HFAG-Tau Report, Early 2012

Sw. Banerjee University of Victoria, Canada K. Hayasaka Nagoya University, Japan

H. Hayashii Nara Women's University, Japan A. Lusiani Scuola Normale Superiore and INFN, Pisa, Italy

M. Roney University of Victoria, Canada B. Shwartz Budker Institute of Nuclear Physics, Russia

31 March 2012

1 Introduction

We present averages of a selection of physics quantities related to the tau lepton, where we follow the HFAG methodology [31] to improve the Review of Particle Physics (PDG) [91] results by:

- including a selection of reliable preliminary results, hence obtaining more up-to-date results;
- updating the experimental measurements value and systematic error when it depends on external parameters whose values and uncertainties are updated;
- taking into account the statistical correlation that is induced by the dependence from common systematic contributions.

All published statistical correlations are considered, and a selection of measurements, particularly the most precise and the most recent, were examined to obtain all the significant systematic dependencies. The HFAG techniques are most useful in the global fit of the tau branching fractions (Section 2). We use the branching fraction fit results to obtain updated lepton universality tests (Section 3) and updated determinations of $|V_{us}|$ with tau measurements (Section 5). Finally, we report in Section 6 the most up-to-date limits on the lepton-flavour-violating tau branching fractions.

2 Branching fractions fit

The measurements listed in Table 1 have been used in a minimum χ^2 fit subject to the equality constraints that are listed either in the same table (where some fitted quantities and experimental measurements are expressed as ratios of fit quantities) or in Section 2.2. The fitted quantities and the measurements are labelled using the PDG [91] Γ_n notation, where *n* is an integer number, which matches the PDG notation for n < 800. We use $n \ge 800$ to denote some additional branching fractions, as documented in the former HFAG report [31].

The fitted branching fractions consist on 40 "base nodes" and 45 derived branching fractions, described either as sum of base nodes (see Section 2.2) or as ratios of branching fractions (see Table 1). Furthermore, we define (see Section 2.2) $\Gamma_{A||}$ as the sum of all the base modes, which correspond to all non-overlapping tau decay modes, $\Gamma_{998} = 1 - \Gamma_{A||}$ and $\Gamma_{110} = X_s^- \nu_{\tau}$, which is the total branching fraction of the tau to modes with the strangeness quantum number equal to one.

The fitted HFAG-Tau averages are reported in Table 1. The fit has $\chi^2/d.o.f. = 143.5/118$, corresponding to a confidence level CL = 5.5%. We use a total of 157 measurements and 47 constraint equations to fit 86 quantities. The fit is statistically consistent with the unitarity constraint, but the unitarity constraint is not applied.

In several cases, when it is statistically equivalent within the HFAG-Tau fitting procedure, for historical reasons the statistical and systematic errors are added in quadrature and are reported in the above table in the location of the statistical error, reporting zero as systematic error. A scale factor of 5.44 (as in the former report [31]) has been applied in the fit to the quoted errors of the two inconsistent measurements of $\Gamma_{96} = \tau \rightarrow KKK\nu$ by BABAR and Belle.

With respect to the end-of-2009 HFAG report [31], following comments by M. Davier [62], we have included 3 new modes:

$$\begin{split} \Gamma_{49} &= \pi^{-} \pi^{0} \mathcal{K}^{0} \overline{\mathcal{K}}^{0} \nu_{\tau}, \\ \Gamma_{804} &= \pi^{-} \mathcal{K}_{L}^{0} \mathcal{K}_{L}^{0} \nu_{\tau}, \\ \Gamma_{805} &= a_{1}^{-} (\rightarrow \pi^{-} \gamma) \nu_{\tau} \end{split}$$

along with the related measurements

$$\Gamma_{46} = \pi^{-} K^{0} \overline{K}^{0} \nu_{\tau} = (0.1530 \pm 0.0340 \pm 0.0000) \cdot 10^{-2} \quad (\text{ALEPH [47]}),$$

$$\Gamma_{49} = \pi^{-} \pi^{0} K^{0} \overline{K}^{0} \nu_{\tau} = (3.1000 \pm 2.3000 \pm 0.0000) \cdot 10^{-4} \quad (\text{ALEPH [50]}),$$

the estimate

$$\Gamma_{805} = a_1^- (\to \pi^- \gamma) \nu_\tau = (4.0000 \pm 2.0000 \pm 0.0000) \cdot 10^{-4} \quad (\text{ALEPH [96]}),$$

and the constraint

 $\Gamma_{46} = \Gamma_{48} + \Gamma_{47} + \Gamma_{804} \; .$

Furthermore, the following new measurements were added:

$$\begin{split} &\Gamma_{128} = K^{-} \eta \nu_{\tau} &= (1.4200 \pm 0.1100 \pm 0.0700) \cdot 10^{-4} \quad (BABAR \ [24]), \\ &\Gamma_{40} &= \overline{K}^{0} \pi^{-} \pi^{0} \nu_{\tau} = (0.3840 \pm 0.0040 \pm 0.0160) \cdot 10^{-2} \quad (\text{Belle } [95]), \\ &\Gamma_{42} &= K^{-} \pi^{0} K^{0} \nu_{\tau} = (0.1480 \pm 0.0020 \pm 0.0080) \cdot 10^{-2} \quad (\text{Belle } [95]). \end{split}$$

Finally, the constraint parameters (see Section 2.2) have been updated to the PDG 2011 results [91].

Tau lepton branching fraction	Value	Exp.	Ref.
$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$(17.392 \pm 0.040) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(17.319\pm0.077\pm0.000)\cdot10^{-2}$	ALEPH	[96]
	$(17.325\pm0.122\pm0.000)\cdot10^{-2}$	DELPHI	[10]
	$(17.342 \pm 0.129 \pm 0.000) \cdot 10^{-2}$	L3	[13]
	$(17.340\pm 0.108\pm 0.000)\cdot 10^{-2}$	OPAL	[5]
$\frac{\Gamma_3}{\Gamma_5} = \frac{\mu^- \overline{\nu}_\mu \nu_\tau}{e^- \overline{\nu}_e \nu_\tau}$	0.9761 ± 0.0028	HFAG	Winter 2012 fit
	$0.9970 \pm 0.0532 \pm 0.0000$	ARGUS	[22]
	$0.9796 \pm 0.0039 \pm 0.0005$	BABAR	[42]
	$0.9777 \pm 0.0107 \pm 0.0000$	CLEO	[25]
$\Gamma_5 = e^- \overline{ u}_e u_{ au}$	$(17.818 \pm 0.041) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(17.837 \pm 0.080 \pm 0.000) \cdot 10^{-2}$	ALEPH	[96]
	$(17.760 \pm 0.180 \pm 0.000) \cdot 10^{-2}$	CLEO	[25]
	$(17.877 \pm 0.155 \pm 0.000) \cdot 10^{-2}$	DELPHI	[10]
	$(17.806 \pm 0.129 \pm 0.000) \cdot 10^{-2}$	L3	[13]
	$(17.810\pm0.108\pm0.000)\cdot10^{-2}$	OPAL	[1]
$\Gamma_7=h^-\geq 0 {\cal K}^0_L u_ au$	$(12.020\pm 0.055)\cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(12.400 \pm 0.990 \pm 0.000) \cdot 10^{-2}$	DELPHI	[8]
	$(12.470\pm0.502\pm0.000)\cdot10^{-2}$	L3	[11]
	$(12.100 \pm 0.860 \pm 0.000) \cdot 10^{-2}$	OPAL	[23]
$\Gamma_8 = h^- u_{ au}$	$(11.507 \pm 0.054) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(11.524\pm0.105\pm0.000)\cdot10^{-2}$	ALEPH	[96]
	$(11.520\pm 0.130\pm 0.000)\cdot 10^{-2}$	CLEO	[25]

Table 1: HFAG Winter 2012 branching fractions fit results.

