Global Fit for D0-D0 Mixing and CP Violation
(through 14 September 2025)

 

People working on this:   Alan Schwartz, Marco Gersabeck
For a complete list of references click here
For world average values of measured observables (used below) click here



Notation and Phase Convention:
The mass eigenstates are denoted D 1 ≡ p|D0> + q|D0> and D 2 ≡ p|D0> − q|D0>; δ and δKππ are strong phase differences between D0 → f and D0 → f amplitudes, and φ is the weak phase difference Arg(q/p). We define δ ≡ δ D0 → Kn(π) − δ D0 → Kn(π). The mixing parameters are defined as x ≡ (m2 − m1)/Γ and y ≡ (Γ2 − Γ1)/(2Γ), where Γ = (Γ1 + Γ2)/2. Our convention is (CP)|D0> = −|D0> and (CP)|D0> = −|D0>; thus, in the absence of CP violation, x = (mCP+ − mCP−)/Γ and y = (ΓCP+ − ΓCP−)/(2Γ).

Experimental Observables:
For this version of the global fit, there are input 63 experimental measurements:   y CP ,   A Γ ,   (x, y, |q/p|, φ) Belle K0S π+ π ,   (xCP, yCP, Δx, Δy) LHCb K0S π+ π (Runs 1, 2),   (x, y) BaBar K0S h+ h ,   (x, y) BaBar π0 π+ π ,   (R M )/2 LHCb K+ π π+ π ,   (R M ) semileptonic ,   (x", y") BaBar K+ π π 0 ,   (R D , x2, y, cos δ, sin δ) CLEOc Ψ(3770) ,   (ACP) BESIII Ψ(3770) ,   (RD, AD, x', y'±)BaBar K+ π ,   (RD, x'2, y') Belle K+ π ,   (RD, x'2, y') CDF K+ π ,   (RD±, x', y'±) LHCb K+ π (D*+B tagged),   (R, c, c′, A, Δc, Δc′, Ã, Δc̃, Δc̃′ ) LHCb K+ π (D* tagged),   (ACPK, ACPπ) BaBar ,   (ACPK, ACPπ) Belle ,   (ACPK, ACPπ) CDF ,   (ACPK −ACPπ) LHCb (D*+B tagged) ,   (ACPK) LHCb (D* tagged)

Theoretical Parameters:
There are two equivalent sets of parameters governing mixing and indirect CP violation: x, y, |q/p|, Arg(q/p) ≡ φ and x12, y12, Arg(M12) ≡ φ2M, Arg(Γ12) ≡ φ2Γ. For both sets, the first two parameters govern mixing, and the latter two parameters govern indirect CP violation. In addition to these four parameters, there are six additional parameters fitted: δ, δKππ are strong phases; RD is the ratio Γ(D0→ f)/Γ(D0 → f); and AD, Aπ, AK are direct CP-violating parameters for D0 → K+ π, D0 → π+ π, and D0 → K+ K, respectively. The subscript 2 for φ2M and φ2Γ denotes the basis in which the dominant U-spin-changing (ΔU=2) dispersive and absorptive mixing amplitudes are real; see Kagan and Silvestrini Eq. 107. Choosing a basis ensures that the phases φ, φ2M, and φ2Γ are physically meaningful.

The relationships between x, y, |q/p|, φ, δ, δKππ, RD, AD, Aπ, AK and the measured observables are given below. The observables appear in blue (left side), and the fitted parameters appear in magenta (right side).



The relationships between (x, y, |q/p|, φ) and (x12, y12, φ2M, φ2Γ) are:





The first three relations correspond to Eqs. (14), (15), and (48) of Kagan and Sokoloff; the last relation corresponds to Eq. (110) of Kagan and Silvestrini.
Note that if φ2M = φ2Γ, then |x| = x12, |y| = y12, |q/p| = 1, and φ = −φ2M. In this case, there is no CP violation in mixing.

 

Measurements used:


Index Observable Value Source
1 y CP − y CP (Kπ) (0.697 ± 0.028)%
World average   of D0 → K+ K / π+ π / K+ K K0
Our calculation of the y CP (Kπ) correction is from arXiv:2207.11867, Eq. (29).
This correction was first pointed out by Pajero, Morello in JHEP 03 (2022) 162.
2 A Γ (0.0089 ± 0.0113)% World average (COMBOS combination)   of D0 → K+ K / π+ π results
3-6
x
y
 
x
y
|q/p|
φ
0.40 ± 0.17 ± 0.04
0.29 ± 0.14 ± 0.03
 
(0.58 ± 0.19 +0.0734 −0.1177 )%
(0.27 ± 0.16 +0.0546 −0.0854 )%
0.82 +0.20 −0.18 +0.0807 −0.0645
(−13 +12 −13 +4.15 −4.77 ) degrees
Belle + Belle II   D0 → K0 S π+ π results using
951 fb−1 and 408 fb−1, respectively. The correlation is negligible.
 
