Previous

HFLAV-Tau 2023 Report

Next

4 Branching fraction fit

A fit of the available experimental measurements is used to determine the τ branching fractions. All relevant published statistical and systematic correlations among the measurements are used. In addition, for a selection of measurements, particularly the most precise and the most recent ones, the documentation on the systematic uncertainties’ contributions is examined to determine how they depend on parameters such as other τ branching fractions or other external parameters, e.g., η and ω meson branching fractions and the cross-section σ(e+e → τ+τ). We use the standard HFLAV procedures [24] to adjust the measurements’ values and uncertainties to account for the updated values and uncertainties of the external parameters, which are taken from the Review of Particle Physics [8]. The measurements’ correlations are adjusted to account for the dependence of different measurement on the same parameters.

Following a convention established in the Review of Particle Physics, τ branching fractions are often labelled with the final state content of π±, π0, K±, γ, implicitly including decay chains that involve intermediate particles, e.g., KS0→π+π, and η, ω, φ decays. When measurements exclude the contribution of some or all the known intermediate particles, the branching fraction notation flags this information by adding, e.g., “ex.K0”.

Each measurement is modeled with one fit parameter that is either a τ decay branching fraction, labelled Bi, or a ratio of two τ decay branching fractions, labelled Bi/j = Bi/ Bj. Some branching fractions are linear combinations of other branching fractions: for instance B8 = Bh ντ) is the sum of B9 = B → π ντ) and B10 = BK ντ), with the symbol h referring to a π or a K. In some cases, constraints arise from approximate relations that nevertheless hold within the present experimental precision and are treated as exact. For instance, the constraint BK K K+ ντ) = BK φ ντ) × B(φ→ K+K) is justified according to the current experimental evidence. The constraint equations depend on uncertain quantities, such as B(φ→ K+K) in this example. The uncertainties associated with these constraints are typically smaller in relative value than the uncertainties on the τ branching fractions. Therefore, we neglect all of them except for the poorly known branching fraction B980 = B(a1 → π γ), which is modeled with a nuisance fit parameter, based on the value and uncertainty estimated by the ALEPH collaboration [25]. All the constraints are listed in Section 4.4.

The fit χ2 is

     
  χ2 =
 
ijkl

mi − Mikqk

V−1
ij
mj − Mjlql
+
 
r
(nr − pr)2
σnr2
 ,
         (1)

where mi is a measurement result, qk is a fit parameter, Vij is the covariance matrix that describes the measurements’ uncertainties and correlations, Mik is a model matrix that specifies the linear combination of the fit parameters corresponding to the measurement mi, pr is a nuisance fit parameter, and nr and σnr are, respectively, the value and uncertainty that summarize the existing prior knowledge on pr. In the current fit, the second sum includes just one nuisance fit parameter.

The χ2 is minimized varying all fit parameters while respecting all constraints, using the technique of the Lagrange multipliers .

In performing the fit, a scale factor of 5.44 was applied to the published uncertainties of the two severely inconsistent measurements of B96 = BK K K+ ντ) by BaBar and Belle. The scale-factor value was chosen using the PDG procedure, i.e., it is such that χ2/d.o.f.=1 when fitting just the two B96 measurements.

4.1 Changes with respect to the previous report

The 2021 HFLAV report [24] used the ALEPH 2006 estimate of B805 = Ba1 γ) ντ) [25] and treated it as an experimental measurement, therefore B805 = Ba1 γ) ντ) was determined using B980 = B(a1 → π γ) and the values of B62 = B → π π+ π ντ (ex.K0,ω)) and B20 = B → π0 ντ (ex.K0)) as known at the time of the ALEPH 2006 publication. In this edition, we use an estimate of B980 in a constraint equation that defines B805, and B980 is optimized in the τ branching fraction fit as nuisance fit parameter. With the current procedure, B805 is determined using B980 and the fit values of B62 and B20. The fit returns B805 = (0.38 ± 0.15)· 10−3, while the HFLAV 2021 report [24] had B805 = (0.40± 0.20)·10−3 (the ALEPH estimate [25]). The other τ branching fractions averages are not affected by this modification of the fit procedure.

We include in the τ branching fraction fit measurements the recently published measurement of the ratio of the τ leptonic branching fractions:

     
  
B → µ
ν
µντ)
B → e
ν
e ντ)
 = 0.9675 ± 0.0007 ± 0.0036
         (2)

by the Belle II experiment [2]. Since this result is the most precise measurement from a single experiment to date, the precision of the fitted leptonic branching fractions is also improved.

We also report the results from a unitarity-constrained fit, along with the results from the non-unitarity-constrained fit. The results from the unitarity-constrained fit are required as inputs for tau-decay Monte Carlo event generators, such as Tauola [26], and were not included in the previous reports.

The parameters used to update the measurements’ systematic biases and the parameters appearing in the constraint equations in Section 4.4 have been updated to values reported in the Review of Particle Physics 2022 and 2023 update [8].

4.2 Differences with respect to the PDG fit

The τ branching fraction fit provided by HFLAV for the 2024 edition of the Review of Particle Physics reports as in the past editions only the unitarity-constrained fit results, and includes all the updates of this report, except the recent Belle II measurement of the ratio of the τ leptonic branching fractions, which was published later than the new literature publication deadline.

4.3 Fit results

We use a total of 171 τ branching fractions and ratios measurements and 1 nuisance fit parameter measurement to optimize 137 fit parameters and 1 nuisance fit parameter, while respecting 91 equality constraints. When considering just the τ branching fractions, omitting the nuisance fit parameter, the fit has χ2/d.o.f. = 138/125, corresponding to a confidence level CL = 20.2%. The fitted parameters’ values and uncertainties corresponding to τ branching fractions measurements are listed in Table 3, for both the universality-constrained fit and the unconstrained fit. The table also includes:

When no unitarity constraint is applied, we find that Bur is consistent with 0. The nuisance fit parameter’s value and uncertainty are listed in Table 4. All resulting fit parameters, their input measurements, and their correlation matrix are available at [9].