Table 1 - continued from previous page											
Tau lepton branching fraction	Value	Exp.	Ref.								
	$(11.571 \pm 0.166 \pm 0.000) \cdot 10^{-2}$	DELPHI	[7]								
	$(11.980\pm 0.206\pm 0.000)\cdot 10^{-2}$	OPAL	[15]								
$\Gamma_{9}=\pi^{-}\nu_{\tau}$	$(10.811 \pm 0.053) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
$\frac{\Gamma_9}{\Gamma_5} = \frac{\pi^- \nu_\tau}{e^- \overline{\nu}_e \nu_\tau}$	$(60.675\pm0.321)\cdot10^{-2}$	HFAG	Winter 2012 fit								
	$(59.450\pm0.574\pm0.248)\cdot10^{-2}$	BABAR	[42]								
$\Gamma_{10} = K^- \nu_{\tau}$	$(0.6955\pm0.0096)\cdot10^{-2}$	HFAG	Winter 2012 fit								
	$(0.6960 \pm 0.0287 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[49]								
	$(0.6600\pm 0.1140\pm 0.0000)\cdot 10^{-2}$	CLEO	[52]								
	$(0.8500\pm 0.1800\pm 0.0000)\cdot 10^{-2}$	DELPHI	[9]								
	$(0.6580 \pm 0.0396 \pm 0.0000) \cdot 10^{-2}$	OPAL	[4]								
$\frac{\Gamma_{10}}{\Gamma_5} = \frac{K^- \nu_{\tau}}{e^- \overline{\nu}_e \nu_{\tau}}$	$(3.9031\pm 0.0543)\cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(3.8820\pm0.0630\pm0.0174)\cdot10^{-2}$	BABAR	[42]								
$\Gamma_{13} = h^- \pi^0 \nu_\tau$	$(25.936 \pm 0.090) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(25.924 \pm 0.129 \pm 0.000) \cdot 10^{-2}$	ALEPH	[96]								
	$(25.670 \pm 0.010 \pm 0.390) \cdot 10^{-2}$	Belle	[69]								
	$(25.870 \pm 0.437 \pm 0.000) \cdot 10^{-2}$	CLEO	[30]								
	$(25.740 \pm 0.244 \pm 0.000) \cdot 10^{-2}$	DELPHI	[7]								
	$(25.050 \pm 0.610 \pm 0.000) \cdot 10^{-2}$	L3	[11]								
	$(25.890 \pm 0.336 \pm 0.000) \cdot 10^{-2}$	OPAL	[15]								
$\Gamma_{14} = \pi^- \pi^0 \nu_\tau$	$(25.504 \pm 0.092) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$(0.4322\pm 0.0149)\cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(0.4440 \pm 0.0354 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[49]								
	$(0.4160\pm 0.0030\pm 0.0180)\cdot 10^{-2}$	BABAR	[34]								
	$(0.5100\pm 0.1221\pm 0.0000)\cdot 10^{-2}$	CLEO	[52]								
	$(0.4710 \pm 0.0633 \pm 0.0000) \cdot 10^{-2}$	OPAL	[6]								
$\Gamma_{17} = h^- \ge 2\pi^0 \nu_\tau$	$(10.803 \pm 0.095) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(9.910\pm0.411\pm0.000)\cdot10^{-2}$	OPAL	[15]								
$\Gamma_{19} = h^- 2\pi^0 \nu_\tau \; (\text{ex.} \mathcal{K}^0)$	$(9.3044 \pm 0.0972) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(9.2950\pm 0.1217\pm 0.0000)\cdot 10^{-2}$	ALEPH	[96]								
	$(9.4980 \pm 0.4219 \pm 0.0000) \cdot 10^{-2}$	DELPHI	[7]								
	$(8.8800 \pm 0.5597 \pm 0.0000) \cdot 10^{-2}$	L3	[11]								
$\frac{\Gamma_{19}}{\Gamma_{13}} = \frac{h^{-}2\pi^{0}\nu_{\tau} (\text{ex.}K^{0})}{h^{-}\pi^{0}\nu_{\tau}}$	$(35.874 \pm 0.442) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(34.200\pm1.709\pm0.000)\cdot10^{-2}$	CLEO	[93]								
$\Gamma_{20} = \pi^{-} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$(9.2414 \pm 0.0997) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
$\Gamma_{23} = K^- 2\pi^0 \nu_\tau \text{ (ex. } K^0\text{)}$	$(0.0630\pm 0.0222)\cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(0.0560\pm 0.0250\pm 0.0000)\cdot 10^{-2}$	ALEPH	[49]								
	$(0.0900 \pm 0.1044 \pm 0.0000) \cdot 10^{-2}$	CLEO	[52]								
$\Gamma_{25}=h^-\geq 3\pi^0 u_ au$ (ex. K^0)	$(1.2349 \pm 0.0650) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
	$(1.4030 \pm 0.3098 \pm 0.0000) \cdot 10^{-2}$	DELPHI	[7]								
$\Gamma_{26} = h^- 3 \pi^0 \overline{\nu_\tau}$	$(1.1573 \pm \overline{0.0717) \cdot 10^{-2}}$	HFAG	Winter 2012 fit								
	$(1.0820\pm 0.0926\pm 0.0000)\cdot 10^{-2}$	ALEPH	[96]								
	$(1.7000 \pm 0.4494 \pm 0.0000) \cdot 10^{-2}$	L3	[11]								
$\frac{\Gamma_{26}}{\Gamma} = \frac{h^- 3\pi^0 \nu_{\tau}}{h^- 0}$	$(4.4622 \pm 0.2767) \cdot 10^{-2}$	HFAG	Winter 2012 fit								
I 13 $h^-\pi^{\circ}\nu_{\tau}$	$(4.4000 \pm 0.5831 \pm 0.0000) \cdot 10^{-2}$	CLEO	[93]								
	,		17 T J								

				C		
lable	1	-	continued	trom	previous	page

Tau lepton branching fraction	Value	Exp.	Ref.
$\Gamma_{27} = \pi^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$(1.0322\pm 0.0749)\cdot 10^{-2}$	HFAG	Winter 2012 fit
$\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \; (\text{ex. } K^{0}, \eta)$	$(4.1870 \pm 2.1761) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(3.7000 \pm 2.3710 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[49]
$\Gamma_{29} = h^- 4\pi^0 \nu_\tau \; (\text{ex.} \mathcal{K}^0)$	$(0.1558 \pm 0.0391) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1600 \pm 0.0707 \pm 0.0000) \cdot 10^{-2}$	CLEO	[93]
$\Gamma_{30} = h^- 4 \pi^0 u_{ au}$ (ex. K^0, η)	$(0.1091 \pm 0.0391) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1120 \pm 0.0509 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[96]
$\Gamma_{31} = K^- \ge 0\pi^0 \ge 0K^0 \ge 0\gamma\nu_\tau$	$(1.5481 \pm 0.0310) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(1.7000 \pm 0.2247 \pm 0.0000) \cdot 10^{-2}$	CLEO	[52]
	$(1.5400 \pm 0.2400 \pm 0.0000) \cdot 10^{-2}$	DELPHI	[9]
	$(1.5280 \pm 0.0559 \pm 0.0000) \cdot 10^{-2}$	OPAL	[4]
$\Gamma_{33} = K^0_{\mathcal{S}}(particles)^- u_{ au}$	$(0.8953 \pm 0.0255) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.9700 \pm 0.0849 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[47]
	$(0.9700 \pm 0.1082 \pm 0.0000) \cdot 10^{-2}$	OPAL	[19]
$\Gamma_{34} = h^- \overline{K}^0 \nu_{\tau}$	$(0.9797 \pm 0.0233) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.8550 \pm 0.0814 \pm 0.0000) \cdot 10^{-2}$	CLEO	[61]
$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	$(0.8206\pm0.0182)\cdot10^{-2}$	HFAG	Winter 2012 fit
	$(0.9280 \pm 0.0564 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[49]
	$(0.8400 \pm 0.0040 \pm 0.0230) \cdot 10^{-2}$	BABAR	[40]
	$(0.8080 \pm 0.0040 \pm 0.0260) \cdot 10^{-2}$	Belle	[67]
	$(0.9500 \pm 0.1616 \pm 0.0000) \cdot 10^{-2}$	L3	[12]
	$(0.9330 \pm 0.0838 \pm 0.0000) \cdot 10^{-2}$	OPAL	[3]
$\Gamma_{37} = K^- K^0 \nu_\tau$	$(0.1591 \pm 0.0157) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1580 \pm 0.0453 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[47]
	$(0.1620 \pm 0.0237 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[49]
	$(0.1510 \pm 0.0304 \pm 0.0000) \cdot 10^{-2}$	CLEO	[61]
$\Gamma_{38} = K^- K^0 \ge 0 \pi^0 \nu_\tau$	$(0.3041 \pm 0.0168) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.3300 \pm 0.0674 \pm 0.0000) \cdot 10^{-2}$	OPAL	[3]
$\Gamma_{39} = h^- \overline{K}^{0} \pi^0 \nu_{\tau}$	$(0.5099 \pm 0.0146) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.5620 \pm 0.0693 \pm 0.0000) \cdot 10^{-2}$	CLEO	[61]
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$(0.3649 \pm 0.0108) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.2940 \pm 0.0818 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[47]
	$(0.3470 \pm 0.0646 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[49]
	$(0.3420 \pm 0.0060 \pm 0.0150) \cdot 10^{-2}$	BABAR	[92]
	$(0.3840 \pm 0.0040 \pm 0.0160) \cdot 10^{-2}$	Belle	[95]
	$(0.4100 \pm 0.1237 \pm 0.0000) \cdot 10^{-2}$	L3	[12]
$\Gamma_{42} = K^- \pi^0 K^0 \nu_{\tau}$	$(0.1450 \pm 0.0071) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1520 \pm 0.0789 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[47]
	$(0.1430 \pm 0.0291 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[49]
	$(0.1480 \pm 0.0020 \pm 0.0080) \cdot 10^{-2}$	Belle	[95]
	$(0.1450 \pm 0.0412 \pm 0.0000) \cdot 10^{-2}$	CLEO	[61]
$\Gamma_{43} = \pi^- K^2 \ge 1 \pi^0 \nu_\tau$	$(0.3917 \pm 0.0250) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.3240 \pm 0.0992 \pm 0.0000) \cdot 10^{-2}$	OPAL	[3]
$\Gamma_{44} = \pi^- \mathcal{K}^* \pi^0 \pi^0 \nu_\tau$	$(2.6854 \pm 2.3037) \cdot 10^{-4}$	HFAG	Winter 2012 fit
0	$(2.6000 \pm 2.4000 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[50]
$\Gamma_{46} = \pi^{-} K^{0} \overline{K}^{\circ} \nu_{\tau}$	$(0.1562 \pm 0.0209) \cdot 10^{-2}$	HFAG	Winter 2012 fit

