A fit of the available experimental measurements is used to determine the τ branching fractions, together with their uncertainties and correlations.
All relevant published statistical and systematic correlations among the measurements are used. In addition, for a selection of measurements, particularly the most precise and the most recent ones, the documented systematic uncertainty contributions are examined to consider systematic dependence on external parameters. We use the standard HFLAV procedures to account for the updated values and uncertainties of the external parameters and for the correlations induced on different measurements that have a systematic dependence on the same external parameter.
Both the measurements and the fitted quantities consist of either τ decay branching fractions, labelled Bi, or ratios of two τ decay branching fractions, labelled Bi/ Bj. Some branching fractions are sums of other branching fractions, for instance, B8 = B(τ−→h− ντ), which is the sum of B9 = B(τ−→π− ντ) and B10 = B(τ−→K− ντ), with the symbol h referring to a π or a K. The fit χ2 is constructed following Eq. (??) and minimized subject to a list of constraints on the fitted quantities:
The constraints are implemented with Lagrange multipliers (see Sec. ??. In some cases, constraints arise from approximate relations that nevertheless hold within the present experimental precision and are treated as exact. For instance, the constraint B(τ−→K− K− K+ ντ) = B(τ−→K− φ ντ) × B(φ→ K+K−) is justified given the current experimental evidence. Section 2.6 lists all constraint equations relating the fitted quantities.
Following a convention established in the Review of Particle Physics, τ branching fractions are often labelled with the final state content of π±, π0, K±, γ, implicitly including decay chains that involve intermediate particles, e.g., KS0→π+π−, and η, ω, φ decays. When measurements exclude the contribution of some or all the known intermediate particles, the branching fraction notation flags this information by adding, e.g., “ex.K0”.
We use a total of 171 measurements to fit 135 quantities subject to 88 constraints. The fit has χ2/d.o.f. = 134/124, corresponding to a confidence level CL = 24.56%. The fitted quantity values and uncertainties are listed in Table 1. Although the fit treats all quantities in the same way, for the purpose of presenting correlations we select a set of 47 “basis quantities” from which all remaining quantities can be calculated using the definitions listed in Section 2.6. The off-diagonal correlation coefficients between the basis quantities are listed in Section 2.5.
Table 1 also reports B110 = B(τ− → Xs− ντ) (see Section 2.6), the total measured branching fraction for τ decays to final states with strangeness 1. Also reported is the unitarity residual B998 = 1 − BAll = (0.0684 ± 0.1068) · 10−2, where 1 − BAll is the sum of the τ branching fractions into all measured final states. We find that B998 is consistent with 0 to within the experimental uncertainty. A unitarity constraint forcing B998 to be 0 is not applied.
In performing the fit, a scale factor of 5.44 was applied to the published uncertainties of the two severely inconsistent measurements of B96 = τ → KKKν by BaBar and Belle. The scale-factor value was chosen using the PDG procedure, i.e., it is such that χ2/d.o.f.=1 when fitting just the two B96 measurements.
In the previous HFLAV reports [2, 3, 4, 5], information from the ALEPH Collaboration [6] was used to compute inclusive τ branching fractions for final states with one or more hadron, where each hadron can be either a pion or a kaon. In the current report, we use Ref. [6] for the branching fractions for exclusive final states containing one or more charged pions. The past choice granted some minor advantages, which are now dropped in the interest of simplicity. As a consequence, the τ branching fraction global fit reported here matches more closely the fit that we supply to the PDG, reported in Ref. [7].
A set of preliminary BaBar results presented in 2018 [8], used in the τ branching fraction fit in the previous HFLAV report [5], are not used here since they have not yet been published. Therefore, we now use the older BaBar measurement of B16 = B(τ−→K− π0 ντ) in Ref. [9]. This revision of input measurements causes a significant shift of the value of B(τ−→K− 3π0 ντ (ex.K0,η)), which is however consistent with the large uncertainty on the sole direct measurement of this mode by ALEPH.
Since this edition, we use new improved calculations of the radiative corrections for the theory predictions of the τ decays to pseudoscalar mesons [10]. The estimated uncertainties are increased but more reliable in comparison to the previous estimations [11, 12, 13, 14]. There is a minor increase of the uncertainties on the lepton universality tests based on hadronic τ decays (section 3) and on |Vus| (section 5).
The parameters used to update the measurements’ systematic biases and the parameters appearing in the constraint equations in Section 2.6 have been updated to the PDG 2020 update [7].
Our branching-fraction fit is different from that of the PDG [7] in several ways.
The PDG fit enforces the unitarity constraint B998=0, while the HFLAV 2021 fit does not.
As in our previous report [5], we use the ALEPH [7] estimate for B805 = B(τ−→a1−(π− γ) ντ), which is not a direct measurement. By contrast, the PDG fit defines B805 = B(a1→πγ)× B(τ → 3π ν), using the PDG average of B(a1→πγ) as a parameter in the fit. As a consequence, the PDG fit procedure does not take into account the large uncertainty on B(a1→πγ). This results in an underestimated uncertainty on B805, which is then properly adjusted with respect to the fit result in the PDG listings.