Table 3: Fit averages and measurements of τ branching fractions and ratios of branching fractions. The label “u.c.” indicates the results from the unitarity-constrained fit.
Fit parameterExperimentReference
 
B1 = B → particle ≥ 0  neutrals ≥ 0   K0  ντ)
  
0.8518 ± 0.0011average 
0.8524 ± 0.0006average with u.c. 
B2 = B → particle ≥ 0  neutrals ≥ 0   KL0  ντ)
  
0.8452 ± 0.0010average 
0.8458 ± 0.0006average with u.c. 
B3 = B → µνµντ)
  
0.17360 ± 0.00037average 
0.17366 ± 0.00036average with u.c. 
0.17319 ± 0.00070 ± 0.00032ALEPH[25]
0.17325 ± 0.00095 ± 0.00077DELPHI[27]
0.17342 ± 0.00110 ± 0.00067L3[28]
0.17340 ± 0.00090 ± 0.00060OPAL[29]
B3 / 5 = 
B → µνµντ)
B → eνe ντ)
  
0.9730 ± 0.0022average 
0.9730 ± 0.0022average with u.c. 
0.9970 ± 0.0350 ± 0.0400ARGUS[30]
0.9796 ± 0.0016 ± 0.0036BaBar[31]
0.9675 ± 0.0007 ± 0.0036Belle II[2]
0.9777 ± 0.0063 ± 0.0087CLEO[15]
B5 = B → eνe ντ)
  
0.1784 ± 0.0004average 
0.1785 ± 0.0004average with u.c. 
0.1784 ± 0.0007 ± 0.0004ALEPH[25]
0.1776 ± 0.0006 ± 0.0017CLEO[15]
0.1788 ± 0.0011 ± 0.0011DELPHI[27]
0.1781 ± 0.0010 ± 0.0008L3[28]
0.1781 ± 0.0009 ± 0.0006OPAL[32]
B7 = B → h ≥ 0   KL0  ντ)
  
0.1202 ± 0.0005average 
0.1203 ± 0.0005average with u.c. 
0.1240 ± 0.0070 ± 0.0070DELPHI[33]
0.1247 ± 0.0026 ± 0.0043L3[34]
0.1210 ± 0.0070 ± 0.0050OPAL[35]
B8 = B → h ντ)
  
0.1150 ± 0.0005average 
0.1151 ± 0.0005average with u.c. 
0.1152 ± 0.0005 ± 0.0012CLEO[15]
0.1157 ± 0.0012 ± 0.0011DELPHI[36]
0.1198 ± 0.0013 ± 0.0016OPAL[37]
B8 / 5 = 
B → h ντ)
B → eνe ντ)
  
0.6448 ± 0.0032average 
0.6450 ± 0.0032average with u.c. 
B9 = B → π ντ)
  
0.1081 ± 0.0005average 
0.1082 ± 0.0005average with u.c. 
0.1083 ± 0.0007 ± 0.0008ALEPH[25]
B9 / 5 = 
B → π ντ)
B → eνe ντ)
  
0.6058 ± 0.0032average 
0.6060 ± 0.0031average with u.c. 
0.5945 ± 0.0014 ± 0.0061BaBar[31]
B10 = B → K ντ)
  
0.00696 ± 0.00010average 
0.00697 ± 0.00010average with u.c. 
0.00696 ± 0.00025 ± 0.00014ALEPH[38]
0.00660 ± 0.00070 ± 0.00090CLEO[39]
0.00850 ± 0.00180 ± 0.00000DELPHI[40]
0.00658 ± 0.00027 ± 0.00029OPAL[41]
B10 / 5 = 
B → K ντ)
B → eνe ντ)
  
0.03901 ± 0.00054average 
0.03903 ± 0.00054average with u.c. 
0.03882 ± 0.00032 ± 0.00057BaBar[31]
B10 / 9 = 
B → K ντ)
B → π ντ)
  
0.0644 ± 0.0009average 
0.0644 ± 0.0009average with u.c. 
B11 = B → h ≥ 1   neutrals  ντ)
  
0.3698 ± 0.0010average 
0.3700 ± 0.0009average with u.c. 
B12 = B → h ≥ 1  π0  ντ (ex.K0))
  
0.3648 ± 0.0010average 
0.3650 ± 0.0009average with u.c. 
B13 = B → h π0 ντ)
  
0.25917 ± 0.00090average 
0.25926 ± 0.00089average with u.c. 
0.25670 ± 0.00010 ± 0.00390Belle[42]
0.25870 ± 0.00120 ± 0.00420CLEO[43]
0.25740 ± 0.00201 ± 0.00138DELPHI[36]
0.25050 ± 0.00350 ± 0.00500L3[34]
0.25890 ± 0.00170 ± 0.00290OPAL[37]
B14 = B → π π0 ντ)
  
0.2548 ± 0.0009average 
0.2549 ± 0.0009average with u.c. 
0.2547 ± 0.0010 ± 0.0008ALEPH[25]
B16 = B → K π0 ντ)
  
0.004321 ± 0.000148average 
0.004328 ± 0.000148average with u.c. 
0.004440 ± 0.000260 ± 0.000240ALEPH[38]
0.004160 ± 0.000030 ± 0.000180BaBar[44]
0.005100 ± 0.001000 ± 0.000700CLEO[39]
0.004710 ± 0.000590 ± 0.000230OPAL[45]
B17 = B → h ≥ 2   π0  ντ)
  
0.1079 ± 0.0010average 
0.1081 ± 0.0009average with u.c. 
0.0991 ± 0.0031 ± 0.0027OPAL[37]
B18 = B → h 2π0 ντ)
  
0.0946 ± 0.0010average 
0.0948 ± 0.0010average with u.c. 
B19 = B → h 2π0 ντ (ex.K0))
  
0.0931 ± 0.0010average 
0.0932 ± 0.0010average with u.c. 
0.0950 ± 0.0032 ± 0.0027DELPHI[36]
0.0888 ± 0.0037 ± 0.0042L3[34]
B19 / 13 = 
B → h 2π0 ντ (ex.K0))
B → h π0 ντ)
  
0.359 ± 0.005average 
0.360 ± 0.004average with u.c. 
0.342 ± 0.006 ± 0.016CLEO[46]
B20 = B → π 2π0 ντ (ex.K0))
  
0.0925 ± 0.0010average 
0.0926 ± 0.0010average with u.c. 
0.0924 ± 0.0009 ± 0.0009ALEPH[25]
B23 = B → K 2π0 ντ (ex.K0))
  
0.00063 ± 0.00022average 
0.00065 ± 0.00022average with u.c. 
0.00056 ± 0.00020 ± 0.00015ALEPH[38]
0.00090 ± 0.00100 ± 0.00030CLEO[39]
B24 = B → h ≥ 3  π0  ντ)
  
0.0134 ± 0.0007average 
0.0134 ± 0.0007average with u.c. 
B25 = B → h ≥ 3  π0  ντ (ex.K0))
  
0.0125 ± 0.0007average 
0.0126 ± 0.0007average with u.c. 
0.0140 ± 0.0021 ± 0.0022DELPHI[36]
B26 = B → h 3π0 ντ)
  
0.0117 ± 0.0007average 
0.0118 ± 0.0007average with u.c. 
0.0170 ± 0.0024 ± 0.0038L3[34]
B26 / 13 = 
B → h 3π0 ντ)
B → h π0 ντ)
  
0.0453 ± 0.0028average 
0.0454 ± 0.0028average with u.c. 
0.0440 ± 0.0030 ± 0.0050CLEO[46]
B27 = B → π 3π0 ντ (ex.K0))
  
0.0104 ± 0.0007average 
0.0104 ± 0.0007average with u.c. 
0.0098 ± 0.0007 ± 0.0006ALEPH[25]
B28 = B → K 3π0 ντ (ex.K0,η))
  