Table 1 – continued from previous page

Tau lepton branching fraction	Value	Exp.	Ref.
	$(0.1530 \pm 0.0340 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[47]
$\Gamma_{47} = \pi^- K^0_S K^0_S \nu_\tau$	$(2.3957\pm 0.5026)\cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(2.6000 \pm 1.1180 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[47]
	$(2.3000\pm 0.5831\pm 0.0000)\cdot 10^{-4}$	CLEO	[61]
$\Gamma_{48} = \pi^- K^0_S K^0_L \nu_\tau$	$(0.1082 \pm 0.0203) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1010\pm 0.0264\pm 0.0000)\cdot 10^{-2}$	ALEPH	[47]
$\Gamma_{49} = \pi^- \mathcal{K}^0 \overline{\mathcal{K}}^0 \pi^0 \nu_\tau$	$(3.1000 \pm 2.3000) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(3.1000 \pm 2.3000 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[50]
$\Gamma_{53} = \overline{K}^0 h^- h^- h^+ \nu_{\tau}$	$(2.2224 \pm 2.0236) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(2.3000 \pm 2.0248 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[47]
${\sf \Gamma}_{{\sf 54}}=h^-h^-h^+\geq {\sf 0}$ neutrals $\geq {\sf 0}{\sf K}^{\sf 0}_L u_ au$	$(15.192\pm 0.060)\cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(15.000 \pm 0.500 \pm 0.000) \cdot 10^{-2}$	CELLO	[54]
	$(14.400 \pm 0.671 \pm 0.000) \cdot 10^{-2}$	L3	[17]
	$(15.100 \pm 1.000 \pm 0.000) \cdot 10^{-2}$	TPC	[18]
${\sf \Gamma}_{{\sf 55}}=h^-h^-h^+\geq {\sf 0}$ neutra $ {\sf s} u_ au$ (ex. ${m K}^{m 0})$	$(14.574 \pm 0.056) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(14.556 \pm 0.130 \pm 0.000) \cdot 10^{-2}$	L3	[14]
	$(14.960 \pm 0.238 \pm 0.000) \cdot 10^{-2}$	OPAL	[20]
$\Gamma_{57} = h^- h^- h^+ \nu_\tau \; (\text{ex.} \mathcal{K}^0)$	$(9.4404 \pm 0.0530) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(9.5100 \pm 0.2119 \pm 0.0000) \cdot 10^{-2}$	CLEO	[44]
	$(9.3170 \pm 0.1218 \pm 0.0000) \cdot 10^{-2}$	DELPHI	[7]
$\frac{\Gamma_{57}}{\Gamma_{55}} = \frac{h^- h^- h^+ \nu_{\tau} \text{ (ex. } K^\circ\text{)}}{h^- h^- h^+ \ge 0 \text{ neutrals} \nu_{\tau} \text{ (ex. } K^\circ\text{)}}$	$(64.776 \pm 0.294) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(66.000 \pm 1.456 \pm 0.000) \cdot 10^{-2}$	OPAL	[20]
$\Gamma_{58} = h^- h^- h^+ \nu_\tau \; (\text{ex.} \mathcal{K}^0, \omega)$	$(9.4099 \pm 0.0531) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(9.4690 \pm 0.0958 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[96]
$\Gamma_{60} = \pi^{-}\pi^{-}\pi^{+}\nu_{\tau} \;(\text{ex.}K^{0})$	$(9.0018 \pm 0.0510) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(8.8337 \pm 0.0074 \pm 0.1267) \cdot 10^{-2}$	BABAR	[36]
	$(8.4200 \pm 0.0033 \pm 0.2588) \cdot 10^{-2}$	Belle	[81]
	$(9.1300 \pm 0.4627 \pm 0.0000) \cdot 10^{-2}$	CLEO3	[57]
$\Gamma_{62} = \pi^{-} \pi^{-} \pi^{+} \nu_{\tau} \text{ (ex. } K^{0}, \omega)$	$(8.9719 \pm 0.0511) \cdot 10^{-2}$	HFAG	Winter 2012 fit
$\Gamma_{66} = h^- h^- h^+ \pi^0 \nu_{\tau} \; (\text{ex.} K^0)$	$(4.6019 \pm 0.0513) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(4.7340 \pm 0.0767 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[96]
	$(4.2300 \pm 0.2280 \pm 0.0000) \cdot 10^{-2}$	CLEO	[44]
	$(4.5450 \pm 0.1478 \pm 0.0000) \cdot 10^{-2}$	DELPHI	[7]
$\Gamma_{69} = \pi^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \; (\text{ex.} K^{0})$	$(4.5146 \pm 0.0524) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(4.1900 \pm 0.2326 \pm 0.0000) \cdot 10^{-2}$	CLEO	[66]
$\Gamma_{70} = \pi^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \omega)$	$(2.7659 \pm 0.0710) \cdot 10^{-2}$	HFAG	Winter 2012 fit
$\Gamma_{74} = h^- h^- h^+ \ge 2\pi^0 \nu_{\tau} \; (\text{ex.} \mathcal{K}^0)$	$(0.5231 \pm 0.0311) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.5610 \pm 0.1168 \pm 0.0000) \cdot 10^{-2}$	DELPHI	[7]
$\Gamma_{76} = h^{-} h^{-} h^{+} 2\pi^{0} \nu_{\tau} \; (\text{ex.} K^{0})$	$(0.4911 \pm 0.0310) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.4350 \pm 0.0461 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[96]
$\frac{\Gamma_{76}}{\Gamma_{54}} = \frac{h^- h^- h^+ 2\pi^0 \nu_{\tau} \text{ (ex. K^0)}}{h^- h^- h^+ \ge 0 \text{ neutrals} \ge 0 K_L^0 \nu_{\tau}}$	$(3.2326\pm 0.2024)\cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(3.4000 \pm 0.3606 \pm 0.0000) \cdot 10^{-2}$	CLEO	[56]
$\Gamma_{77} = h^- h^- h^+ 2\pi^0 \nu_{\tau} \text{ (ex. } K^0, \omega, \eta)$	$(9.7301 \pm 3.5416) \cdot 10^{-4}$	HFAG	Winter 2012 fit
$\Gamma_{78} = h^{-} h^{-} h^{+} 3 \pi^{0} \nu_{\tau}$	$(3.1986 \pm 0.3124) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(2.2000\pm 0.5000\pm 0.0000)\cdot 10^{-4}$	CLEO	[26]