Table 1 reports the experimental inputs to the τ branching-fraction fit and the fit results.
τ lepton branching fraction Experiment Reference
B1 = particle− ≥ 0 neutrals ≥ 0 K0 ντ 0.8518 ± 0.0011 average
B2 = particle− ≥ 0 neutrals ≥ 0 KL0 ντ 0.8452 ± 0.0010 average
B3 = µ− νµντ 0.17387 ± 0.00040 average 0.17319 ± 0.00070 ± 0.00032 ALEPH [6] 0.17325 ± 0.00095 ± 0.00077 DELPHI [15] 0.17342 ± 0.00110 ± 0.00067 L3 [16] 0.17340 ± 0.00090 ± 0.00060 OPAL [17]
B3 B5 =
µ− νµντ e− νe ντ 0.9762 ± 0.0028 average 0.9970 ± 0.0350 ± 0.0400 ARGUS [18] 0.9796 ± 0.0016 ± 0.0036 BaBar [19] 0.9777 ± 0.0063 ± 0.0087 CLEO [20]
B5 = e− νe ντ 0.17811 ± 0.00041 average 0.17837 ± 0.00072 ± 0.00036 ALEPH [6] 0.17760 ± 0.00060 ± 0.00170 CLEO [20] 0.17877 ± 0.00109 ± 0.00110 DELPHI [15] 0.17806 ± 0.00104 ± 0.00076 L3 [16] 0.17810 ± 0.00090 ± 0.00060 OPAL [21]
B7 = h− ≥ 0 KL0 ντ 0.12020 ± 0.00055 average 0.12400 ± 0.00700 ± 0.00700 DELPHI [22] 0.12470 ± 0.00260 ± 0.00430 L3 [23] 0.12100 ± 0.00700 ± 0.00500 OPAL [24]
B8 = h− ντ 0.11504 ± 0.00054 average 0.11520 ± 0.00050 ± 0.00120 CLEO [20] 0.11571 ± 0.00120 ± 0.00114 DELPHI [25] 0.11980 ± 0.00130 ± 0.00160 OPAL [26]
B8 B5 =
h− ντ e− νe ντ 0.6459 ± 0.0033 average
B9 = π− ντ 0.10808 ± 0.00053 average 0.10828 ± 0.00070 ± 0.00078 ALEPH [6]
B9 B5 =
π− ντ e− νe ντ 0.6068 ± 0.0032 average 0.5945 ± 0.0014 ± 0.0061 BaBar [19]
B10 = K− ντ (0.6957 ± 0.0096) · 10−2 average (0.6960 ± 0.0250 ± 0.0140) · 10−2 ALEPH [27] (0.6600 ± 0.0700 ± 0.0900) · 10−2 CLEO [28] (0.8500 ± 0.1800 ± 0.0000) · 10−2 DELPHI [29] (0.6580 ± 0.0270 ± 0.0290) · 10−2 OPAL [30]
B10 B5 =
K− ντ e− νe ντ (3.906 ± 0.054) · 10−2 average (3.882 ± 0.032 ± 0.057) · 10−2 BaBar [19]
B10 B9 =
K− ντ π− ντ (6.437 ± 0.092) · 10−2 average
B11 = h− ≥ 1 neutrals ντ 0.36977 ± 0.00098 average
B12 = h− ≥ 1 π0 ντ (ex.K0) 0.36477 ± 0.00098 average
B13 = h− π0 ντ 0.25918 ± 0.00090 average 0.25670 ± 0.00010 ± 0.00390 Belle [31] 0.25870 ± 0.00120 ± 0.00420 CLEO [32] 0.25740 ± 0.00201 ± 0.00138 DELPHI [25] 0.25050 ± 0.00350 ± 0.00500 L3 [23] 0.25890 ± 0.00170 ± 0.00290 OPAL [26]
B14 = π− π0 ντ 0.25486 ± 0.00090 average 0.25471 ± 0.00097 ± 0.00085 ALEPH [6]
B16 = K− π0 ντ (0.4322 ± 0.0148) · 10−2 average (0.4440 ± 0.0260 ± 0.0240) · 10−2 ALEPH [27] (0.4160 ± 0.0030 ± 0.0180) · 10−2 BaBar [9] (0.5100 ± 0.1000 ± 0.0700) · 10−2 CLEO [28] (0.4710 ± 0.0590 ± 0.0230) · 10−2 OPAL [33]
B17 = h− ≥ 2 π0 ντ 0.10794 ± 0.00097 average 0.09910 ± 0.00310 ± 0.00270 OPAL [26]
B18 = h− 2π0 ντ (9.460 ± 0.100) · 10−2 average