(0.46 ± 0.21)· 10−3average 
(0.48 ± 0.21)· 10−3average with u.c. 
(0.37 ± 0.21 ± 0.11)· 10−3ALEPH[38]
B29 = B → h 4π0 ντ (ex.K0))
  
0.0016 ± 0.0004average 
0.0016 ± 0.0004average with u.c. 
0.0016 ± 0.0005 ± 0.0005CLEO[46]
B30 = B → h 4π0 ντ (ex.K0,η))
  
0.00112 ± 0.00039average 
0.00112 ± 0.00039average with u.c. 
0.00112 ± 0.00037 ± 0.00035ALEPH[25]
B31 = B → K ≥ 0  π0 ≥ 0  K0 ≥ 0  γ ντ)
  
0.01548 ± 0.00029average 
0.01552 ± 0.00029average with u.c. 
0.01700 ± 0.00120 ± 0.00190CLEO[39]
0.01540 ± 0.00240 ± 0.00000DELPHI[40]
0.01528 ± 0.00039 ± 0.00040OPAL[41]
B32 = B → K ≥ 1  (π0 or K0 or γ) ντ)
  
0.00856 ± 0.00028average 
0.00859 ± 0.00028average with u.c. 
B33 = B → KS0 (particles) ντ)
  
0.00937 ± 0.00029average 
0.00943 ± 0.00028average with u.c. 
0.00970 ± 0.00058 ± 0.00062ALEPH[47]
0.00970 ± 0.00090 ± 0.00060OPAL[48]
B34 = B → hK0 ντ)
  
0.00986 ± 0.00014average 
0.00987 ± 0.00014average with u.c. 
0.00855 ± 0.00036 ± 0.00073CLEO[49]
B35 = B → πK0 ντ)
  
0.008375 ± 0.000139average 
0.008384 ± 0.000138average with u.c. 
0.009280 ± 0.000450 ± 0.000340ALEPH[38]
0.008320 ± 0.000025 ± 0.000150Belle[50]
0.009500 ± 0.001500 ± 0.000600L3[51]
0.009330 ± 0.000680 ± 0.000490OPAL[52]
B37 = B → KK0 ντ)
  
0.001486 ± 0.000034average 
0.001486 ± 0.000034average with u.c. 
0.001580 ± 0.000420 ± 0.000170ALEPH[47]
0.001620 ± 0.000210 ± 0.000110ALEPH[38]
0.001478 ± 0.000022 ± 0.000040BaBar[53]
0.001480 ± 0.000013 ± 0.000055Belle[50]
0.001510 ± 0.000210 ± 0.000220CLEO[49]
B38 = B → KK0 ≥ 0   π0  ντ)
  
0.00298 ± 0.00007average 
0.00299 ± 0.00007average with u.c. 
0.00330 ± 0.00055 ± 0.00039OPAL[52]
B39 = B → hK0 π0 ντ)
  
0.00531 ± 0.00013average 
0.00532 ± 0.00013average with u.c. 
0.00562 ± 0.00050 ± 0.00048CLEO[49]
B40 = B → πK0 π0 ντ)
  
0.003810 ± 0.000129average 
0.003817 ± 0.000129average with u.c. 
0.002940 ± 0.000730 ± 0.000370ALEPH[47]
0.003470 ± 0.000530 ± 0.000370ALEPH[38]
0.003860 ± 0.000031 ± 0.000135Belle[50]
0.004100 ± 0.001200 ± 0.000300L3[51]
B42 = B → KK0 π0 ντ)
  
0.001499 ± 0.000070average 
0.001500 ± 0.000070average with u.c. 
0.001520 ± 0.000760 ± 0.000210ALEPH[47]
0.001430 ± 0.000250 ± 0.000150ALEPH[38]
0.001496 ± 0.000019 ± 0.000073Belle[50]
0.001450 ± 0.000360 ± 0.000200CLEO[49]
B43 = B → πK0 ≥ 1   π0  ντ)
  
0.00404 ± 0.00026average 
0.00408 ± 0.00025average with u.c. 
0.00324 ± 0.00074 ± 0.00066OPAL[52]
B44 = B → πK0 2π0 ντ (ex.K0))
  
(0.23 ± 0.23)· 10−3average 
(0.26 ± 0.23)· 10−3average with u.c. 
(0.26 ± 0.24 ± 0.00)· 10−3ALEPH[54]
B46 = B → πK0K0 ντ)
  
0.00152 ± 0.00025average 
0.00155 ± 0.00024average with u.c. 
B47 = B → πKS0KS0 ντ)
  
(234.8 ± 6.5)· 10−6average 
(234.9 ± 6.5)· 10−6average with u.c. 
(260.0 ± 100.0 ± 50.0)· 10−6ALEPH[47]
(231.0 ± 4.0 ± 8.0)· 10−6BaBar[55]
(233.0 ± 3.3 ± 9.3)· 10−6Belle[50]
(230.0 ± 50.0 ± 30.0)· 10−6CLEO[49]
B48 = B → πKS0KL0 ντ)
  
0.00105 ± 0.00025average 
0.00108 ± 0.00024average with u.c. 
0.00101 ± 0.00023 ± 0.00013ALEPH[47]
B49 = B → π π0K0K0 ντ)
  
(0.35 ± 0.12)· 10−3average 
(0.36 ± 0.12)· 10−3average with u.c. 
B50 = B → πKS0KS0 π0 ντ)
  
(18.2 ± 2.1)· 10−6average 
(18.2 ± 2.1)· 10−6average with u.c. 
(16.0 ± 2.0 ± 2.2)· 10−6BaBar[55]
(20.0 ± 2.2 ± 2.0)· 10−6Belle[50]
B51 = B → πKS0KL0 π0 ντ)
  
(0.32 ± 0.12)· 10−3average 
(0.32 ± 0.12)· 10−3average with u.c. 
(0.31 ± 0.11 ± 0.05)· 10−3ALEPH[47]
B53 = B → K0hhh+ ντ)
  
(0.22 ± 0.20)· 10−3average 
(0.25 ± 0.20)· 10−3average with u.c. 
(0.23 ± 0.19 ± 0.07)· 10−3ALEPH[47]
B54 = B → hhh+ ≥ 0  neutrals ≥ 0   KL0  ντ)
  
0.1519 ± 0.0006average 
0.1520 ± 0.0006average with u.c. 
0.1500 ± 0.0040 ± 0.0030CELLO[56]
0.1440 ± 0.0060 ± 0.0030L3[57]
0.1510 ± 0.0080 ± 0.0060TPC[58]
B55 = B → hhh+ ≥ 0   neutrals  ντ (ex.K0))
  
0.1454 ± 0.0006average 
0.1455 ± 0.0006average with u.c. 
0.1456 ± 0.0010 ± 0.0008L3[59]
0.1496 ± 0.0009 ± 0.0022OPAL[60]
B56 = B → hhh+ ντ)
  