Table 1 – continued from previous page

Tau lepton branching fraction	Value	Exp.	Ref.
$\frac{\Gamma_{80}}{\Gamma_{60}} = \frac{K^{-}\pi^{-}h^{+}\nu_{\tau} (\text{ex.}K^{0})}{\pi^{-}\pi^{-}\pi^{+}\nu_{\tau} (\text{ex.}K^{0})}$	$(4.8482\pm 0.0808)\cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(5.4400 \pm 0.5701 \pm 0.0000) \cdot 10^{-2}$	CLEO	[94]
$\frac{\Gamma_{81}}{\Gamma_{69}} = \frac{K^{-}\pi^{-}h^{+}\pi^{0}\nu_{\tau} (\text{ex}.K^{0})}{\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau} (\text{ex}.K^{0})}$	$(1.9323\pm 0.2660)\cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(2.6100\pm 0.6155\pm 0.0000)\cdot 10^{-2}$	CLEO	[94]
${\sf \Gamma}_{{\sf 82}}={\sf K}^-\pi^-\pi^+\geq {\sf 0}$ neutra $ {\sf s} u_ au$	$(0.4801 \pm 0.0147) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.5800 \pm 0.1845 \pm 0.0000) \cdot 10^{-2}$	ТРС	[53]
$\Gamma_{85} = K^- \pi^- \pi^+ \nu_\tau \; (\text{ex.} K^0)$	$(0.2929 \pm 0.0068) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.2140 \pm 0.0470 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[48]
	$(0.2726 \pm 0.0018 \pm 0.0092) \cdot 10^{-2}$	BABAR	[36]
	$(0.3300\pm 0.0013\pm 0.0166)\cdot 10^{-2}$	Belle	[81]
	$(0.3840 \pm 0.0405 \pm 0.0000) \cdot 10^{-2}$	CLEO3	[57]
	$(0.4150\pm 0.0664\pm 0.0000)\cdot 10^{-2}$	OPAL	[6]
$\Gamma_{88} = K^- \pi^- \pi^+ \pi^0 \nu_\tau \text{ (ex.} K^0\text{)}$	$(8.1122 \pm 1.1680) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(6.1000 \pm 4.2950 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[48]
	$(7.4000 \pm 1.3600 \pm 0.0000) \cdot 10^{-4}$	CLEO3	[28]
$\Gamma_{92} = \pi^- K^- K^+ \ge 0$ neutrals $\nu_{ au}$	$(0.1496 \pm 0.0033) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1590 \pm 0.0566 \pm 0.0000) \cdot 10^{-2}$	OPAL	[2]
	$(0.1500 \pm 0.0855 \pm 0.0000) \cdot 10^{-2}$	ТРС	[53]
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	$(0.1435 \pm 0.0027) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1630 \pm 0.0270 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[48]
	$(0.1346 \pm 0.0010 \pm 0.0036) \cdot 10^{-2}$	BABAR	[36]
	$(0.1550 \pm 0.0007 \pm 0.0056) \cdot 10^{-2}$	Belle	[81]
	$(0.1550 \pm 0.0108 \pm 0.0000) \cdot 10^{-2}$	CLEO3	[57]
$\frac{\Gamma_{93}}{\pi^{-}K^{-}K^{+}\nu_{\tau}}$	$(1.5940 \pm 0.0305) \cdot 10^{-2}$	HFAG	Winter 2012 fit
$\Gamma_{60} = \pi^{-}\pi^{-}\pi^{+}\nu_{\tau} (ex.K^{0})$	$(1.6000 \pm 0.3354 \pm 0.0000) \cdot 10^{-2}$	CLEO	[94]
$\Gamma_{94} = \pi^- K^- K^+ \pi^0 \nu_\tau$	$(0.6113 \pm 0.1829) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(7.5000 + 3.2650 + 0.0000) \cdot 10^{-4}$	ALEPH	[48]
	$(0.5500 \pm 0.1844 \pm 0.0000) \cdot 10^{-4}$	CLEO3	[28]
$\frac{\Gamma_{94}}{\Gamma_{12}} = \frac{\pi^{-} K^{-} K^{+} \pi^{0} \nu_{\tau}}{\pi^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} (\alpha x K^{0})}$	$(0.1354 \pm 0.0406) \cdot 10^{-2}$	HFAG	Winter 2012 fit
$169 \pi \pi \pi^{+} \pi^{-} \nu_{\tau} (ex. \Lambda)$	$(0.7900 \pm 0.4682 \pm 0.0000) \cdot 10^{-2}$	CLEO	[94]
$\Gamma_{96} = K^- K^- K^+ \nu_{\tau}$	$(2.1774 \pm 0.8005) \cdot 10^{-5}$	HFAG	Winter 2012 fit
	$(1.5777 \pm 0.1300 \pm 0.1231) \cdot 10^{-5}$	BABAR	[36]
	$(3.2900 \pm 0.1694 \pm 0.1962) \cdot 10^{-5}$	Belle	[81]
$\Gamma_{102} = 3h^{-}2h^{+} > 0$ neutrals ν_{τ} (ex. K^{0})	$(0.1022 \pm 0.0037) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.0970 \pm 0.0121 \pm 0.0000) \cdot 10^{-2}$	CLEO	[72]
	$(0.1020 \pm 0.0290 \pm 0.0000) \cdot 10^{-2}$	HRS	[60]
	$(0.1700 \pm 0.0341 \pm 0.0000) \cdot 10^{-2}$	L3	[14]
$\Gamma_{103} = 3h^{-}2h^{+}\nu_{\tau}$ (ex. K^{0})	$\frac{(8.2349 \pm 0.3060) \cdot 10^{-4}}{(8.2349 \pm 0.3060) \cdot 10^{-4}}$	HFAG	Winter 2012 fit
105 011 111 7 (111 11)	$(7.2000 \pm 1.5000 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[96]
	$(6.4000 \pm 2.5080 \pm 0.0000) \cdot 10^{-4}$	ARGUS	[21]
	$(8.5600 \pm 0.0500 \pm 0.0000) \cdot 10^{-4}$	RARAR	[~+] [33]
	$(7.7000 \pm 1.0300 \pm 0.0000) \cdot 10^{-4}$		[72]
	$(9.7000 \pm 1.5810 \pm 0.0000) \cdot 10^{-4}$	DELEN	[7]
	$(5.1000 \pm 2.0000 \pm 0.0000) \cdot 10^{-4}$	HRS	[60]
	$(2.1000 \pm 2.0000 \pm 0.0000)$ · 10	1113	[~~]

Table 1 – continued from previous page

Tau lepton branching fraction	Value	Exp.	Ref.
	$(9.1000 \pm 1.5230 \pm 0.0000) \cdot 10^{-4}$	OPAL	[16]
$\Gamma_{104} = 3h^- 2h^+ \pi^0 u_{ au}$ (ex. K^0)	$(1.9801 \pm 0.2437) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(2.1000 \pm 0.9220 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[96]
	$(1.7000 \pm 0.2828 \pm 0.0000) \cdot 10^{-4}$	CLEO	[26]
	$(1.6000 \pm 1.3420 \pm 0.0000) \cdot 10^{-4}$	DELPHI	[7]
	$(2.7000 \pm 2.0120 \pm 0.0000) \cdot 10^{-4}$	OPAL	[16]
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.8746 \pm 0.0498) \cdot 10^{-2}$	HFAG	Winter 2012 fit
$\Gamma_{126} = \pi^- \pi^0 \eta \nu_\tau$	$(0.1386 \pm 0.0072) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.1800 \pm 0.0447 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[59]
	$(0.1350 \pm 0.0030 \pm 0.0070) \cdot 10^{-2}$	Belle	[78]
	$(0.1700 \pm 0.0283 \pm 0.0000) \cdot 10^{-2}$	CLEO	[29]
$\Gamma_{128} = K^- \eta \nu_{\tau}$	$(1.5285\pm0.0808)\cdot10^{-4}$	HFAG	Winter 2012 fit
	$(1.4200 \pm 0.1100 \pm 0.0700) \cdot 10^{-4}$	BABAR	[24]
	$(1.5800 \pm 0.0500 \pm 0.0900) \cdot 10^{-4}$	Belle	[78]
$\Gamma_{130} = K^- \pi^0 \eta \nu_{\tau}$	$(0.4825\pm0.1161)\cdot10^{-4}$	HFAG	Winter 2012 fit
	$(0.4600 \pm 0.1100 \pm 0.0400) \cdot 10^{-4}$	Belle	[78]
	$(1.7700 \pm 0.9043 \pm 0.0000) \cdot 10^{-4}$	CLEO	[55]
$\Gamma_{132} = \pi^- \overline{K}^0 \eta \nu_\tau$	$(0.9364 \pm 0.1491) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(0.8800\pm 0.1400\pm 0.0600)\cdot 10^{-4}$	Belle	[78]
	$(2.2000 \pm 0.7338 \pm 0.0000) \cdot 10^{-4}$	CLEO	[55]
$\Gamma_{136} = \pi^- \pi^- \pi^+ \eta \nu_\tau \; (\text{ex.} \mathcal{K}^0)$	$(1.4921\pm0.0968)\cdot10^{-4}$	HFAG	Winter 2012 fit
	$(1.6000 \pm 0.0500 \pm 0.1100) \cdot 10^{-4}$	BABAR	[37]
	$(2.3000 \pm 0.5000 \pm 0.0000) \cdot 10^{-4}$	CLEO	[26]
$\Gamma_{150}=h^-\omega\nu_\tau$	$(1.9945\pm 0.0641)\cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(1.9100 \pm 0.0922 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[59]
	$(1.6000 \pm 0.4909 \pm 0.0000) \cdot 10^{-2}$	CLEO	[51]
$\frac{\Gamma_{150}}{\Gamma_{66}} = \frac{h^- \omega \nu_{\tau}}{h^- h^- h^+ \pi^0 \nu_{\tau} (\text{ex.} K^0)}$	$(43.340 \pm 1.389) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(43.100\pm3.300\pm0.000)\cdot10^{-2}$	ALEPH	[58]
	$(46.400 \pm 2.335 \pm 0.000) \cdot 10^{-2}$	CLEO	[44]
$\Gamma_{151} = K^- \omega \nu_\tau$	$(4.1000 \pm 0.9220) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(4.1000\pm 0.9220\pm 0.0000)\cdot 10^{-4}$	CLEO3	[28]
$\Gamma_{152} = h^- \pi^0 \omega \nu_{\tau}$	$(0.4049 \pm 0.0418) \cdot 10^{-2}$	HFAG	Winter 2012 fit
	$(0.4300\pm 0.0781\pm 0.0000)\cdot 10^{-2}$	ALEPH	[59]
$\frac{\Gamma_{152}}{\Gamma_{76}} = \frac{h^- \omega \pi^0 \nu_{\tau}}{h^- h^- h^+ 2 \pi^0 \nu_{\tau} (\text{ex}, K^0)}$	$(82.453\pm7.575)\cdot10^{-2}$	HFAG	Winter 2012 fit
	$(81.000\pm8.485\pm0.000)\cdot10^{-2}$	CLEO	[56]
$\Gamma_{800} = \pi^- \omega \nu_\tau$	$(1.9535\pm 0.0647)\cdot 10^{-2}$	HFAG	Winter 2012 fit
$\Gamma_{\tt 801} = K^- \phi \nu_\tau (\phi \to KK)$	$(3.7002 \pm 1.3604) \cdot 10^{-5}$	HFAG	Winter 2012 fit
$\Gamma_{802} = K^{-} \pi^{-} \pi^{+} \nu_{\tau} \; (\text{ex. } K^{0}, \omega)$	$(0.2923 \pm 0.0068) \cdot 10^{-2}$	HFAG	Winter 2012 fit
$\Gamma_{803} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \omega, \eta)$	$(4.1074 \pm 1.4286) \cdot 10^{-4}$	HFAG	Winter 2012 fit
$\Gamma_{804} = \pi^- K^0_L K^0_L \nu_\tau$	$(2.3957 \pm 0.5026) \cdot 10^{-4}$	HFAG	Winter 2012 fit
$\Gamma_{\texttt{805}} = \texttt{a}_1^- (\rightarrow \pi^- \gamma) \nu_\tau$	$(4.0000 \pm 2.0000) \cdot 10^{-4}$	HFAG	Winter 2012 fit
	$(4.0000 \pm 2.0000 \pm 0.0000) \cdot 10^{-4}$	ALEPH	[96]
$\Gamma_{998} = 1 - \Gamma_{AII}$	$(0.0704 \pm 0.1060) \cdot 10^{-2}$	HFAG	Winter 2012 fit

Table 1 – continued from previous page

Correlation between base nodes uncertainties 2.1

The following tables report the correlation coefficients between base nodes, in percent.

