance isospin-breaking corrections [104].

In several of the past determinations of |Vus|, such as the 2009 HFLAV report [105], the total hadronic branching fraction was computed using unitarity as Bhad uni = 1 − BeBµ, and Bud was obtained from Bhad uniBus . Here we rather use the direct experimental determination of Bud for two reasons. First, both methods result in comparable uncertainties on |Vus|, since the better precision on Bhad uni = 1 − BeBµ with respect to Bhad equal to the sum of all τ hadronic branching fractions is offset by increased correlations when considering Rhad uni = Bhad/ Beuni and similar expressions in the |Vus| calculation. Second, if there are unobserved τ hadronic decay modes, they will affect Bud and Bus in a more asymmetric way when using Bhad uni.

The values of |Vus| τ-OPE-1 and |Vus| τ-latt-incl are respectively 3.6σ and 3.7σ lower than the value |Vus| uni = 0.2272 ± 0.0011 predicted from the CKM unitarity relation (|Vus| uni)2 = 1 − |Vud| 2 − |Vub| 2, with |Vub| = 0.00382 ± 0.00020 [8]. Using Eqs. 21 and 24 we also compute |Vus|/|Vud| τ-OPE-1 = 0.2243 ± 0.0022 and |Vus|/|Vud| τ-latt-incl = 0.2248 ± 0.0020.


Table 6: A summary of the averaged τ branching fractions to strange final states.
Branching fractionHFLAV 2023 fit (%)
BK ντ)0.6959 ± 0.0096
BK π0 ντ)0.4321 ± 0.0148
BK0 ντ (ex.K0))0.0634 ± 0.0219
BK0 ντ (ex.K0,η))0.0465 ± 0.0213
B → π K0 ντ)0.8375 ± 0.0139
B → π K0 π0 ντ)0.3810 ± 0.0129
B → π K00 ντ (ex.K0))0.0234 ± 0.0231
BK0 h h h+ ντ)0.0222 ± 0.0202
BK η ντ)0.0155 ± 0.0008
BK π0 η ντ)0.0048 ± 0.0012
B → π K0 η ντ)0.0094 ± 0.0015
BK ω ντ)0.0410 ± 0.0092
BK φ(K+ K) ντ)0.0022 ± 0.0008
BK φ(KS0 KL0) ντ)0.0015 ± 0.0006
BK π π+ ντ (ex.K0,ω))0.2924 ± 0.0068
BK π π+ π0 ντ (ex.K0,ω,η))0.0388 ± 0.0142
BK+ ντ (ex.K0))0.0001 ± 0.0001
BK+ π0 ντ (ex.K0))0.0001 ± 0.0001
 
BXs ντ)2.9078 ± 0.0478

7.2 |Vus| from B(τ → Kν) / B(τ → πν)

We also compute |Vus|/|Vud| from the ratio of branching fractions B10 / 9 = BK ντ) / B → π ντ) = 0.0644 ± 0.0009 (Table 3) using the equation [106]:

     
  
B → K ντ)
B → π ντ)
 =
fK±2 |Vus| 2
fπ±2 |Vud| 2

mτ2 − mK2
2

mτ2 −  mπ2
2
(1+δτ K/τπ) ,
        (25)

where δτ K/τπ = (0.10 ± 0.80)% [92] is the radiative correction for the ratio of partial widths Γ(τ→ Kντ[γ]) / Γ(τ→ πντ[γ]). Using the ratio of decay constants fK±/fπ± = 1.1934 ± 0.0019 from the 2023 web update of the FLAG 2021 lattice QCD averages with Nf=2+1+1 [107, 108, 109, 110, 111, 112, 113], we obtain |Vus|/|Vud| = 0.2289 ± 0.0019. By using the above-mentioned |Vud| value, we compute |Vus| τ K = 0.2229 ± 0.0019, which is 2.0σ below the CKM unitarity prediction.