Belle   D0 → K0 S π+ π results using 921 fb−1. Correlation coefficients:
1   0.054   −0.074   −0.031
0.054   1   0.034   −0.019
−0.074   0.034   1   0.044
−0.031   −0.019   0.044   1
7-10
 
 
 
 
 
11-14
x (no CPV)
y (no CPV)
 
xCP
yCP
Δx
Δy
 
xCP
yCP
Δx
Δy
(−0.86 ± 0.53 ± 0.17)%
(0.03 ± 0.46 ± 0.13)%
 
(0.27 ± 0.16 ± 0.04)%
(0.74 ± 0.36 ± 0.11)%
(−0.053 ± 0.070 ± 0.022)%
(0.06 ± 0.16 ± 0.03)%
 
(0.400 ± 0.045 ± 0.020)%
(0.551 ± 0.116 ± 0.059)%
(−0.029 ± 0.018 ± 0.001)%
(0.031 ± 0.035 ± 0.013)%
LHCb   D0 → K0S π+π results using 1 fb-1 (√s = 7 TeV)
D*+ → D0π+ flavor tag. Correlation coefficient = +0.37, no CPV.
 
3 fb-1 results (√s = 7, 8 TeV) allowing for CPV.
D*+ → D0π+, B → D0μ X flavor tags. Correlation coefficients (stat. + syst.):
1   (−0.17 + 0.15)   (0.04 + 0.01)   (−0.02 − 0.02)
    1   (−0.03 − 0.05)   (0.01 − 0.03)
        1   (−0.13 + 0.14)
 