										-				
Г₅	23													
Г۹	7	5												
Γ_{10}	3	6	1											
Γ_{14}	-13	-14	-12	-3										
Γ_{16}	-0	-1	2	-1	-16									
Γ_{20}	-5	-5	-7	-1	-40	2								
Γ_{23}	0	0	-0	-2	2	-12	-22							
Γ_{27}	-4	-3	-8	-1	0	3	-36	6						
Γ_{28}	0	0	-0	-1	2	-12	4	-19	-29					
Γ ₃₀	-5	-4	-11	-2	-9	-0	6	0	-42	0				
Γ_{35}	-0	-1	1	0	-0	2	-1	1	-0	1	-0			
Γ ₃₇	0	0	-1	-1	1	-8	3	-12	4	-12	0	-6		
Γ_{40}	-0	-1	1	-0	-0	0	1	-2	-2	-2	-0	0	-3	
	Гз	Г₅	Г۹	Γ_{10}	Γ_{14}	Γ_{16}	Γ_{20}	Γ_{23}	Γ_{27}	Γ_{28}	Γ ₃₀	Γ_{35}	Γ37	Γ_{40}

Table 2: Base nodes correlation coefficients in percent, section 1

Γ ₄₂	-0	-0	0	-0	0	-3	1	-5	-1	-5	0	-0	-7	30
Γ_{44}	0	0	-0	0	-0	0	-0	0	0	0	0	-2	-2	-4
Γ47	-0	-0	-0	-0	-0	0	0	0	0	0	0	-0	-0	-0
Γ_{48}	0	0	0	0	0	0	-0	1	-0	0	-0	-4	-3	-3
Γ_{53}	0	0	0	0	0	-0	0	0	0	0	0	-0	-0	-0
Γ_{62}	-3	-5	8	0	-4	5	-7	-1	-5	-1	-5	4	-1	3
Γ ₇₀	-6	-6	-7	-1	-9	-1	-1	0	-1	0	3	-1	0	-1
Γ ₇₇	-1	-0	-3	-1	-2	-0	-0	0	2	0	2	-0	0	-0
Γ ₇₈	1	1	2	0	1	1	-0	-0	-0	-0	0	1	-0	1
Γ93	-1	-1	2	0	-1	2	-1	-0	-1	-0	-1	2	-0	1
Γ94	-0	-0	-0	-0	-0	-0	-0	0	-0	0	0	-0	0	-0
Γ_{103}	0	0	2	0	0	1	-1	-0	-0	-0	-1	1	-0	1
Γ_{104}	-1	-1	-1	-0	-1	0	0	-0	0	-0	-1	0	-0	0
Γ_{126}	0	0	0	0	0	0	-1	-0	0	-0	-2	0	-0	0
	Г₃	Γ ₅	Г۹	Γ ₁₀	Γ_{14}	Γ_{16}	Γ_{20}	Γ ₂₃	Γ_{27}	Γ ₂₈	Γ ₃₀	Γ35	Γ37	Γ_{40}

Table 4: Base nodes correlation coefficients in percent, section 3

Γ ₁₂₈	-0	-0	1	-0	-0	1	-0	-1	-0	-1	-0	1	-0	1
Γ_{130}	0	0	0	0	0	0	-0	-0	0	-0	-0	0	-0	0
Γ_{132}	0	0	-0	0	-0	0	-0	-0	0	-0	-0	0	-0	0
Γ_{151}	-0	-0	-0	-0	-0	0	-0	-0	-0	-0	0	-0	-0	-0
Γ_{152}	-1	-0	-3	-1	-2	-0	-1	0	2	0	2	-0	0	0
Γ800	-2	-2	-2	-0	-3	-0	-0	0	-0	0	1	-0	0	-0
Γ801	-0	-0	0	-0	-0	0	-0	-0	0	-0	-0	-0	-0	-0
Γ ₈₀₂	-1	-1	0	0	-1	-1	-2	0	-2	0	-1	-1	-0	-0
Γ ₈₀₃	-0	-0	-0	-0	-0	-0	-0	0	-0	0	0	-0	-0	-0
Γ805	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Γз	Γ₅	Г9	Γ_{10}	Γ_{14}	Γ_{16}	Γ_{20}	Γ_{23}	Γ_{27}	Γ ₂₈	Γ ₃₀	Γ_{35}	Γ37	Γ_{40}

Γ_{44}	-2													
Γ_{47}	-0	-0												
Γ_{48}	-2	-5	-19											
Γ_{53}	-0	0	0	-0										
Γ_{62}	1	-0	-0	-0	-0									
Γ ₇₀	-0	0	0	-0	-0	-19								
Γ ₇₇	0	-0	-0	0	0	-1	-7							
Γ ₇₈	0	-0	-0	-0	-0	2	-2	-1						
Г93	0	-0	-0	-0	-0	14	-4	-0	1					
Γ_{94}	0	0	0	-0	-0	-0	-2	-0	-0	-0				
Γ ₁₀₃	0	-0	-0	-0	-0	3	-1	-0	4	1	-0			
Γ_{104}	-0	-0	0	0	0	-0	0	1	-36	0	0	-11		
Γ_{126}	0	-0	-0	-0	-0	1	-0	-5	0	0	-0	0	0	
	Γ_{42}	Γ_{44}	Γ ₄₇	Γ_{48}	Γ_{53}	Γ ₆₂	Γ ₇₀	Γ ₇₇	Γ ₇₈	Г93	Γ94	Γ ₁₀₃	Γ ₁₀₄	Γ_{126}

Table 5: Base nodes correlation coefficients in percent, section 4

Table 6: Base nodes correlation coefficients in percent, section 5

Γ ₁₂₈	0	-0	-0	-0	-0	2	-0	-0	0	1	-0	1	0	4
Γ ₁₃₀	0	-0	-0	-0	-0	0	-0	-1	0	0	-0	0	0	1
Γ_{132}	-0	-0	-0	-0	-0	0	-0	-0	0	0	-0	0	-0	2
Γ_{151}	0	0	0	-0	-0	0	12	0	0	0	-0	0	0	0
Γ_{152}	0	-0	-0	0	0	-1	-11	-64	-1	-0	-0	-0	1	-0
Γ ₈₀₀	-0	0	0	-0	-0	-8	-69	-2	-0	-1	0	-0	0	-0
Γ_{801}	-0	-0	-0	-0	-0	-1	-0	-0	0	1	-0	0	0	0
Γ ₈₀₂	-0	0	0	-0	-0	17	-6	-0	-0	-0	-0	-0	-0	-0
Γ ₈₀₃	-0	0	0	0	-0	-1	-19	-0	-0	-0	-2	-0	0	-0
Γ ₈₀₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Γ_{42}	Γ_{44}	Γ_{47}	Γ_{48}	Γ_{53}	Γ ₆₂	Γ ₇₀	Γ ₇₇	Γ ₇₈	Γ ₉₃	Γ94	Γ_{103}	Γ_{104}	Γ_{126}

Table 7: Base nodes correlation coefficients in percent, section 6

Γ ₁₃₀	1									
Γ_{132}	1	0								
Γ ₁₅₁	0	0	-0							
Γ_{152}	-0	-0	0	0						
Γ ₈₀₀	-0	-0	- 0	-14	-3					
Γ801	0	0	- 0	-0	-0	-0				
Γ ₈₀₂	-0	-0	-0	-2	-0	-1	1			
Γ ₈₀₃	-1	-0	-0	-58	-0	9	-0	1		
Γ ₈₀₅	0	0	0	0	0	0	0	0	0	
	Γ_{128}	Γ ₁₃₀	Γ_{132}	Γ_{151}	Γ_{152}	Γ ₈₀₀	Γ801	Γ ₈₀₂	Γ ₈₀₃	Γ_{805}

2.2 Equality constraints

We use equality constraints that relate a branching fraction to a sum of branching fractions. As mentioned above, the tau branching fractions are denoted with Γ_n labels. In the constraint relations we use the values of some non-tau branching fractions, denoted e.g. with the self-describing notation $\Gamma_{K_S \to \pi^0 \pi^0}$. We also use probabilities corresponding to modulus square amplitudes describing quantum mixtures of states such as K^0 , \overline{K}^0 , K_S , K_L , denoted with e.g. $\Gamma_{<K^0|K_S>} = |<K^0|K_S>|^2$. In the fit, all non-tau quantities are taken from the PDG 2011 [91] fits (when available) or averages, and are used without accounting for their uncertainties, which are however in general small with respect to the uncertainties on the tau branching fractions. The tau branching fractions are illustrated in Table 1. The equations in the following permit the computation of the values and uncertainties for branching fractions that are not listed in Table 1, once they are expressed as function of the quantities that are listed there. The following list does not include the (non-linear) constraints already introduced in Section 2, and illustrated in Table 1, where some measured branching fractions are expressed as ratios of "base" branching fractions.