B19 = h− 2π0 ντ (ex.K0) (9.309 ± 0.100) · 10−2 average (9.498 ± 0.320 ± 0.275) · 10−2 DELPHI [25] (8.880 ± 0.370 ± 0.420) · 10−2 L3 [23]
B19 B13 =
h− 2π0 ντ (ex.K0) h− π0 ντ 0.3592 ± 0.0045 average 0.3420 ± 0.0060 ± 0.0160 CLEO [34]
B20 = π− 2π0 ντ (ex.K0) (9.245 ± 0.099) · 10−2 average (9.239 ± 0.086 ± 0.090) · 10−2 ALEPH [6]
B23 = K− 2π0 ντ (ex.K0) (0.0634 ± 0.0219) · 10−2 average (0.0560 ± 0.0200 ± 0.0150) · 10−2 ALEPH [27] (0.0900 ± 0.1000 ± 0.0300) · 10−2 CLEO [28]
B24 = h− ≥ 3 π0 ντ (1.335 ± 0.066) · 10−2 average
B25 = h− ≥ 3 π0 ντ (ex.K0) (1.250 ± 0.066) · 10−2 average (1.403 ± 0.214 ± 0.224) · 10−2 DELPHI [25]
B26 = h− 3π0 ντ (1.173 ± 0.072) · 10−2 average (1.700 ± 0.240 ± 0.380) · 10−2 L3 [23]
B26 B13 =
h− 3π0 ντ h− π0 ντ (4.526 ± 0.278) · 10−2 average (4.400 ± 0.300 ± 0.500) · 10−2 CLEO [34]
B27 = π− 3π0 ντ (ex.K0) (1.040 ± 0.071) · 10−2 average (0.977 ± 0.069 ± 0.058) · 10−2 ALEPH [6]
B28 = K− 3π0 ντ (ex.K0,η) (4.648 ± 2.131) · 10−4 average (3.700 ± 2.100 ± 1.100) · 10−4 ALEPH [27]
B29 = h− 4π0 ντ (ex.K0) (0.1587 ± 0.0391) · 10−2 average (0.1600 ± 0.0500 ± 0.0500) · 10−2 CLEO [34]
B30 = h− 4π0 ντ (ex.K0,η) (0.1118 ± 0.0391) · 10−2 average (0.1120 ± 0.0370 ± 0.0350) · 10−2 ALEPH [6]
B31 = K− ≥ 0 π0 ≥ 0 K0 ≥ 0 γ ντ (1.548 ± 0.029) · 10−2 average (1.700 ± 0.120 ± 0.190) · 10−2 CLEO [28] (1.540 ± 0.240 ± 0.000) · 10−2 DELPHI [29] (1.528 ± 0.039 ± 0.040) · 10−2 OPAL [30]
B32 = K− ≥ 1 (π0 or K0 or γ) ντ (0.8556 ± 0.0282) · 10−2 average
B33 = KS0 (particles)− ντ (0.9370 ± 0.0292) · 10−2 average (0.9700 ± 0.0580 ± 0.0620) · 10−2 ALEPH [35] (0.9700 ± 0.0900 ± 0.0600) · 10−2 OPAL [36]
B34 = h− K0 ντ (0.9861 ± 0.0138) · 10−2 average (0.8550 ± 0.0360 ± 0.0730) · 10−2 CLEO [37]
B35 = π− K0 ντ (0.8375 ± 0.0139) · 10−2 average (0.9280 ± 0.0450 ± 0.0340) · 10−2 ALEPH [27] (0.8320 ± 0.0025 ± 0.0150) · 10−2 Belle [38] (0.9500 ± 0.1500 ± 0.0600) · 10−2 L3 [39] (0.9330 ± 0.0680 ± 0.0490) · 10−2 OPAL [40]
B37 = K− K0 ντ (0.1486 ± 0.0034) · 10−2 average (0.1580 ± 0.0420 ± 0.0170) · 10−2 ALEPH [35] (0.1620 ± 0.0210 ± 0.0110) · 10−2 ALEPH [27] (0.1478 ± 0.0022 ± 0.0040) · 10−2 BaBar [41] (0.1480 ± 0.0013 ± 0.0055) · 10−2 Belle [38] (0.1510 ± 0.0210 ± 0.0220) · 10−2 CLEO [37]
B38 = K− K0 ≥ 0 π0 ντ (0.2985 ± 0.0073) · 10−2 average (0.3300 ± 0.0550 ± 0.0390) · 10−2 OPAL [40]
B39 = h− K0 π0 ντ (0.5310 ± 0.0134) · 10−2 average (0.5620 ± 0.0500 ± 0.0480) · 10−2 CLEO [37]
B40 = π− K0 π0 ντ (0.3810 ± 0.0129) · 10−2 average (0.2940 ± 0.0730 ± 0.0370) · 10−2 ALEPH [35] (0.3470 ± 0.0530 ± 0.0370) · 10−2 ALEPH [27] (0.3860 ± 0.0031 ± 0.0135) · 10−2 Belle [38] (0.4100 ± 0.1200 ± 0.0300) · 10−2 L3 [39]