0.0979 ± 0.0005average 
0.0980 ± 0.0005average with u.c. 
B57 = B → hhh+ ντ (ex.K0))
  
0.0945 ± 0.0005average 
0.0945 ± 0.0005average with u.c. 
0.0951 ± 0.0007 ± 0.0020CLEO[61]
0.0932 ± 0.0009 ± 0.0008DELPHI[36]
B57 / 55 = 
B → hhh+ ντ (ex.K0))
B → hhh+ ≥ 0   neutrals  ντ (ex.K0))
  
0.6496 ± 0.0031average 
0.6498 ± 0.0031average with u.c. 
0.6600 ± 0.0040 ± 0.0140OPAL[60]
B58 = B → hhh+ ντ (ex.K0,ω))
  
0.0942 ± 0.0005average 
0.0942 ± 0.0005average with u.c. 
B59 = B → π π+ π ντ)
  
0.0930 ± 0.0005average 
0.0931 ± 0.0005average with u.c. 
B60 = B → π π+ π ντ (ex.K0))
  
0.09010 ± 0.00052average 
0.09016 ± 0.00051average with u.c. 
0.08830 ± 0.00010 ± 0.00130BaBar[62]
0.08420 ± 0.00000 −0.00250+0.00260Belle[63]
0.09130 ± 0.00050 ± 0.00460CLEO3[64]
B62 = B → π π+ π ντ (ex.K0,ω))
  
0.0898 ± 0.0005average 
0.0899 ± 0.0005average with u.c. 
0.0904 ± 0.0006 ± 0.0008ALEPH[25]
B63 = B → hhh+ ≥ 1   neutrals  ντ)
  
0.0529 ± 0.0005average 
0.0529 ± 0.0005average with u.c. 
B64 = B → hhh+ ≥ 1   π0  ντ (ex.K0))
  
0.0509 ± 0.0005average 
0.0509 ± 0.0005average with u.c. 
B65 = B → hhh+ π0 ντ)
  
0.0476 ± 0.0005average 
0.0476 ± 0.0005average with u.c. 
B66 = B → hhh+ π0 ντ (ex.K0))
  
0.0457 ± 0.0005average 
0.0457 ± 0.0005average with u.c. 
0.0423 ± 0.0006 ± 0.0022CLEO[61]
0.0454 ± 0.0011 ± 0.0010DELPHI[36]
B67 = B → hhh+ π0 ντ (ex.K0,ω))
  
0.0279 ± 0.0007average 
0.0279 ± 0.0007average with u.c. 
B68 = B → π π+ π π0 ντ)
  
0.0462 ± 0.0005average 
0.0462 ± 0.0005average with u.c. 
B69 = B → π π+ π π0 ντ (ex.K0))
  
0.0449 ± 0.0005average 
0.0449 ± 0.0005average with u.c. 
0.0460 ± 0.0006 ± 0.0006ALEPH[25]
0.0419 ± 0.0010 ± 0.0021CLEO[65]
B70 = B → π π+ π π0 ντ (ex.K0,ω))
  
0.0274 ± 0.0007average 
0.0274 ± 0.0007average with u.c. 
B74 = B → hhh+ ≥ 2  π0  ντ (ex.K0))
  
0.00515 ± 0.00031average 
0.00517 ± 0.00031average with u.c. 
0.00561 ± 0.00068 ± 0.00095DELPHI[36]
B75 = B → hhh+ 2π0 ντ)
  
0.00504 ± 0.00031average 
0.00505 ± 0.00031average with u.c. 
B76 = B → hhh+ 2π0 ντ (ex.K0))
  
0.00494 ± 0.00031average 
0.00495 ± 0.00031average with u.c. 
0.00435 ± 0.00030 ± 0.00035ALEPH[25]
B76 / 54 = 
B → hhh+ 2π0 ντ (ex.K0))
B → hhh+ ≥ 0  neutrals ≥ 0   KL0  ντ)
  
0.0325 ± 0.0020average 
0.0326 ± 0.0020average with u.c. 
0.0340 ± 0.0020 ± 0.0030CLEO[66]
B77 = B → hhh+ 2π0 ντ (ex.K0,ω,η))
  
0.0010 ± 0.0004average 
0.0010 ± 0.0004average with u.c. 
B78 = B → hhh+ 3π0 ντ)
  
(212 ± 30)· 10−6average 
(213 ± 30)· 10−6average with u.c. 
(220 ± 30 ± 40)· 10−6CLEO[67]
B79 = B → Khh+ ≥ 0   neutrals  ντ)
  
0.00628 ± 0.00014average 
0.00629 ± 0.00014average with u.c. 
B80 = B → K πh+ ντ (ex.K0))
  
0.00436 ± 0.00007average 
0.00437 ± 0.00007average with u.c. 
B80 / 60 = 
B → K πh+ ντ (ex.K0))
B → π π+ π ντ (ex.K0))
  
0.0484 ± 0.0008average 
0.0485 ± 0.0008average with u.c. 
0.0544 ± 0.0021 ± 0.0053CLEO[68]
B81 = B → K πh+ π0 ντ (ex.K0))
  
(0.85 ± 0.12)· 10−3average 
(0.86 ± 0.12)· 10−3average with u.c. 
B81 / 69 = 
B → K πh+ π0 ντ (ex.K0))
B → π π+ π π0 ντ (ex.K0))
  
0.0189 ± 0.0026average 
0.0191 ± 0.0026average with u.c. 
0.0261 ± 0.0045 ± 0.0042CLEO[68]
B82 = B → K π π+ ≥ 0   neutrals  ντ)
  
0.00476 ± 0.00014average 
0.00477 ± 0.00014average with u.c. 
0.00580 −0.00130+0.00150 ± 0.00120TPC[69]
B83 = B → K π π+ ≥ 0   π0  ντ (ex.K0))
  
0.00372 ± 0.00013average 
0.00373 ± 0.00013average with u.c. 
B84 = B → K π π+ ντ)
  
0.00344 ± 0.00007average 
0.00345 ± 0.00007average with u.c. 
B85 = B → K π+ π ντ (ex.K0))
  
0.002930 ± 0.000068average 
0.002933 ± 0.000068average with u.c. 
0.002140 ± 0.000370 ± 0.000290ALEPH[70]
0.002730 ± 0.000020 ± 0.000090BaBar[62]
0.003300 ± 0.000010 −0.000170+0.000160Belle[63]
0.003840 ± 0.000140 ± 0.000380CLEO3[64]
0.004150 ± 0.000530 ± 0.000400OPAL[45]
B85 / 60 = 
B → K π+ π ντ (ex.K0))
B → π π+ π ντ (ex.K0))
  
0.0325 ± 0.0007average 
0.0325 ± 0.0007average with u.c. 
B87 = B → K π π+ π0 ντ)
  