$$\Gamma_7 = \Gamma_{35} \cdot \Gamma_{<\overline{K}^0|K_L>} + \Gamma_9 + \Gamma_{804} + \Gamma_{37} \cdot \Gamma_{<\overline{K}^0|K_L>} + \Gamma_{10}$$

```
\Gamma_8 = \Gamma_9 + \Gamma_{10}
\Gamma_{17} = \Gamma_{128} \cdot \Gamma_{n \to 3\pi^0} + \Gamma_{30} + \Gamma_{23} + \Gamma_{28} + \Gamma_{35} \cdot (\Gamma_{<K^0 | K_{\mathfrak{S}}>} \cdot \Gamma_{K_{\mathfrak{S}} \to \pi^0 \pi^0})
                     + \Gamma_{40} \cdot \left( \Gamma_{<\kappa} \mathfrak{o}_{|\kappa_{S}>} \cdot \Gamma_{\kappa_{S} \to \pi} \mathfrak{o}_{\pi} \mathfrak{o} \right) + \Gamma_{42} \cdot \left( \Gamma_{<\kappa} \mathfrak{o}_{|\kappa_{S}>} \cdot \Gamma_{\kappa_{S} \to \pi} \mathfrak{o}_{\pi} \mathfrak{o} \right) + \Gamma_{20} + \Gamma_{27}
                     + \Gamma_{47} \cdot \left( \Gamma_{K_{\boldsymbol{S}} \rightarrow \pi} \mathfrak{o}_{\pi} \mathfrak{o} \cdot \Gamma_{K_{\boldsymbol{S}} \rightarrow \pi} \mathfrak{o}_{\pi} \mathfrak{o} \right) + \Gamma_{48} \cdot \Gamma_{K_{\boldsymbol{S}} \rightarrow \pi} \mathfrak{o}_{\pi} \mathfrak{o} + \Gamma_{126} \cdot \Gamma_{\eta \rightarrow 3\pi} \mathfrak{o} + \Gamma_{37} \cdot \left( \Gamma_{< K} \mathfrak{o}_{|K_{\boldsymbol{S}} >} \cdot \Gamma_{K_{\boldsymbol{S}} \rightarrow \pi} \mathfrak{o}_{\pi} \mathfrak{o} \right)
                     +\Gamma_{130}\cdot\Gamma_{n\to 3\pi}o
\Gamma_{19} = \Gamma_{23} + \Gamma_{20}
\Gamma_{25} = \Gamma_{128} \cdot \Gamma_{n \to 3\pi} \mathfrak{o} + \Gamma_{30} + \Gamma_{28} + \Gamma_{27} + \Gamma_{126} \cdot \Gamma_{n \to 3\pi} \mathfrak{o} + \Gamma_{130} \cdot \Gamma_{n \to 3\pi} \mathfrak{o}
\Gamma_{26} = \Gamma_{128} \cdot \Gamma_{n \to 3\pi^{0}} + \Gamma_{28} + \Gamma_{40} \cdot (\Gamma_{<K^{0}|K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{0}\pi^{0}}) + \Gamma_{42} \cdot (\Gamma_{<K^{0}|K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{0}\pi^{0}}) + \Gamma_{27}
\Gamma_{29} = \Gamma_{30} + \Gamma_{126} \cdot \Gamma_{n \to 3\pi^0} + \Gamma_{130} \cdot \Gamma_{n \to 3\pi^0}
\Gamma_{31} = \Gamma_{128} \cdot \Gamma_{n \rightarrow neutral} + \Gamma_{23} + \Gamma_{28} + \Gamma_{42} + \Gamma_{16} + \Gamma_{37} + \Gamma_{10}
                     + \Gamma_{801} \cdot (\Gamma_{\phi \to K_{S} K_{L}} \cdot \Gamma_{K_{S} \to \pi^{0} \pi^{0}}) / (\Gamma_{\phi \to K^{+} K^{-}} + \Gamma_{\phi \to K_{S} K_{L}})
\Gamma_{33} = \Gamma_{35} \cdot \Gamma_{<\overline{K}^{0}|K_{5}>} + \Gamma_{40} \cdot \Gamma_{<\overline{K}^{0}|K_{5}>} + \Gamma_{42} \cdot \Gamma_{<K^{0}|K_{5}>} + \Gamma_{47} + \Gamma_{48} + \Gamma_{37} \cdot \Gamma_{<K^{0}|K_{5}>}
                     + \Gamma_{132} \cdot \left( \Gamma_{<\overline{K}^{0}|K_{S}>} \cdot \Gamma_{\eta \rightarrow \text{neutral}} \right) + \Gamma_{44} \cdot \Gamma_{<\overline{K}^{0}|K_{S}>} + \Gamma_{801} \cdot \Gamma_{\phi \rightarrow K_{S}K_{L}} / \left( \Gamma_{\phi \rightarrow K^{+}K^{-}} + \Gamma_{\phi \rightarrow K_{S}K_{L}} \right)
\Gamma_{34} = \Gamma_{35} + \Gamma_{37}
\Gamma_{38} = \Gamma_{42} + \Gamma_{37}
\Gamma_{39} = \Gamma_{40} + \Gamma_{42}
\Gamma_{43} = \Gamma_{40} + \Gamma_{44}
\Gamma_{46} = \Gamma_{48} + \Gamma_{47} + \Gamma_{804}
\Gamma_{54} = \Gamma_{128} \cdot \Gamma_{\eta \to \text{charged}} + \Gamma_{152} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{35} \cdot (\Gamma_{<\kappa^0 | \kappa_{5>}} \cdot \Gamma_{\kappa_{5} \to \pi^+ \pi^-})
                     + \Gamma_{40} \cdot (\Gamma_{<\kappa^{0}|\kappa_{s}>} \cdot \Gamma_{\kappa_{s}\to\pi^{+}\pi^{-}}) + \Gamma_{42} \cdot (\Gamma_{<\kappa^{0}|\kappa_{s}>} \cdot \Gamma_{\kappa_{s}\to\pi^{+}\pi^{-}}) + \Gamma_{78}
                     +\Gamma_{47} \cdot \left(2 \cdot \Gamma_{K_{5} \rightarrow \pi^{+} \pi^{-}} \cdot \Gamma_{K_{5} \rightarrow \pi^{0} \pi^{0}}\right) + \Gamma_{77} + \Gamma_{48} \cdot \Gamma_{K_{5} \rightarrow \pi^{+} \pi^{-}} + \Gamma_{94} + \Gamma_{62} + \Gamma_{70} + \Gamma_{93}
                     + \Gamma_{126} \cdot \Gamma_{\eta \rightarrow \text{charged}} + \Gamma_{37} \cdot (\Gamma_{<\kappa^{0}|\kappa_{S}>} \cdot \Gamma_{\kappa_{S} \rightarrow \pi^{+}\pi^{-}}) + \Gamma_{802} + \Gamma_{803}
                     + \Gamma_{800} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{151} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{130} \cdot \Gamma_{\eta \to charged}
                     + \Gamma_{132} \cdot (\Gamma_{<\overline{K}^0|K_L>} \cdot \Gamma_{\eta \to \pi^+\pi^-\pi^0})
                     + \Gamma_{<\overline{K}^{0}|K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{0} \sigma^{0}} \cdot \Gamma_{\eta \to \pi^{+} \pi^{-} \pi^{0}} + \Gamma_{<\overline{K}^{0}|K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{+} \pi^{-}} \cdot \Gamma_{\eta \to 3\pi^{0}})
                     + \Gamma_{53} \cdot \left( \Gamma_{<\overline{K}^{0}|K_{5}>} \cdot \Gamma_{K_{5}\rightarrow\pi^{0}\pi^{0}} + \Gamma_{<\overline{K}^{0}|K_{1}>} \right)
                     + \Gamma_{801} \cdot \left( \Gamma_{\phi \to K^+ K^-} + \Gamma_{\phi \to K_{\mathcal{S}} K_{\mathcal{L}}} \cdot \Gamma_{K_{\mathcal{S}} \to \pi^+ \pi^-} \right) / \left( \Gamma_{\phi \to K^+ K^-} + \Gamma_{\phi \to K_{\mathcal{S}} K_{\mathcal{L}}} \right)
\Gamma_{55} = \Gamma_{128} \cdot \Gamma_{\eta \to \text{charged}} + \Gamma_{152} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{78} + \Gamma_{77} + \Gamma_{94} + \Gamma_{62} + \Gamma_{70} + \Gamma_{93}
                     + \Gamma_{126} \cdot \Gamma_{\eta \rightarrow \text{charged}} + \Gamma_{802} + \Gamma_{803} + \Gamma_{800} \cdot (\Gamma_{\omega \rightarrow \pi^+ \pi^- \pi^0} + \Gamma_{\omega \rightarrow \pi^+ \pi^-})
                     + \Gamma_{151} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{130} \cdot \Gamma_{n \to \text{charged}}
                     + \Gamma_{801} \cdot \Gamma_{\phi \to K^+ K^-} / (\Gamma_{\phi \to K^+ K^-} + \Gamma_{\phi \to K_{S} K_{I}})
\Gamma_{57} = \Gamma_{62} + \Gamma_{93} + \Gamma_{802} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{801} \cdot \Gamma_{\phi \to K^+ K^-} / (\Gamma_{\phi \to K^+ K^-} + \Gamma_{\phi \to K^+ K^-})
\Gamma_{58} = \Gamma_{62} + \Gamma_{93} + \Gamma_{802} + \Gamma_{801} \cdot \Gamma_{\phi \to K^+ K^-} / (\Gamma_{\phi \to K^+ K^-} + \Gamma_{\phi \to K_{\mathcal{S}} K_L})
\Gamma_{60} = \Gamma_{62} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^-}
\Gamma_{66} = \Gamma_{128} \cdot \Gamma_{n \to \pi^{+} \pi^{-} \pi^{0}} + \Gamma_{152} \cdot \Gamma_{\omega \to \pi^{+} \pi^{-}} + \Gamma_{94} + \Gamma_{70} + \Gamma_{803} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^{+} \pi^{-} \pi^{0}} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^{+} \pi^{-} \pi^{0}}
\Gamma_{68} = \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{40} \cdot \left( \Gamma_{<K} \mathfrak{o}_{|K_{S}>} \cdot \Gamma_{K_{S} \to \pi^+ \pi^-} \right) + \Gamma_{70} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} \mathfrak{o}_{K}
\Gamma_{69} = \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{70} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0}
\Gamma_{74} = \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{78} + \Gamma_{77} + \Gamma_{126} \cdot \Gamma_{n \to \pi^+ \pi^- \pi^0} + \Gamma_{130} \cdot \Gamma_{n \to \pi^+ \pi^- \pi^0}
\Gamma_{76} = \Gamma_{152} \cdot \Gamma_{\omega \to \pi^{+}\pi^{-}\pi^{0}} + \Gamma_{77} + \Gamma_{126} \cdot \Gamma_{n \to \pi^{+}\pi^{-}\pi^{0}} + \Gamma_{130} \cdot \Gamma_{n \to \pi^{+}\pi^{-}\pi^{0}}
\Gamma_{82} = \Gamma_{128} \cdot \Gamma_{\eta \rightarrow \text{charged}} + \Gamma_{42} \cdot \left(\Gamma_{<\kappa} \mathfrak{o}_{|\kappa_{S}>} \cdot \Gamma_{\kappa_{S} \rightarrow \pi^{+}\pi^{-}}\right) + \Gamma_{802} + \Gamma_{803} + \Gamma_{151} \cdot \left(\Gamma_{\omega \rightarrow \pi^{+}\pi^{-}\pi} \mathfrak{o} + \Gamma_{\omega \rightarrow \pi^{+}\pi^{-}}\right)
                     + \Gamma_{37} \cdot (\Gamma_{<\kappa^0|\kappa_s>} \cdot \Gamma_{\kappa_s \to \pi^+ \pi^-})
```