B42 = K− K0 π0 ντ (0.1499 ± 0.0070) · 10−2 average (0.1520 ± 0.0760 ± 0.0210) · 10−2 ALEPH [35] (0.1430 ± 0.0250 ± 0.0150) · 10−2 ALEPH [27] (0.1496 ± 0.0019 ± 0.0073) · 10−2 Belle [38] (0.1450 ± 0.0360 ± 0.0200) · 10−2 CLEO [37]
B43 = π− K0 ≥ 1 π0 ντ (0.4045 ± 0.0260) · 10−2 average (0.3240 ± 0.0740 ± 0.0660) · 10−2 OPAL [40]
B44 = π− K0 2π0 ντ (ex.K0) (2.342 ± 2.306) · 10−4 average (2.600 ± 2.400 ± 0.000) · 10−4 ALEPH [42]
B46 = π− K0 K0 ντ (0.1517 ± 0.0247) · 10−2 average
B47 = π− KS0 KS0 ντ (2.349 ± 0.065) · 10−4 average (2.600 ± 1.000 ± 0.500) · 10−4 ALEPH [35] (2.310 ± 0.040 ± 0.080) · 10−4 BaBar [43] (2.330 ± 0.033 ± 0.093) · 10−4 Belle [38] (2.300 ± 0.500 ± 0.300) · 10−4 CLEO [37]
B48 = π− KS0 KL0 ντ (0.1048 ± 0.0247) · 10−2 average (0.1010 ± 0.0230 ± 0.0130) · 10−2 ALEPH [35]
B49 = π− π0 K0 K0 ντ (3.543 ± 1.193) · 10−4 average
B50 = π− KS0 KS0 π0 ντ (1.820 ± 0.207) · 10−5 average (1.600 ± 0.200 ± 0.220) · 10−5 BaBar [43] (2.000 ± 0.216 ± 0.202) · 10−5 Belle [38]
B51 = π− KS0 KL0 π0 ντ (3.179 ± 1.192) · 10−4 average (3.100 ± 1.100 ± 0.500) · 10−4 ALEPH [35]
B53 = K0 h− h− h+ ντ (2.223 ± 2.024) · 10−4 average (2.300 ± 1.900 ± 0.700) · 10−4 ALEPH [35]
B54 = h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ 0.15193 ± 0.00063 average 0.15000 ± 0.00400 ± 0.00300 CELLO [44] 0.14400 ± 0.00600 ± 0.00300 L3 [45] 0.15100 ± 0.00800 ± 0.00600 TPC [46]
B55 = h− h− h+ ≥ 0 neutrals ντ (ex.K0) 0.14545 ± 0.00058 average 0.14556 ± 0.00105 ± 0.00076 L3 [47] 0.14960 ± 0.00090 ± 0.00220 OPAL [48]
B56 = h− h− h+ ντ (9.790 ± 0.055) · 10−2 average
B57 = h− h− h+ ντ (ex.K0) (9.449 ± 0.054) · 10−2 average (9.510 ± 0.070 ± 0.200) · 10−2 CLEO [49] (9.317 ± 0.090 ± 0.082) · 10−2 DELPHI [25]
B57 B55 =
h− h− h+ ντ (ex.K0) h− h− h+ ≥ 0 neutrals ντ (ex.K0) 0.6496 ± 0.0031 average 0.6600 ± 0.0040 ± 0.0140 OPAL [48]
B58 = h− h− h+ ντ (ex.K0,ω) (9.419 ± 0.054) · 10−2 average
B59 = π− π+ π− ντ (9.300 ± 0.052) · 10−2 average
B60 = π− π+ π− ντ (ex.K0) (9.010 ± 0.052) · 10−2 average (8.830 ± 0.010 ± 0.130) · 10−2 BaBar [50] (8.420 ± 0.000 −0.250+0.260) · 10−2 Belle [51] (9.130 ± 0.050 ± 0.460) · 10−2 CLEO3 [52]
B62 = π− π+ π− ντ (ex.K0,ω) (8.981 ± 0.052) · 10−2 average (9.041 ± 0.060 ± 0.076) · 10−2 ALEPH [6]
B63 = h− h− h+ ≥ 1 neutrals ντ (5.293 ± 0.052) · 10−2 average
B64 = h− h− h+ ≥ 1 π0 ντ (ex.K0) (5.088 ± 0.052) · 10−2 average
B65 = h− h− h+ π0 ντ (4.757 ± 0.054) · 10−2 average
B66 = h− h− h+ π0 ντ (ex.K0) (4.573 ± 0.054) · 10−2 average (4.230 ± 0.060 ± 0.220) · 10−2 CLEO [49] (4.545 ± 0.106 ± 0.103) · 10−2 DELPHI [25]