5.4 fb-1 results (√s = 13 TeV) allowing for CPV.
D*+ → D0π+, B → D0μ X flavor tags. Correlation coefficients (stat. + syst.):
1   (0.121 + 0.13)   (−0.018 + 0.01)   (−0.016 + 0.01)
    1   (−0.012 − 0.02)   (−0.058 + 0.01)
        1   (0.069 + 0.31)
For (x, y, |q/p|, φ) → (xCP, yCP, Δx, Δy) mapping, see PRD 99, 012007 (2019)
15-16
x
y
(0.16 ± 0.23 ± 0.12 ± 0.08)%
(0.57 ± 0.20 ± 0.13 ± 0.07)%
BaBar   D0 → K0S π+π and D0 → K0S K+ K combined;
Correlation coefficient = +0.0615, no CPV.
17-18
x
y
(1.5 ± 1.2 ± 0.6)%
(0.2 ± 0.9 ± 0.5)%
BaBar   D0 → π0 π+π
Correlation coefficient = −0.006, no CPV.
19 (x2 + y2)/2 (0.0130 ± 0.0269)% World average (COMBOS combination)   of D0 → K+l ν results
20-21
x"
y"
(2.61 +0.57 −0.68 ± 0.39)%
(−0.06 +0.55 −0.64 ± 0.34)%
BaBar   K+ π π 0 result; correlation coefficient = −0.75.
Note: x" = x cos δKππ + y sin δKππ,   y" = y cos δKππ − x sin δKππ.
22-26
R D
x 2
y
cos δ
sin δ
(0.533 ± 0.107 ± 0.045)%
(0.06 ± 0.23 ± 0.11)%
(4.2 ± 2.0 ± 1.0)%
0.81 +0.22−0.18 +0.07−0.05
−0.01 ± 0.41 ± 0.04
CLEO-c   Ψ(3770) results, 0.82 fb−1. Correlation coefficients:
1     0   0   −0.42   0.01
    1   −0.73   0.39   0.02  
        1   −0.53   −0.03
            1   0.04
                1
27-29
RD
x' 2+
y' +
(0.303 ± 0.0189)%
(−0.024 ± 0.052)%
(0.98 ± 0.78)%
BaBar   K+ π results; correlation coefficients:
1   +0.77   −0.87
    1   −0.94
        1
30-32
A D
x' 2 −
y'
(−2.1 ± 5.4)%
(−0.020 ± 0.050)%
(0.96 ± 0.75)%
BaBar   K+ π results; correlation coefficients same as above.
33-35
RD
x' 2
y'
(0.353 ± 0.013)%
(0.009 ± 0.022)%
(0.46 ± 0.34)%
Belle   K+ π no-CPV results using 976 fb−1. Correlation coefficients:
1   +0.737   −0.865
    1   −0.948
        1
36-38
RD
x' 2
y'
(0.351 ± 0.035)%
(0.008 ± 0.018)%
(0.43 ± 0.43)%
CDF   K+ π results for 9.6 fb−1. Correlation coefficients:
1   0.90   −0.97
    1   −0.98
        1
39-47
R
c
c′
Ã
Δc̃
Δc̃′
A
Δc
Δc′
(0.3427 ± 0.0019)%
(0.528 ± 0.033)%
(12.0 ± 3.5) × 10 −6
(−0.82 ± 0.59)%
(0.032 ± 0.036)%
(−2.0 ± 3.8) × 10 −6
(−0.9 ± 2.0)%
(−0.01 ± 0.10)%
(4.6 ± 9.8) × 10 −6
LHCb   K+ π results for 3.0 + 5.4 = 8.4 fb−1 (√s = 7, 8, 13 TeV)
D*+ → D0π+ flavor tag. Correlation coefficients:
1   −0.927   0.803   0.008   −0.007   0.000   0.003   −0.002   0.002  
    1   −0.943   −0.014   0.013   −0.006   −0.005   0.004   −0.004  
        1   0.007   −0.006   0.000   0.003   −0.003   0.003  
            1   −0.934   0.810   0.000   0.000   0.000  
                1   −0.943   0.000   0.000   0.000  
                    1   0.000   0.000   0.000  
                        1   −0.938   0.811  
                            1   −0.943  
Note: above values in red (<1.5%) are neglected in the fit. Definitions:
dN±dt   =   R± + √(R±) (c ± Δc) t + (c′ ± Δc′) t2
where R± ≡ R (1 ± A). Also:
à   =   A − 2adKK
Δc̃   =   Δc − c adKK + 2AΓ √(R)
Δc̃′   =   Δc′ − 2c′ adKK + 2c AΓ √(R)
48-50
RD+
x' 2+
y' +
(0.3500 ± 0.0073)%
(0.008 ± 0.015)%
(0.41 ± 0.20)%
LHCb   K+ π results for 3.0 + 5.4 = 8.4 fb−1 (√s = 7, 8, 13 TeV)
B → D*+μ X, D*+ → D0π+ flavor tags. Correlation coefficients:
1   0.624   −0.749
    1   −0.943
        1
51-53
RD
x' 2 −
y'
(0.3440 ± 0.0074)%
(−0.005 ± 0.017)%
(0.68 ± 0.21)%
LHCb   K+ π results for 3.0 + 5.4 = 8.4 fb−1 (√s = 7, 8, 13 TeV)
B → D*+μ X, D*+ → D0π+ flavor tags. Correlation coefficients:
1   0.629   −0.745
    1   −0.946
        1
54-55
ACPK
ACPπ
(0.00 ± 0.34 ± 0.13)%
(−0.24 ± 0.52 ± 0.22)%
BaBar   385.8 fb−1 near ϒ(4S) resonance
56-57
ACPK
ACPπ
(−0.43 ± 0.30 ± 0.11)%
(0.43 ± 0.52 ± 0.12)%
Belle   540 fb−1 near ϒ(4S) resonance
58-59
ACPK
ACPπ
(−0.32 ± 0.21)%
(0.31 ± 0.22)%
CDF   9.7 fb−1 pp collisions at √s = 1.96 TeV
( 〈t〉K − 〈t〉π ) / τD = 0.27 ± 0.01
60 ACPK − ACPπ (−0.154 ± 0.029)%
LHCb   8.9 fb−1 pp collisions at √s = 7, 8, 13 TeV
D*+ → D0π+ and B → D0μ X flavor tags
( 〈t〉K − 〈t〉π )/τD = 0.115 ± 0.002;   〈t〉D = 1.71 ± 0.10
61 ACPK (0.068 ± 0.054 ± 0.016)%
LHCb   5.7 fb−1 pp collisions at √s = 13 TeV
D*+ → D0π+ flavor tags
〈t〉KD = (701.5 ± 1.1)/(410.3 ± 1.0) = 1.7097 ± 0.0050
62 (x2 + y2)/4 (0.0048 ± 0.0018)%
LHCb   3.0 fb−1 pp collisions at √s = 7, 8 TeV
D0 → K+ π π + π
63 ACP 0.132 ± 0.011 ± 0.007
BESIII   Ψ(3770) results, 2.93 fb−1. D0 → K π+,
difference between CP-even tagged and CP-odd tagged