0.00131 ± 0.00012average 
0.00131 ± 0.00012average with u.c. 
B88 = B → K π π+ π0 ντ (ex.K0))
  
(0.79 ± 0.12)· 10−3average 
(0.80 ± 0.12)· 10−3average with u.c. 
(0.61 ± 0.39 ± 0.18)· 10−3ALEPH[70]
(0.74 ± 0.08 ± 0.11)· 10−3CLEO3[71]
B89 = B → K π π+ π0 ντ (ex.K0,η))
  
(0.75 ± 0.12)· 10−3average 
(0.76 ± 0.12)· 10−3average with u.c. 
B92 = B → πKK+ ≥ 0   neutrals  ντ)
  
0.001495 ± 0.000033average 
0.001496 ± 0.000033average with u.c. 
0.001590 ± 0.000530 ± 0.000200OPAL[72]
0.001500 −0.000700+0.000900 ± 0.000300TPC[69]
B93 = B → πKK+ ντ)
  
0.001434 ± 0.000027average 
0.001435 ± 0.000027average with u.c. 
0.001630 ± 0.000210 ± 0.000170ALEPH[70]
0.001346 ± 0.000010 ± 0.000036BaBar[62]
0.001550 ± 0.000010 −0.000050+0.000060Belle[63]
0.001550 ± 0.000060 ± 0.000090CLEO3[64]
B93 / 60 = 
B → πKK+ ντ)
B → π π+ π ντ (ex.K0))
  
0.01592 ± 0.00030average 
0.01592 ± 0.00030average with u.c. 
0.01600 ± 0.00150 ± 0.00300CLEO[68]
B94 = B → πKK+ π0 ντ)
  
(61 ± 18)· 10−6average 
(61 ± 18)· 10−6average with u.c. 
(750 ± 290 ± 150)· 10−6ALEPH[70]
(55 ± 14 ± 12)· 10−6CLEO3[71]
B94 / 69 = 
B → πKK+ π0 ντ)
B → π π+ π π0 ντ (ex.K0))
  
0.0014 ± 0.0004average 
0.0014 ± 0.0004average with u.c. 
0.0079 ± 0.0044 ± 0.0016CLEO[68]
B96 = B → KKK+ ντ)
  
(21.7 ± 8.0)· 10−6average 
(21.7 ± 8.0)· 10−6average with u.c. 
(15.8 ± 1.3 ± 1.2)· 10−6BaBar[62]
(32.9 ± 1.7 −2.0+1.9)· 10−6Belle[63]
B102 = B → 3h 2h+ ≥ 0   neutrals  ντ (ex.K0))
  
0.00099 ± 0.00004average 
0.00099 ± 0.00004average with u.c. 
0.00097 ± 0.00005 ± 0.00011CLEO[73]
0.00102 ± 0.00029 ± 0.00000HRS[74]
0.00170 ± 0.00022 ± 0.00026L3[59]
B103 = B → 3h 2h+ ντ (ex.K0))
  
(828 ± 31)· 10−6average 
(829 ± 31)· 10−6average with u.c. 
(720 ± 90 ± 120)· 10−6ALEPH[25]
(640 ± 230 ± 100)· 10−6ARGUS[75]
(770 ± 50 ± 90)· 10−6CLEO[73]
(970 ± 150 ± 50)· 10−6DELPHI[36]
(510 ± 200 ± 0)· 10−6HRS[74]
(910 ± 140 ± 60)· 10−6OPAL[76]
B104 = B → 3h 2h+ π0 ντ (ex.K0))
  
(165 ± 11)· 10−6average 
(165 ± 11)· 10−6average with u.c. 
(210 ± 70 ± 90)· 10−6ALEPH[25]
(170 ± 20 ± 20)· 10−6CLEO[67]
(160 ± 120 ± 60)· 10−6DELPHI[36]
(270 ± 180 ± 90)· 10−6OPAL[76]
B106 = B → (5π) ντ)
  
0.0078 ± 0.0005average 
0.0078 ± 0.0005average with u.c. 
B110 = B → Xs ντ)
  
0.0291 ± 0.0005average 
0.0292 ± 0.0004average with u.c. 
B126 = B → π π0 η ντ)
  
0.001386 ± 0.000072average 
0.001389 ± 0.000072average with u.c. 
0.001800 ± 0.000400 ± 0.000200ALEPH[77]
0.001350 ± 0.000030 ± 0.000070Belle[78]
0.001700 ± 0.000200 ± 0.000200CLEO[79]
B128 = B → K η ντ)
  
(155 ± 8)· 10−6average 
(155 ± 8)· 10−6average with u.c. 
(290 −120+130 ± 70)· 10−6ALEPH[77]
(142 ± 11 ± 7)· 10−6BaBar[80]
(158 ± 5 ± 9)· 10−6Belle[78]
(260 ± 50 ± 50)· 10−6CLEO[81]
B130 = B → K π0 η ντ)
  
(48 ± 12)· 10−6average 
(48 ± 12)· 10−6average with u.c. 
(46 ± 11 ± 4)· 10−6Belle[78]
(177 ± 56 ± 71)· 10−6CLEO[82]
B132 = B → πK0 η ντ)
  
(94 ± 15)· 10−6average 
(94 ± 15)· 10−6average with u.c. 
(88 ± 14 ± 6)· 10−6Belle[78]
(220 ± 70 ± 22)· 10−6CLEO[82]
B136 = B → π π+ π η ντ (ex.K0))
  
(220 ± 13)· 10−6average 
(220 ± 13)· 10−6average with u.c. 
B149 = B → h ω ≥ 0   neutrals  ντ)
  
0.0240 ± 0.0008average 
0.0240 ± 0.0008average with u.c. 
B150 = B → h ω ντ)
  
0.0199 ± 0.0006average 
0.0199 ± 0.0006average with u.c. 
0.0191 ± 0.0007 ± 0.0006ALEPH[77]
0.0160 ± 0.0027 ± 0.0041CLEO[83]
B150 / 66 = 
B → h ω ντ)
B → hhh+ π0 ντ (ex.K0))
  
0.435 ± 0.014average 
0.435 ± 0.014average with u.c. 
0.431 ± 0.033 ± 0.000ALEPH[84]
0.464 ± 0.016 ± 0.017CLEO[61]
B151 = B → K ω ντ)
  
(0.41 ± 0.09)· 10−3average 
(0.41 ± 0.09)· 10−3average with u.c. 
(0.41 ± 0.06 ± 0.07)· 10−3CLEO3[71]
B152 = B → h π0 ω ντ)
  
0.0041 ± 0.0004average 
0.0041 ± 0.0004average with u.c. 
0.0043 ± 0.0006 ± 0.0005ALEPH[77]
B152 / 54 = 
B → h ω π0 ντ)
B → hhh+ ≥ 0  neutrals ≥ 0   KL0  ντ)
  
0.0268 ± 0.0028average 
0.0269 ± 0.0028average with u.c. 
B152 / 76 = 
B → h ω π0 ντ)
B → hhh+ 2π0 ντ (ex.K0))
  