B67 = h− h− h+ π0 ντ (ex.K0,ω) (2.791 ± 0.071) · 10−2 average
B68 = π− π+ π− π0 ντ (4.620 ± 0.054) · 10−2 average
B69 = π− π+ π− π0 ντ (ex.K0) (4.488 ± 0.054) · 10−2 average (4.598 ± 0.057 ± 0.064) · 10−2 ALEPH [6] (4.190 ± 0.100 ± 0.210) · 10−2 CLEO [53]
B70 = π− π+ π− π0 ντ (ex.K0,ω) (2.743 ± 0.071) · 10−2 average
B74 = h− h− h+ ≥ 2 π0 ντ (ex.K0) (0.5154 ± 0.0312) · 10−2 average (0.5610 ± 0.0680 ± 0.0950) · 10−2 DELPHI [25]
B75 = h− h− h+ 2π0 ντ (0.5041 ± 0.0311) · 10−2 average
B76 = h− h− h+ 2π0 ντ (ex.K0) (0.4942 ± 0.0311) · 10−2 average (0.4350 ± 0.0300 ± 0.0350) · 10−2 ALEPH [6]
B76 B54 =
h− h− h+ 2π0 ντ (ex.K0) h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ (3.252 ± 0.203) · 10−2 average (3.400 ± 0.200 ± 0.300) · 10−2 CLEO [54]
B77 = h− h− h+ 2π0 ντ (ex.K0,ω,η) (9.790 ± 3.562) · 10−4 average
B78 = h− h− h+ 3π0 ντ (2.124 ± 0.299) · 10−4 average (2.200 ± 0.300 ± 0.400) · 10−4 CLEO [55]
B79 = K− h− h+ ≥ 0 neutrals ντ (0.6276 ± 0.0140) · 10−2 average
B80 = K− π− h+ ντ (ex.K0) (0.4364 ± 0.0073) · 10−2 average
B80 B60 =
K− π− h+ ντ (ex.K0) π− π+ π− ντ (ex.K0) (4.843 ± 0.079) · 10−2 average (5.440 ± 0.210 ± 0.530) · 10−2 CLEO [56]
B81 = K− π− h+ π0 ντ (ex.K0) (8.498 ± 1.169) · 10−4 average
B81 B69 =
K− π− h+ π0 ντ (ex.K0) π− π+ π− π0 ντ (ex.K0) (1.893 ± 0.264) · 10−2 average (2.610 ± 0.450 ± 0.420) · 10−2 CLEO [56]
B82 = K− π− π+ ≥ 0 neutrals ντ (0.4759 ± 0.0136) · 10−2 average (0.5800 −0.1300+0.1500 ± 0.1200) · 10−2 TPC [57]
B83 = K− π− π+ ≥ 0 π0 ντ (ex.K0) (0.3719 ± 0.0134) · 10−2 average
B84 = K− π− π+ ντ (0.3444 ± 0.0069) · 10−2 average
B85 = K− π+ π− ντ (ex.K0) (0.2930 ± 0.0068) · 10−2 average (0.2140 ± 0.0370 ± 0.0290) · 10−2 ALEPH [58] (0.2730 ± 0.0020 ± 0.0090) · 10−2 BaBar [50] (0.3300 ± 0.0010 −0.0170+0.0160) · 10−2 Belle [51] (0.3840 ± 0.0140 ± 0.0380) · 10−2 CLEO3 [52] (0.4150 ± 0.0530 ± 0.0400) · 10−2 OPAL [33]
B85 B60 =
K− π+ π− ντ (ex.K0) π− π+ π− ντ (ex.K0) (3.252 ± 0.074) · 10−2 average
B87 = K− π− π+ π0 ντ (0.1308 ± 0.0119) · 10−2 average
B88 = K− π− π+ π0 ντ (ex.K0) (7.891 ± 1.161) · 10−4 average (6.100 ± 3.900 ± 1.800) · 10−4 ALEPH [58] (7.400 ± 0.800 ± 1.100) · 10−4 CLEO3 [59]
B89 = K− π− π+ π0 ντ (ex.K0,η) (7.536 ± 1.161) · 10−4 average
B92 = π− K− K+ ≥ 0 neutrals ντ (0.1495 ± 0.0033) · 10−2 average (0.1590 ± 0.0530 ± 0.0200) · 10−2 OPAL [60] (0.1500 −0.0700+0.0900 ± 0.0300) · 10−2 TPC [57]
B93 = π− K− K+ ντ (0.1434 ± 0.0027) · 10−2 average (0.1630 ± 0.0210 ± 0.0170) · 10−2 ALEPH [58] (0.1346 ± 0.0010 ± 0.0036) · 10−2 BaBar [50] (0.1550 ± 0.0010 −0.0050+0.0060) · 10−2 Belle [51] (0.1550 ± 0.0060 ± 0.0090) · 10−2 CLEO3 [52]