 

MINUIT fit results
Three main fits are performed, as follows:

Fit #1:   no indirect CP violation
This fit takes |q/p| = 1 and φ = 0. In addition, we neglect sub-leading amplitudes in Cabibbo-favored (CF) and doubly Cabibbo-suppressed (DCS) decays, i.e., they proceed via tree diagrams. This implies no direct CP violation in these decays, and AD = 0.

Fit #2:   One-parameter description of indirect CP violation
This parametrization results from two assumptions: (1) sub-leading amplitudes in CF and DCS decays are negligible (AD = 0); (2) sub-leading amplitudes in singly Cabibbo-suppressed (SCS) decays (i.e., loop amplitudes) are neglected in indirect CP violation observables, as their contribution is suppressed by the small mixing parameters x and y. As a consequence, only short-distance dispersive amplitudes contribute to indirect CP violation. Thus Arg(Γ12) = 0 (in the ΔU=2 basis, see note on Arg(q/p) above), and all indirect CP violation is due to Arg(M12) ≠ 0, or more formally Arg(M12) ≠ Arg(Γ12). This difference is denoted φ12 ≡ Arg(M1212). This reduces four mixing + CP violation parameters to three: x12, y12, φ12. For alternative parameters (x, y, |q/p|, φ), this introduces a constraint among them, first derived by Ciuchini et al. and later independently by Kagan and Sokoloff:

tanφ   =   (1-|q/p|2)(1+|q/p|2) × (xy).

Alternatively, one can use the quadratic equation (15) of Grossman, Nir, and Perez to reduce four parameters to three. We perform this fit three times: once for parameters x, y, φ (giving MINOS errors for φ); once for parameters x, y, |q/p| (giving MINOS errors for |q/p|); and once for parameters x12, y12, φ12.

Fit #3:   Two-parameter description of indirect CP violation
In this parameterization, sub-leading amplitudes in SCS decays are accounted for in indirect CP violation observables. Such sub-leading amplitudes contribute to Γ12 in addition to M12, and thus Arg(Γ12) can be nonzero. We thus fit for all four parameters: (x12, y12, φ2M, φ2Γ) or equivalently (x, y, |q/p|, φ). We perform this fit twice: (a) neglecting sub-leading amplitudes in CF and DCS decays, i.e., AD = 0; and (b) allowing all sub-leading amplitudes, i.e., floating all ten parameters. The results are essentially identical except for a slight shift in the φ central value: (−1.46 ± 1.04)° → (−1.51 ± 1.04)°.


The MINUIT output for Fits #1 − #3 are given here. In this output, x, y, R D, A D, A π and A K are in percent; and δ, δ2 (= δKππ), and φ are in radians. Correlation coefficients among parameters are listed at the end. The final results are:



χ 2 contributions for the all-CPV-allowed fit #3:

_____________________________________________

 

MNCONTOUR-like 2-d plots:
(click on for .eps versions)

 

           

 

CPV-allowed plot, no mixing (x,y) = (0,0) point:   Δχ2 = 4328,   excluded at ≫ 11.5σ (limit of CERNLIB PROB routine)

No indirect CP violation point (|q/p|, φ) = (1,0):   Δχ2 = 2.16,   consistent with CP conservation (0.95σ)

 

           

 

 

No indirect CP violation point (φ2M, φ2Γ) = (0,0):   Δχ2 = 1.97,   consistent with CP conservation (0.89σ)
Note:   the slight difference from the (|q/p|, φ) plot is due to the constraint AD = 0. (This raises the χ2 of the best-fit point, slightly lowering Δχ2 of the no-CPV point.)

_____________________________________________

 

MNCONTOUR-like 1-d plots:
Dashed red horizontal line denotes Δχ2 = 3.84, corresponding to a 95% C.L. interval.
(click on for .pdf versions)

 

                         

                        x = 0 point:   Δχ2 = 87.0,   x ≤ 0 excluded at 9.3σ                         y = 0 point:   Δχ2 = 1220,   y ≤ 0 excluded at > 11.5σ (limit of CERNLIB PROB)

 

                         

 

                         

 


This page is maintained by A. Schwartz and was last updated