0.82 ± 0.08average 
0.82 ± 0.08average with u.c. 
0.81 ± 0.06 ± 0.06CLEO[66]
B167 = B → K φ ντ)
  
(44 ± 16)· 10−6average 
(44 ± 16)· 10−6average with u.c. 
B168 = B → K φ(K+K) ντ)
  
(22 ± 8)· 10−6average 
(22 ± 8)· 10−6average with u.c. 
B169 = B → K φ(KS0KL0) ντ)
  
(15 ± 6)· 10−6average 
(15 ± 6)· 10−6average with u.c. 
B800 = B → π ω ντ)
  
0.0195 ± 0.0006average 
0.0195 ± 0.0006average with u.c. 
B802 = B → K π π+ ντ (ex.K0,ω))
  
0.00292 ± 0.00007average 
0.00293 ± 0.00007average with u.c. 
B803 = B → K π π+ π0 ντ (ex.K0,ω,η))
  
(0.39 ± 0.14)· 10−3average 
(0.39 ± 0.14)· 10−3average with u.c. 
B804 = B → πKL0KL0 ντ)
  
(235 ± 6)· 10−6average 
(235 ± 6)· 10−6average with u.c. 
B805 = B → a1 γ) ντ)
  
(0.38 ± 0.15)· 10−3average 
(0.40 ± 0.15)· 10−3average with u.c. 
B806 = B → πKL0KL0 π0 ντ)
  
(18.2 ± 2.1)· 10−6average 
(18.2 ± 2.1)· 10−6average with u.c. 
B810 = B → 2π π+ 3π0 ντ (ex.K0))
  
(194 ± 30)· 10−6average 
(194 ± 30)· 10−6average with u.c. 
B811 = B → π 2π0 ω ντ)
  
(72 ± 16)· 10−6average 
(72 ± 16)· 10−6average with u.c. 
(73 ± 12 ± 12)· 10−6BaBar[85]
B812 = B → 2π π+ 3π0 ντ (ex.K0,η,ω,f1))
  
(14 ± 27)· 10−6average 
(14 ± 27)· 10−6average with u.c. 
(10 ± 8 ± 30)· 10−6BaBar[85]
B820 = B → 3π 2π+ ντ (ex.K0,ω))
  
(826 ± 31)· 10−6average 
(827 ± 31)· 10−6average with u.c. 
B821 = B → 3π 2π+ ντ (ex.K0,ω,f1))
  
(774 ± 30)· 10−6average 
(775 ± 30)· 10−6average with u.c. 
(768 ± 4 ± 40)· 10−6BaBar[85]
B822 = B → K 2π 2π+ ντ (ex.K0))
  
(0.6 ± 1.2)· 10−6average 
(0.6 ± 1.2)· 10−6average with u.c. 
(0.6 ± 0.5 ± 1.1)· 10−6BaBar[85]
B830 = B → 3π 2π+ π0 ντ (ex.K0))
  
(163 ± 11)· 10−6average 
(164 ± 11)· 10−6average with u.c. 
B831 = B → 2π π+ ω ντ (ex.K0))
  
(84 ± 6)· 10−6average 
(84 ± 6)· 10−6average with u.c. 
(84 ± 4 ± 6)· 10−6BaBar[85]
B832 = B → 3π 2π+ π0 ντ (ex.K0,η,ω,f1))
  
(37.7 ± 8.7)· 10−6average 
(37.7 ± 8.7)· 10−6average with u.c. 
(36.0 ± 3.0 ± 9.0)· 10−6BaBar[85]
B833 = B → K 2π 2π+ π0 ντ (ex.K0))
  
(1.1 ± 0.6)· 10−6average 
(1.1 ± 0.6)· 10−6average with u.c. 
(1.1 ± 0.4 ± 0.4)· 10−6BaBar[85]
B910 = B → 2π π+ η(3π0) ντ (ex.K0))
  
(72 ± 4)· 10−6average 
(72 ± 4)· 10−6average with u.c. 
(83 ± 9 ± 8)· 10−6BaBar[85]
B911 = B → π 2π0 η(π+ π π0) ντ (ex.K0))
  
(45 ± 9)· 10−6average 
(45 ± 9)· 10−6average with u.c. 
(46 ± 8 ± 5)· 10−6BaBar[85]
B920 = B → πf1(2π 2π+) ντ)
  
(52.4 ± 4.4)· 10−6average 
(52.4 ± 4.4)· 10−6average with u.c. 
(52.0 ± 3.1 ± 3.7)· 10−6BaBar[85]
B930 = B → 2π π+ η(π+ π π0) ντ (ex.K0))
  
(50.7 ± 3.0)· 10−6average 
(50.7 ± 3.0)· 10−6average with u.c. 
(53.9 ± 2.7 ± 4.1)· 10−6BaBar[85]
B944 = B → 2π π+ η(γ γ) ντ (ex.K0))
  
(86.6 ± 5.1)· 10−6average 
(86.8 ± 5.1)· 10−6average with u.c. 
(82.6 ± 3.5 ± 5.1)· 10−6BaBar[85]
B945 = B → π 2π0 η ντ (ex.K0))
  
(0.19 ± 0.04)· 10−3average 
(0.19 ± 0.04)· 10−3average with u.c. 
Bur = B unitarity residual)
  
0.0007 ± 0.0011average 
0.0average with u.c. 
Ball = B → all modes)
  
0.9993 ± 0.0011average 
1.0average with u.c. 
 


Table 4: Nuisance fit parameter of the τ branching fractions fit.
Nuisance fit parameterExperimentReference
 
B980 = B(a1 → π γ)
  
0.0021 ± 0.0008average 
0.0021 ± 0.0008 ± 0.0000ALEPH[25]
 

4.4 Equality constraints

The constraints on the τ branching-fractions used in the fit are listed in the following equations.

The equations involve fit parameters associated to τ branching fractions, nuisance fit parameters, external parameters corresponding to non-τ branching fractions (like BKS → π0π0), probabilities corresponding to squared moduli of amplitudes of quantum state mixtures, such as K0, K0, KS, KL. The probabilities are denoted with, e.g., B<K0|KS> = |<K0|KS>|2. The values of all non-τ quantities are taken from the PDG 2022 and 2023 update [8] averages.