$$\begin{split} & \Gamma_{85} = \Gamma_{802} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^-} \\ & \Gamma_{88} = \Gamma_{128} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{803} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} \\ & \Gamma_{92} = \Gamma_{94} + \Gamma_{93} \\ & \Gamma_{96} = \Gamma_{801} \cdot \Gamma_{\phi \to K^+ K^-} / (\Gamma_{\phi \to K^+ K^-} + \Gamma_{\phi \to K_S K_L}) \\ & \Gamma_{102} = \Gamma_{103} + \Gamma_{104} \\ & \Gamma_{110} = \Gamma_{10} + \Gamma_{16} + \Gamma_{23} + \Gamma_{28} + \Gamma_{35} + \Gamma_{40} + \Gamma_{128} + \Gamma_{802} + \Gamma_{803} + \Gamma_{151} + \Gamma_{130} + \Gamma_{132} + \Gamma_{44} + \Gamma_{53} + \Gamma_{801} \\ & \Gamma_{136} = \Gamma_{104} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{78} \cdot \Gamma_{\eta \to 3\pi^0} \\ & \Gamma_{150} = \Gamma_{800} + \Gamma_{151} \\ & \Gamma_{804} = \Gamma_{47} \cdot (\Gamma_{} \cdot \Gamma_{} \cdot \Gamma_{}) \\ & \Gamma_{A||} = \Gamma_{3} + \Gamma_{5} + \Gamma_{9} + \Gamma_{10} + \Gamma_{14} + \Gamma_{16} + \Gamma_{20} + \Gamma_{23} + \Gamma_{28} + \Gamma_{30} + \Gamma_{35} + \Gamma_{37} + \Gamma_{40} + \Gamma_{42} + \Gamma_{47} \\ & + \Gamma_{48} + \Gamma_{62} + \Gamma_{70} + \Gamma_{77} + \Gamma_{78} + \Gamma_{93} + \Gamma_{94} + \Gamma_{104} + \Gamma_{126} + \Gamma_{128} + \Gamma_{802} + \Gamma_{803} + \Gamma_{804} + \Gamma_{805} + \Gamma_{801} + \Gamma_{152} + \Gamma_{103} \\ & + \Gamma_{130} + \Gamma_{132} + \Gamma_{44} + \Gamma_{53} + \Gamma_{49} + \Gamma_{804} + \Gamma_{805} + \Gamma_{801} + \Gamma_{152} + \Gamma_{103} \\ \end{split}$$

2.3 Fit procedure

The fit procedure is functionally equivalent to the one employed in the former HFAG report [31] and consists in a minimum χ^2 fit subject to linear and non-linear constraints. The fit code has been improved to automatize the treatment of non-linear constraints, which are iteratively Taylor-expanded to obtain numerically approximate linear constraints, which permit an analytical solution for the χ^2 minimization when, as it happens in this case, the χ^2 is a quadratic function of the fitted quantities.

3 Tests of lepton universality

In the Standard Model, the partial widths of a heavier lepton L decaying to a lighter lepton ℓ are, neglecting neutrino masses and including radiative corrections [84],

$$\Gamma(L o
u_L \ell \overline{
u}_\ell(\gamma)) = rac{B(L o
u_L \ell \overline{
u}_\ell)}{ au_L} = rac{G_L G_\ell m_L^5}{192 \pi^3} f\left(rac{m_\ell^2}{m_L^2}
ight) r_W^L r_\gamma^L ,$$

where

$$G_{\ell} = \frac{g_{\ell}^2}{4\sqrt{2}M_W^2} \qquad f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$$

$$r_W^L = 1 + \frac{3}{5} \frac{m_L^2}{M_W^2} \qquad r_{\gamma}^L = 1 + \frac{\alpha(m_L)}{2\pi} \left(\frac{25}{4} - \pi^2\right)$$

We use $r_{\gamma}^{\tau} = 1 - 43.2 \cdot 10^{-4}$ and $r_{\gamma}^{\mu} = 1 - 42.4 \cdot 10^{-4}$ [84] and M_W from PDG 2011 [91] as usual.

Proper ratios of the above partial widths, corrected by the suitable above-illustrated factors to remove the dependencies from masses and radiative corrections, measure ratios of charged weak lepton coupling constants. Using the HFAG-Tau fit values where available and using PDG 2011 for the remaining quantities, we measure, accounting for the statistical correlations emerging from the HFAG-Tau fit:

$$\left(\frac{g_{\tau}}{g_{\mu}}\right) = 1.0006 \pm 0.0021$$
, $\left(\frac{g_{\tau}}{g_{e}}\right) = 1.0024 \pm 0.0021$, $\left(\frac{g_{\mu}}{g_{e}}\right) = 1.0018 \pm 0.0014$.

Tau decays partial widths to hadrons compared to the same hadron decay to muons measure the tau-muon universality of charged weak couplings as follows:

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{B(\tau \to h\nu_{\tau})}{B(h \to \mu\overline{\nu}_{\mu})} \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1+\delta_{h})m_{\tau}^{3}\tau_{\tau}} \left(\frac{1-m_{\mu}^{2}/m_{h}^{2}}{1-m_{h}^{2}/m_{\tau}^{2}}\right)^{2}$$

where $h = \pi$ or K and the radiative corrections are $\delta_{\pi} = (0.16 \pm 0.14)\%$ and $\delta_{K} = (0.90 \pm 0.22)\%$ [64]. Using the HFAG-Tau data and PDG 2011 we measure:

$$\left(rac{g_{ au}}{g_{\mu}}
ight)_{\pi}=0.9956\pm0.0031$$
 , $\left(rac{g_{ au}}{g_{\mu}}
ight)_{K}=0.9853\pm0.0072$

Similar tests could be performed with decays to electrons, however they are less precise because the hadron two body decays to electrons are helicity-suppressed. Averaging the three g_{τ}/g_{μ} ratios we obtain

$$\left(rac{g_{ au}}{g_{\mu}}
ight)_{ au+\pi+K} = 0.9996 \pm 0.0020$$
 ,

accounting for statistical correlations. Table 8 reports the statistical correlation coefficients for the fitted coupling ratios:

Table 8: Universality coupling ratios correlation coefficients (%)