7.3 |Vus| from B(τ → Kν)

We also determine |Vus| from the branching fraction BK ντ ) using

     
  B → Kντ) =
GF2
16πℏ
fK±2 |Vus| 2 ττ  mτ3


1 − 
mK2
mτ2



2



 
SEWτ h (1+δτ K) .
         (26)

We use fK± = 155.7 ± 0.3 MeV from the 2023 web update of the FLAG 2021 lattice QCD averages with Nf=2+1+1 [107, 108, 109, 111, 114, 112]. The universal short-distance electroweak correction for τ hadronic decays is SEWτ h = SEWRτ h · SEWsub,lep = 1.01910 ± 0.00030, where the radiative correction for the tau spectral functions is SEWRτ h = 1.02350 ± 0.00030 [115, 88, 116] and the sub-leading universal short-distance correction for the τ leptonic decays is SEWsub,lep = 0.9957 [115]. The long-distance radiative correction for BK ντ ) is δτ K = (−0.15 ± 0.57)% [92]. The physical constants GF and ℏ are taken from CODATA 2018 [91]. We obtain |Vus| τ K = 0.2224 ± 0.0017, which is 2.3σ below the CKM unitarity prediction.

7.4 Summary of |Vus| from τ decays


PNG format PDF format
Vus summary plot
Figure 4: |Vus| determinations. The values of |Vus| Kℓ3, |Vus| Kℓ2 and the expected |Vus| from the CKM matrix unitarity are taked from Ref. [96]. The other reported |Vus| values are documented in the text. When two uncertainties are reported, the first one accounts for the uncertainties of the HFLAV-Tau fit results, and the second one accounts for the uncertainties of the theory and the other inputs that are used for the |Vus| determinations.

We summarize the |Vus| determinations that we updated using the present HFLAV-Tau averages by reporting the values, the discrepancy with respect to the |Vus| determination from CKM unitarity, and an illustration of the measurement method:

     
    |Vus| uni    = 0.2272    ± 0.0011     0.0σ    
 [
1 − |Vud| 2 − |Vub| 2
  (CKM unitarity)] ,                                                                                                                                                      
  (27)
  |Vus| Kℓ3    = 0.2233    ± 0.0005     3.2σ     [BKℓ3 [96]] ,                                                                                                                                                                        (28)
  |Vus| Kℓ2    = 0.2250    ± 0.0005     1.7σ     [BKℓ2 [96]] ,                                                                                                                                                                        (29)
  |Vus| τ-OPE-1    = 0.2184    ± 0.0021     3.6σ    [B → Xs ντ)] ,                                                                                                                                                                                    (30)
  |Vus| τ-latt-incl    = 0.2189    ± 0.0019     3.7σ    [B → Xs ντ)] ,                                                                                                                                                                                    (31)
  |Vus| τ K    = 0.2229    ± 0.0019     2.0σ    [B → K ντ )/B → π ντ )] ,                                                                                                                                                                                    (32)
  |Vus| τ K    = 0.2224    ± 0.0017     2.3σ    [B → K ντ )] .   (33)

Averaging the two |Vus| determinations that rely on exclusive τ branching fractions (Eqs. 32, 33), we obtain:

     
  |Vus| τ excl    = 0.2225 ± 0.0017     2.3σ     [average of τ exclusive measurements] .       (34)

Averaging the τ inclusive and exclusive |Vus| determinations (Eqs. 30, 31, 32, 33), we obtain:

     
  |Vus| τ    = 0.2208 ± 0.0014     3.6σ     [average of 4 |Vus| τ measurements] .       (35)

In calculating the averages, all correlations arising from using the τ branching fractions fit results and common external inputs are accounted for. The systematic uncertainties of |Vus| τ-OPE-1 and |Vus| τ-latt-incl have been assumed to be uncorrelated. The correlation between fK± and fK±/fπ± is conservatively set to 100%. For the purpose of estimating the correlations between δτ K, δτπ and δτ K/τπ, we use the information [92] that the uncertainties on δ τ K and δτπ are uncorrelated to a good approximation, and that δτ K/τπ = δτ K − δτπ.

All |Vus| determinations based on measured τ branching fractions are lower than both the kaon and the CKM-unitarity determinations. This is correlated with the fact that the direct measurements of the three largest τ branching fractions to kaons [ BK ντ), BK π0 ντ) and B → π K0 ντ)] yield lower values than their SM predictions based on the branching fractions of leptonic kaon decays [88, 117, 118].

Figure 4 reports our |Vus| determinations using the present HFLAV-Tau averages, two additional |Vus| determinations using partially different τ measurements inputs [102, 101, 103], two determinations based on kaon data [96], and the |Vus| value obtained from |Vud| using the CKM-matrix unitarity [96].


Previous

HFLAV-Tau 2023 Report

Next