     
B1 =B3 + B5 + B9 + B10 + B14 + B16         
  + B20 + B23 + B27 + B28 + B30 + B35         
  + B40 + B44 + B37 + B42 + B47 + B48         
  + B804 + B50 + B51 + B806 + B126·Bη→neutral         
  + B128·Bη→neutral + B130·Bη→neutral + B132·Bη→neutral         
  + B800·Bω→π0γ + B151·Bω→π0γ + B152·Bω→π0γ         
  + B167·Bφ→ KSKL          
     
B2 =B3 + B5 + B9 + B10 + B14 + B16         
  + B20 + B23 + B27 + B28 + B30 + B35·(B<K0|KS>·BKS→π0π0         
  +B<K0|KL>) + B40·(B<K0|KS>·BKS→π0π0+B<K0|KL>) + B44·(B<K0|KS>·BKS→π0π0         
  +B<K0|KL>) + B37·(B<K0|KS>·BKS→π0π0+B<K0|KL>) + B42·(B<K0|KS>·BKS→π0π0         
  +B<K0|KL>) + B47·(BKS→π0π0·BKS→π0π0) + B48·BKS→π0π0         
  + B804 + B50·(BKS→π0π0·BKS→π0π0) + B51·BKS→π0π0         
  + B806 + B126·Bη→neutral + B128·Bη→neutral + B130·Bη→neutral         
  + B132·(Bη→neutral·(B<K0|KS>·BKS→π0π0+B<K0|KL>)) + B800·Bω→π0γ         
  + B151·Bω→π0γ + B152·Bω→π0γ + B167·(Bφ→ KSKL·BKS→π0π0)          
     
B3 / 5 =
B3
B5
         
     
B7 =B35·B<K0|KL> + B9 + B804 + B37·B<K0|KL>         
  + B10          
     
B8 =B9 + B10          
     
B8 / 5 =
B8
B5
         
     
B9 / 5 =
B9
B5
         
     
B10 / 5 =
B10
B5
         
     
B10 / 9 =
B10
B9
         
     
B11 =B14 + B16 + B20 + B23 + B27 + B28         
  + B30 + B35·(B<K0|KS>·BKS→π0π0) + B37·(B<K0|KS>·BKS→π0π0)          
  + B40·(B<K0|KS>·BKS→π0π0) + B42·(B<K0|KS>·BKS→π0π0)          
  + B47·(BKS→π0π0·BKS→π0π0) + B50·(BKS→π0π0·BKS→π0π0)          
  + B126·Bη→neutral + B128·Bη→neutral + B130·Bη→neutral         
  + B132·(B<K0|KS>·BKS→π0π0·Bη→neutral) + B151·Bω→π0γ         
  + B152·Bω→π0γ + B800·Bω→π0γ          
     
B12 =B128·Bη→3π0 + B30 + B23 + B28 + B14         
  + B16 + B20 + B27 + B126·Bη→3π0 + B130·Bη→3π0          
     
B13 =B14 + B16          
     
B17 =B128·Bη→3π0 + B30 + B23 + B28 + B35·(B<K0|KS>·BKS→π0π0)          
  + B40·(B<K0|KS>·BKS→π0π0) + B42·(B<K0|KS>·BKS→π0π0)          
  + B20 + B27 + B47·(BKS→π0π0·BKS→π0π0) + B50·(BKS→π0π0·BKS→π0π0)          
  + B126·Bη→3π0 + B37·(B<K0|KS>·BKS→π0π0) + B130·Bη→3π0          
     
B18 =B23 + B35·(B<K0|KS>·BKS→π0π0) + B20 + B37·(B<K0|KS>·BKS→π0π0)          
     
B19 =B23 + B20          
     
B19 / 13 =
B19
B13
         
     
B24 =B27 + B28 + B30 + B40·(B<K0|KS>·BKS→π0π0)          
  + B42·(B<K0|KS>·BKS→π0π0) + B47·(BKS→π0π0·BKS→π0π0)          
  + B50·(BKS→π0π0·BKS→π0π0) + B126·Bη→3π0 + B128·Bη→3π0         
  + B130·Bη→3π0 + B132·(B<K0|KS>·BKS→π0π0·Bη→3π0)          
     
B25 =B128·Bη→3π0 + B30 + B28 + B27 + B126·Bη→3π0         
  + B130·Bη→3π0          
     
B26 =B128·Bη→3π0 + B28 + B40·(B<K0|KS>·BKS→π0π0)          
  + B42·(B<K0|KS>·BKS→π0π0) + B27          
     
B26 / 13 =
B26
B13
         
     
B29 =B30 + B126·Bη→3π0 + B130·Bη→3π0          
     
B31 =B128·Bη→neutral + B23 + B28 + B42 + B16         
  + B37 + B10 + B167·(Bφ→ KSKL·BKS→π0π0)          
     
B32 =B16 + B23 + B28 + B37 + B42 + B128·Bη→neutral         
  + B130·Bη→neutral + B167·(Bφ→ KSKL·BKS→π0π0)          
     
B33 =B35·B<K0|KS> + B40·B<K0|KS> + B42·B<K0|KS>         
  + B47 + B48 + B50 + B51 + B37·B<K0|KS>         
  + B132·(B<K0|KS>·Bη→neutral) + B44·B<K0|KS> + B167·Bφ→ KSKL          
     
B34 =B35 + B37          
     
B38 =B42 + B37          
     
B39 =B40 + B42          
     
B43 =B40 + B44          
     
B46 =B48 + B47 + B804          
     
B49 =B50 + B51 + B806          
     
B54 =B35·(B<K0|KS>·BKS→π+π) + B37·(B<K0|KS>·BKS→π+π)          
  + B40·(B<K0|KS>·BKS→π+π) + B42·(B<K0|KS>·BKS→π+π)          
  + B47·(2·BKS→π+π·BKS→π0π0) + B48·BKS→π+π         
  + B50·(2·BKS→π+π·BKS→π0π0) + B51·BKS→π+π         
  + B53·(B<K0|KS>·BKS→π0π0+B<K0|KL>) + B62 + B70         
  + B77 + B78 + B93 + B94 + B126·Bη→charged         
  + B128·Bη→charged + B130·Bη→charged + B132·(B<K0|KL>·Bη→π+ππ0         
  + B<K0|KS>·BKS→π0π0·Bη→π+ππ0 + B<K0|KS>·BKS→π+π·Bη→3π0)          
  + B151·(Bω→π+ππ0+Bω→π+π) + B152·(Bω→π+ππ0+Bω→π+π)          
  + B167·(Bφ→ K+K + Bφ→ KSKL·BKS→π+π) + B802 + B803         
  + B800·(Bω→π+ππ0+Bω→π+π)          
     
B55 =B128·Bη→charged + B152·(Bω→π+ππ0+Bω→π+π) + B78         
  + B77 + B94 + B62 + B70 + B93 + B126·Bη→charged         
  + B802 + B803 + B800·(Bω→π+ππ0+Bω→π+π) + B151·(Bω→π+ππ0         
  +Bω→π+π) + B130·Bη→charged + B168          
     
B56 =B35·(B<K0|KS>·BKS→π+π) + B62 + B93 + B37·(B<K0|KS>·BKS→π+π)          
  + B802 + B800·Bω→π+π + B151·Bω→π+π + B168          
     