B93 B60 =
π− K− K+ ντ π− π+ π− ντ (ex.K0) (1.592 ± 0.030) · 10−2 average (1.600 ± 0.150 ± 0.300) · 10−2 CLEO [56]
B94 = π− K− K+ π0 ντ (0.607 ± 0.183) · 10−4 average (7.500 ± 2.900 ± 1.500) · 10−4 ALEPH [58] (0.550 ± 0.140 ± 0.120) · 10−4 CLEO3 [59]
B94 B69 =
π− K− K+ π0 ντ π− π+ π− π0 ντ (ex.K0) (0.1352 ± 0.0408) · 10−2 average (0.7900 ± 0.4400 ± 0.1600) · 10−2 CLEO [56]
B96 = K− K− K+ ντ (2.169 ± 0.800) · 10−5 average (1.578 ± 0.130 ± 0.123) · 10−5 BaBar [50] (3.290 ± 0.170 −0.200+0.190) · 10−5 Belle [51]
B102 = 3h− 2h+ ≥ 0 neutrals ντ (ex.K0) (0.0993 ± 0.0037) · 10−2 average (0.0970 ± 0.0050 ± 0.0110) · 10−2 CLEO [61] (0.1020 ± 0.0290 ± 0.0000) · 10−2 HRS [62] (0.1700 ± 0.0220 ± 0.0260) · 10−2 L3 [47]
B103 = 3h− 2h+ ντ (ex.K0) (8.281 ± 0.314) · 10−4 average (7.200 ± 0.900 ± 1.200) · 10−4 ALEPH [6] (6.400 ± 2.300 ± 1.000) · 10−4 ARGUS [63] (7.700 ± 0.500 ± 0.900) · 10−4 CLEO [61] (9.700 ± 1.500 ± 0.500) · 10−4 DELPHI [25] (5.100 ± 2.000 ± 0.000) · 10−4 HRS [62] (9.100 ± 1.400 ± 0.600) · 10−4 OPAL [64]
B104 = 3h− 2h+ π0 ντ (ex.K0) (1.645 ± 0.114) · 10−4 average (2.100 ± 0.700 ± 0.900) · 10−4 ALEPH [6] (1.700 ± 0.200 ± 0.200) · 10−4 CLEO [55] (1.600 ± 1.200 ± 0.600) · 10−4 DELPHI [25] (2.700 ± 1.800 ± 0.900) · 10−4 OPAL [64]
B106 = (5π)− ντ (0.7793 ± 0.0534) · 10−2 average
B110 = Xs− ντ (2.908 ± 0.048) · 10−2 average
B126 = π− π0 η ντ (0.1386 ± 0.0072) · 10−2 average (0.1800 ± 0.0400 ± 0.0200) · 10−2 ALEPH [65] (0.1350 ± 0.0030 ± 0.0070) · 10−2 Belle [66] (0.1700 ± 0.0200 ± 0.0200) · 10−2 CLEO [67]
B128 = K− η ντ (1.547 ± 0.080) · 10−4 average (2.900 −1.200+1.300 ± 0.700) · 10−4 ALEPH [65] (1.420 ± 0.110 ± 0.070) · 10−4 BaBar [68] (1.580 ± 0.050 ± 0.090) · 10−4 Belle [66] (2.600 ± 0.500 ± 0.500) · 10−4 CLEO [69]
B130 = K− π0 η ντ (0.483 ± 0.116) · 10−4 average (0.460 ± 0.110 ± 0.040) · 10−4 Belle [66] (1.770 ± 0.560 ± 0.710) · 10−4 CLEO [70]
B132 = π− K0 η ντ (0.937 ± 0.149) · 10−4 average (0.880 ± 0.140 ± 0.060) · 10−4 Belle [66] (2.200 ± 0.700 ± 0.220) · 10−4 CLEO [70]
B136 = π− π+ π− η ντ (ex.K0) (2.202 ± 0.129) · 10−4 average
B149 = h− ω ≥ 0 neutrals ντ (2.395 ± 0.075) · 10−2 average
B150 = h− ω ντ (1.988 ± 0.064) · 10−2 average (1.910 ± 0.070 ± 0.060) · 10−2 ALEPH [65] (1.600 ± 0.270 ± 0.410) · 10−2 CLEO [71]
B150 B66 =
h− ω ντ h− h− h+ π0 ντ (ex.K0) 0.4348 ± 0.0140 average 0.4310 ± 0.0330 ± 0.0000 ALEPH [72] 0.4640 ± 0.0160 ± 0.0170 CLEO [49]
B151 = K− ω ντ (4.101 ± 0.922) · 10−4 average (4.100 ± 0.600 ± 0.700) · 10−4 CLEO3 [59]