B57 =B62 + B93 + B802 + B800·Bω→π+π + B151·Bω→π+π         
  + B167·Bφ→ K+K          
     
B57 / 55 =
B57
B55
         
     
B58 =B62 + B93 + B802 + B167·Bφ→ K+K          
     
B59 =B35·(B<K0|KS>·BKS→π+π) + B62 + B800·Bω→π+π          
     
B60 =B62 + B800·Bω→π+π          
     
B63 =B40·(B<K0|KS>·BKS→π+π) + B42·(B<K0|KS>·BKS→π+π)          
  + B47·(2·BKS→π+π·BKS→π0π0) + B50·(2·BKS→π+π·BKS→π0π0)          
  + B70 + B77 + B78 + B94 + B126·Bη→charged         
  + B128·Bη→charged + B130·Bη→charged + B132·(B<K0|KS>·BKS→π+π·Bη→neutral         
  + B<K0|KS>·BKS→π0π0·Bη→charged) + B151·Bω→π+ππ0 + B152·(Bω→π+ππ0         
  +Bω→π+π) + B800·Bω→π+ππ0 + B803          
     
B64 =B78 + B77 + B94 + B70 + B126·Bη→π+ππ0         
  + B128·Bη→π+ππ0 + B130·Bη→π+ππ0 + B800·Bω→π+ππ0         
  + B151·Bω→π+ππ0 + B152·(Bω→π+ππ0+Bω→π+π) + B803          
     
B65 =B40·(B<K0|KS>·BKS→π+π) + B42·(B<K0|KS>·BKS→π+π)          
  + B70 + B94 + B128·Bη→π+ππ0 + B151·Bω→π+ππ0         
  + B152·Bω→π+π + B800·Bω→π+ππ0 + B803          
     
B66 =B70 + B94 + B128·Bη→π+ππ0 + B151·Bω→π+ππ0         
  + B152·Bω→π+π + B800·Bω→π+ππ0 + B803          
     
B67 =B70 + B94 + B128·Bη→π+ππ0 + B803          
     
B68 =B40·(B<K0|KS>·BKS→π+π) + B70 + B152·Bω→π+π         
  + B800·Bω→π+ππ0          
     
B69 =B152·Bω→π+π + B70 + B800·Bω→π+ππ0          
     
B74 =B152·Bω→π+ππ0 + B78 + B77 + B126·Bη→π+ππ0         
  + B130·Bη→π+ππ0          
     
B75 =B152·Bω→π+ππ0 + B47·(2·BKS→π+π·BKS→π0π0)          
  + B77 + B126·Bη→π+ππ0 + B130·Bη→π+ππ0          
     
B76 =B152·Bω→π+ππ0 + B77 + B126·Bη→π+ππ0 + B130·Bη→π+ππ0          
     
B76 / 54 =
B76
B54
         
     
B78 =B810 + B50·(2·BKS→π+π·BKS→π0π0) + B132·(B<K0|KS>·BKS→π+π·Bη→3π0)          
     
B79 =B37·(B<K0|KS>·BKS→π+π) + B42·(B<K0|KS>·BKS→π+π)          
  + B93 + B94 + B128·Bη→charged + B151·(Bω→π+ππ0         
  +Bω→π+π) + B168 + B802 + B803          
     
B80 =B93 + B802 + B151·Bω→π+π          
     
B80 / 60 =
B80
B60
         
     
B81 =B128·Bη→π+ππ0 + B94 + B803 + B151·Bω→π+ππ0          
     
B81 / 69 =
B81
B69
         
     
B82 =B128·Bη→charged + B42·(B<K0|KS>·BKS→π+π) + B802         
  + B803 + B151·(Bω→π+ππ0+Bω→π+π) + B37·(B<K0|KS>·BKS→π+π)          
     
B83 =B128·Bη→π+ππ0 + B802 + B803 + B151·(Bω→π+ππ0         
  +Bω→π+π)          
     
B84 =B802 + B151·Bω→π+π + B37·(B<K0|KS>·BKS→π+π)          
     
B85 =B802 + B151·Bω→π+π          
     
B85 / 60 =
B85
B60
         
     
B87 =B42·(B<K0|KS>·BKS→π+π) + B128·Bη→π+ππ0 + B151·Bω→π+ππ0         
  + B803          
     
B88 =B128·Bη→π+ππ0 + B803 + B151·Bω→π+ππ0          
     
B89 =B803 + B151·Bω→π+ππ0          
     
B92 =B94 + B93          
     
B93 / 60 =
B93
B60
         
     
B94 / 69 =
B94
B69
         
     
B96 =B167·Bφ→ K+K          
     
B102 =B103 + B104          
     
B103 =B820 + B822 + B831·Bω→π+π          
     
B104 =B830 + B833          
     
B106 =B30 + B44·B<K0|KS> + B47 + B53·B<K0|KS>         
  + B77 + B103 + B126·(Bη→3π0+Bη→π+ππ0) + B152·Bω→π+ππ0          
     
B110 =B10 + B16 + B23 + B28 + B35 + B40         
  + B128 + B802 + B803 + B151 + B130 + B132         
  + B44 + B53 + B168 + B169 + B822 + B833          
     
B149 =B152 + B800 + B151          
     
B150 =B800 + B151          
     
B150 / 66 =
B150
B66
         
     
B152 / 54 =
B152
B54
         
     
B152 / 76 =
B152
B76
         
     
B168 =B167·Bφ→ K+K          
     
B169 =B167·Bφ→ KSKL          
     
B804 =B47 · ((B<K0|KL>·B<K0|KL>) / (B<K0|KS>·B<K0|KS>))          
     
B805 =B980/(1−B980)·(B20 + B62)          
     
B806 =B50 · ((B<K0|KL>·B<K0|KL>) / (B<K0|KS>·B<K0|KS>))          
     
B810 =B910 + B911 + B811·Bω→π+ππ0 + B812          
     
B820 =B920 + B821          
     
B830 =B930 + B831·Bω→π+ππ0 + B832          
     
B910 =B136·Bη→3π0          
     
B911 =B945·Bη→π+ππ0          
     
B930 =B136·Bη→π+ππ0          
     
B944 =B136·Bη→γγ          
     
Bur = 1 − Ball          
     
Ball =B3 + B5 + B9 + B10 + B14 + B16         
  + B20 + B23 + B27 + B28 + B30 + B35         
  + B37 + B40 + B42 + B47·(1 + ((B<K0|KL>·B<K0|KL>) / (B<K0|KS>·B<K0|KS>)))          
  + B48 + B62 + B70 + B77 + B811 + B812         
  + B93 + B94 + B832 + B833 + B126 + B128         
  + B802 + B803 + B800 + B151 + B130 + B132         
  + B44 + B53 + B50·(1 + ((B<K0|KL>·B<K0|KL>) / (B<K0|KS>·B<K0|KS>)))          
  + B51 + B167·(Bφ→ K+K+Bφ→ KSKL) + B152 + B920         
  + B821 + B822 + B831 + B136 + B945 + B805          

Previous

HFLAV-Tau 2023 Report

Next