B152 = h− π0 ω ντ (0.4069 ± 0.0419) · 10−2 average (0.4300 ± 0.0600 ± 0.0500) · 10−2 ALEPH [65]
B152 B54 =
h− ω π0 ντ h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ (2.678 ± 0.275) · 10−2 average
B152 B76 =
h− ω π0 ντ h− h− h+ 2π0 ντ (ex.K0) 0.8235 ± 0.0757 average 0.8100 ± 0.0600 ± 0.0600 CLEO [54]
B167 = K− φ ντ (4.408 ± 1.626) · 10−5 average
B168 = K− φ(K+ K−) ντ (2.169 ± 0.800) · 10−5 average
B169 = K− φ(KS0 KL0) ντ (1.499 ± 0.553) · 10−5 average
B800 = π− ω ντ (1.947 ± 0.065) · 10−2 average
B802 = K− π− π+ ντ (ex.K0,ω) (0.2924 ± 0.0068) · 10−2 average
B803 = K− π− π+ π0 ντ (ex.K0,ω,η) (3.874 ± 1.423) · 10−4 average
B804 = π− KL0 KL0 ντ (2.349 ± 0.065) · 10−4 average
B805 = a1−(π− γ) ντ (4.000 ± 2.000) · 10−4 average (4.000 ± 2.000 ± 0.000) · 10−4 ALEPH [6]
B806 = π− KL0 KL0 π0 ντ (1.820 ± 0.207) · 10−5 average
B810 = 2π− π+ 3π0 ντ (ex.K0) (1.940 ± 0.298) · 10−4 average
B811 = π− 2π0 ω ντ (7.164 ± 1.586) · 10−5 average (7.300 ± 1.200 ± 1.200) · 10−5 BaBar [73]
B812 = 2π− π+ 3π0 ντ (ex.K0,η,ω,f1) (1.353 ± 2.683) · 10−5 average (1.000 ± 0.800 ± 3.000) · 10−5 BaBar [73]
B820 = 3π− 2π+ ντ (ex.K0,ω) (8.262 ± 0.313) · 10−4 average
B821 = 3π− 2π+ ντ (ex.K0,ω,f1) (7.738 ± 0.295) · 10−4 average (7.680 ± 0.040 ± 0.400) · 10−4 BaBar [73]
B822 = K− 2π− 2π+ ντ (ex.K0) (0.593 ± 1.208) · 10−6 average (0.600 ± 0.500 ± 1.100) · 10−6 BaBar [73]
B830 = 3π− 2π+ π0 ντ (ex.K0) (1.633 ± 0.113) · 10−4 average
B831 = 2π− π+ ω ντ (ex.K0) (8.417 ± 0.624) · 10−5 average (8.400 ± 0.400 ± 0.600) · 10−5 BaBar [73]
B832 = 3π− 2π+ π0 ντ (ex.K0,η,ω,f1) (3.772 ± 0.874) · 10−5 average (3.600 ± 0.300 ± 0.900) · 10−5 BaBar [73]
B833 = K− 2π− 2π+ π0 ντ (ex.K0) (1.107 ± 0.566) · 10−6 average (1.100 ± 0.400 ± 0.400) · 10−6 BaBar [73]
B910 = 2π− π+ η(3π0) ντ (ex.K0) (7.195 ± 0.422) · 10−5 average (8.270 ± 0.880 ± 0.810) · 10−5 BaBar [73]
B911 = π− 2π0 η(π+ π− π0) ντ (ex.K0) (4.457 ± 0.867) · 10−5 average (4.570 ± 0.770 ± 0.500) · 10−5 BaBar [73]
B920 = π− f1(2π− 2π+) ντ (5.237 ± 0.444) · 10−5 average (5.200 ± 0.310 ± 0.370) · 10−5 BaBar [73]
B930 = 2π− π+ η(π+ π− π0) ντ (ex.K0) (5.046 ± 0.296) · 10−5 average (5.390 ± 0.270 ± 0.410) · 10−5 BaBar [73]
B944 = 2π− π+ η(γ γ) ντ (ex.K0) (8.676 ± 0.509) · 10−5 average (8.260 ± 0.350 ± 0.510) · 10−5 BaBar [73]
B945 = π− 2π0 η ντ (ex.K0) (1.945 ± 0.378) · 10−4 average
B998 = 1 − BAll (0.0684 ± 0.1068) · 10−2 average
The following tables report the correlation coefficients between basis quantities that were obtained from the τ branching fractions fit, in percent.
B5 23 B9 8 5 B10 5 7 7 B14 -14 -15 -13 -3 B16 1 1 2 -1 -8 B20 -5 -5 -8 -1 -41 1 B23 2 2 0 -2 0 -13 -7 B27 -5 -4 -8 -1 1 1 -36 1 B28 2 2 1 -1 1 -13 -1 -22 -10 B30 -4 -3 -10 -1 -8 0 6 -2 -44 2 B35 0 0 0 0 0 0 0 0 0 0 0 B37 0 -1 1 0 0 0 0 -2 0 -2 0 -15 B40 0 0 0 0 0 1 0 1 -1 1 0 -12 2 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B42 0 0 0 0 0 -3 1 -5 0 -5 0 -1 -14 -20 B44 0 0 0 0 0 0 0 0 0 0 0 -1 0 -4 B47 0 -1 2 0 0 2 0 0 0 0 0 -1 3 -4 B48 0 0 0 0 0 0 0 0 0 0 0 -3 0 -2 B50 0 0 0 0 0 0 0 0 0 0 0 1 5 0 B51 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 B53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B62 -2 -4 8 0 -3 4 -7 0 -6 0 -5 -1 3 0 B70 -6 -6 -7 -1 -10 0 -1 0 -1 0 3 0 -1 0 B77 -1 0 -3 0 -2 0 0 0 2 0 2 0 0 0 B93 0 -1 3 0 -1 2 -1 0 -1 0 -1 0 2 0 B94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B126 0 0 0 0 0 0 -1 0 0 0 -2 0 0 0 B128 0 0 1 0 0 1 0 -1 0 -1 0 0 1 0 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B136 0 0 1 0 0 1 0 0 0 0 -1 0 1 0 B151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B152 -1 -1 -3 0 -2 0 -1 0 2 0 2 0 0 0 B167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B800 -1 -1 -2 0 -3 0 0 0 0 0 1 0 0 0 B802 1 0 1 0 0 0 -2 0 -1 0 -1 0 0 0 B803 2 2 1 0 2 0 0 0 0 0 -1 0 0 0 B805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B811 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B812 0 1 0 0 0 0 0 0 0 0 0 0 0 0 B821 0 0 2 0 0 1 -1 0 -1 0 -1 0 1 0 B822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B831 0 0 1 0 0 1 0 0 0 0 -1 0 1 0 B832 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B920 0 0 1 0 0 1 0 0 0 0 -1 0 1 0 B945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B44 0 B47 1 0 B48 -1 -6 0 B50 6 0 -7 0 B51 0 -3 0 -6 0 B53 0 0 0 0 0 0 B62 -1 0 5 0 1 0 0 B70 0 0 -1 0 0 0 0 -20 B77 0 0 0 0 0 0 0 -1 -7 B93 0 0 2 0 0 0 0 16 -4 0 B94 0 0 0 0 0 0 0 0 -1 0 0 B126 0 0 0 0 0 0 0 1 0 -5 0 0 B128 0 0 1 0 0 0 0 2 0 0 1 0 4 B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128
B130 0 0 0 0 0 0 0 0 0 -1 0 0 1 1 B132 0 0 0 0 0 0 0 0 0 0 0 0 2 1 B136 0 0 1 0 0 0 0 2 -1 0 1 0 0 0 B151 0 0 0 0 0 0 0 0 12 0 0 0 0 0 B152 0 0 0 0 0 0 0 -1 -11 -64 0 0 0 0 B167 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 B800 0 0 0 0 0 0 0 -8 -67 -3 -1 0 0 0 B802 0 0 0 0 0 0 0 20 -7 0 1 0 0 0 B803 0 0 0 0 0 0 0 -3 -14 -1 -1 -3 0 -1 B805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B811 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 B812 0 0 0 0 -1 0 0 -1 -1 0 0 0 0 0 B821 0 0 2 0 0 0 0 3 -1 0 1 0 0 1 B822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128
B831 0 0 1 0 0 0 0 1 -1 0 1 0 0 0 B832 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B920 0 0 1 0 0 0 0 1 -1 0 1 0 0 0 B945 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128
B132 0 B136 0 0 B151 0 0 0 B152 0 0 0 0 B167 0 0 0 0 0 B800 0 0 0 -14 -3 0 B802 0 0 0 -2 0 1 -2 B803 0 0 0 -58 -1 0 10 0 B805 0 0 0 0 0 0 0 0 0 B811 0 -1 20 0 0 0 0 0 0 0 B812 0 -2 -8 0 0 0 0 0 0 0 -16 B821 0 0 46 0 0 0 0 0 0 0 8 -4 B822 0 0 -1 0 0 0 0 0 0 0 0 0 -1 B130 B132 B136 B151 B152 B167 B800 B802 B803 B805 B811 B812 B821 B822
B831 0 0 39 0 0 0 0 0 0 0 14 -4 39 -1 B832 0 0 3 0 0 0 0 0 0 0 2 0 3 0 B833 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 B920 0 0 20 0 0 0 0 0 0 0 3 -2 34 -1 B945 0 -1 25 0 0 0 0 0 0 0 10 -11 10 0 B130 B132 B136 B151 B152 B167 B800 B802 B803 B805 B811 B812 B821 B822
B832 -2 B833 -1 -1 B920 17 1 0 B945 17 2 0 4 B831 B832 B833 B920 B945
The constraints on the τ branching-fractions fit quantities are listed in the following equations. When a quantity such as B3/ B5 appears on the left side of the equation it represents a fitted quantity, while when it appears on the right side it represents the ratio of two separate fitted quantities.
The equations include coefficients that arise from non-τ branching fractions, denoted, e.g., with the self-describing notation BKS → π0π0. Some coefficients are probabilities corresponding to the squared moduli of amplitudes describing quantum state mixtures, such as K0, K0, KS, KL. These are denoted with, e.g., B<K0|KS> = |<K0|KS>|2. The values of all non-τ quantities are taken from the PDG 2021 [7] averages. The fit procedure does not account for their uncertainties, which are generally small with respect to the uncertainties on the τ branching fractions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|