$\left(\frac{g_{\tau}}{g_{e}}\right)$	77			
$\left(\frac{g_{\mu}}{g_{e}}\right)$	-35	34		
$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi}$	49	50	2	
$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\nu}^{n}$	23	21	-2	14
() / K	$\left(\frac{g_{\tau}}{g_{\mu}}\right)$	$\left(\frac{g_{\tau}}{g_{e}}\right)$	$\left(\frac{g_{\mu}}{g_{e}}\right)$	$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi}$

4 Universality improved $\mathsf{B}(au o \mathsf{e} u \overline{ u})$ and $\mathsf{R}_{\mathsf{had}}$

Following Ref. [63], we assume lepton universality to obtain a more precise experimental determination of $B_e = B(\tau \rightarrow e\overline{\nu}_e\nu_{\tau})$ using the tau branching fraction to muon and the tau lifetime, by averaging the B_e direct measurement, the B_e determination from assuming that $g_{\mu}/g_e = 1$ hence (see also Section 3) $B_e = B_{\mu} \cdot f(m_e^2/m_{\tau}^2)/f(m_{\mu}^2/m_{\tau}^2)$, and B_e from assuming that $g_{\tau}/g_{\mu} = 1$ hence $B_e = B(\mu \rightarrow e\overline{\nu}_e\nu_{\mu}) \cdot (\tau_{\tau}/\tau_{\mu}) \cdot (m_{\tau}/m_{\mu})^5 \cdot f(m_e^2/m_{\tau}^2)/f(m_e^2/m_{\mu}^2) \cdot (\delta_{\gamma}^{\tau}\delta_W^{\tau})/(\delta_{\gamma}^{\mu}\delta_W^{\mu})$ where $B(\mu \rightarrow e\overline{\nu}_e\nu_{\mu}) = 1$. Accounting for statistical correlations, we obtain

 $B_e^{\rm uni} = (17.839 \pm 0.028)\%$.

We use B_e^{uni} to obtain the ratio

$$R_{had} = \frac{\Gamma(\tau \to hadrons)}{\Gamma(\tau \to e\nu\overline{\nu})} = 3.6279 \pm 0.0094$$

Here $\Gamma(\tau \rightarrow \text{hadrons})$ is obtained by summing all tau hadronic decay modes.

5 |V_{us}| measurement

The CKM coefficient $|V_{us}|$ can be measured in several ways from the comparison of tau partial widths to strange and non-strange final states.

5.1 Inclusive tau partial width to strange

The tau hadronic partial width is the sum of the tau partial width to strange and to non-strange hadronic final states, $\Gamma_{had} = \Gamma_s + \Gamma_{VA}$. Dividing by the partial width to electron, Γ_e , we obtain partial width ratios (which are equal to the respective branching fraction ratios) for which $R_{had} = R_s + R_{VA}$. In terms of such ratios, $|V_{us}|$ is measured as

$$|V_{us}| = \sqrt{R_s / \left[\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}}\right]} , \qquad (1)$$

where δR_{theory} can be determined in the context of low energy QCD theory, partly relying on experimental low energy scattering data. We use $\delta R_{\text{theory}} = 0.240 \pm 0.032$ [70], which induces a systematic error on $|V_{us}|$ that lies between two more recent estimates [71, 83].

Branching fraction	HFAG Winter 2012 fit
$\Gamma_{10} = K^- \nu_{\tau}$	$(0.6955\pm0.0096)\cdot10^{-2}$
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$(0.4322\pm0.0149)\cdot10^{-2}$
$\Gamma_{23}=K^-2\pi^0 u_ au$ (ex. K^0)	$(0.0630\pm 0.0222)\cdot 10^{-2}$
$\Gamma_{28}=K^-3\pi^0 u_ au$ (ex. K^0 , η)	$(0.0419\pm 0.0218)\cdot 10^{-2}$
$\Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau}$	$(0.8206\pm 0.0182)\cdot 10^{-2}$
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$(0.3649\pm 0.0108)\cdot 10^{-2}$
$\Gamma_{44} = \pi^- \overline{K}^0 \pi^0 \pi^0 \nu_\tau$	$(0.0269\pm 0.0230)\cdot 10^{-2}$
$\Gamma_{53} = \overline{K}^0 h^- h^- h^+ \nu_{\tau}$	$(0.0222\pm0.0202)\cdot10^{-2}$
$\Gamma_{128} = K^- \eta \nu_{\tau}$	$(0.0153\pm0.0008)\cdot10^{-2}$
$\Gamma_{130} = K^- \pi^0 \eta \nu_\tau$	$(0.0048\pm 0.0012)\cdot 10^{-2}$
$\Gamma_{132} = \pi^{-} \overline{K}^{0} \eta \nu_{\tau}$	$(0.0094 \pm 0.0015) \cdot 10^{-2}$
$\Gamma_{151} = K^- \omega \nu_\tau$	$(0.0410\pm 0.0092)\cdot 10^{-2}$
$\Gamma_{\tt 801} = K^- \phi u_ au (\phi o KK)$	$(0.0037 \pm 0.0014) \cdot 10^{-2}$
$\Gamma_{802} = K^{-} \pi^{-} \pi^{+} \nu_{\tau} \text{ (ex. } K^{0}, \omega)$	$(0.2923\pm0.0068)\cdot10^{-2}$
$\Gamma_{803} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \omega, \eta)$	$(0.0411 \pm 0.0143) \cdot 10^{-2}$
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.8746 \pm 0.0498) \cdot 10^{-2}$

Table 9: HFAG Winter 2012 Tau branching fractions to strange final states.

In the following, we use the universality improved B_e^{uni} (see Section 4) to compute the R ratios. The most direct experimental determination of R_s and $R_{VA} = R_{had} - R_s$ come from the tau inclusive branching fractions to hadronic and strange hadronic states, B_{had} and B_s . However often the total hadronic branching fraction has been replaced by the indirect but more precise expression $B_{had}^{uni} = 1 - B_e - B_\mu$ (or similar expressions based on B_e^{uni}), using unitarity, see for example the 2009 HFAG report [31]. We depart from this choice here, and we use the most direct determination of R_{had} , for two reasons: first there is no significant statistical gain in the final errors, because of statistical correlations in the R_{had} expression $(1 - B_e - B_\mu)/B_e^{univ}$, and second the indirect determination of $R_{VA} = R_{had}^{uni} - R_s$ would absorb the effect of possible unobserved hadronic states entirely in R_{VA} , while they could also be strange final states.

With the above choices, using $|V_{ud}| = 0.97425 \pm 0.00022$ [73], using HFAG values of this report, including the above-mentioned B_e^{univ} , $B_s = (2.872 \pm 0.050)\%$ (see also Table 9), $B_{VA} = (61.85 \pm 0.11)\%$) and the PDG 2011 averages, we obtain $|V_{us}|_{\tau s} = 0.2172 \pm 0.0022$, which is 3.4σ lower than the unitarity CKM prediction $|V_{us}|_{uni} = 0.2255 \pm 0.0010$, from $(|V_{us}|_{uni})^2 = 1 - |V_{ud}|^2$. The $|V_{us}|_{\tau s}$ uncertainty includes a systematic error contribution of 0.0010 from the theory uncertainty on δR_{theory} ,

If we use the alternative above mentioned definitions of B_{had} , the mismatch remains 3.4 σ . Using a unitarityconstrained tau branching fraction fit, the mismatch remains 3.4 σ . The 3.4 σ discrepancy is close to the unconstrained fit result of the 2009 HFAG report, 3.6 σ [31], and also to the 3.3 σ from the HFAG-Tau 2011 intermediate document [46], based on a unitarity-constrained fit.

5.2 $|V_{us}|$ from $B(\tau \to K\nu)/B(\tau \to \pi\nu)$ and from $B(\tau \to K\nu)$

We use the ratio of branching fractions $B(\tau^- \rightarrow K^- \nu_\tau)/B(\tau^- \rightarrow \pi^- \nu_\tau) = 0.0643 \pm 0.0009$ to measure $|V_{us}|$ from the equation

$$\frac{B(\tau^- \to K^- \nu_\tau)}{B(\tau^- \to \pi^- \nu_\tau)} = \frac{f_K^2 |V_{us}|^2}{f_\pi^2 |V_{ud}|^2} \frac{\left(1 - m_K^2 / m_\tau^2\right)^2}{\left(1 - m_\pi^2 / m_\tau^2\right)^2} \frac{r_{\rm LD}(\tau^- \to K^- \nu_\tau)}{r_{\rm LD}(\tau^- \to \pi^- \nu_\tau)} \ .$$

In this ratio, the short-distance radiative corrections cancel. The term $r_{LD}(p) = 1 + \delta_{LD}(p)$ corresponds to the long-distance electroweak radiative correction factor for the process p. Following Ref. [45], the ratio of radiative correction factors is estimated as $r_{LD}^{K\pi} = r_{LD}(\tau^- \rightarrow K^-\nu/K^- \rightarrow \mu^-\nu)/r_{LD}(\tau^- \rightarrow \pi^-\nu/\pi^- \rightarrow \mu^-\nu) \cdot r_{LD}(K^- \rightarrow \mu^-\nu)/r_{LD}(\pi^- \rightarrow \mu^-\nu)$, where the first ratio is $[1 + (0.90 \pm 0.22)\%]/[1 + (0.16 \pm 0.14)\%]$ [65] and the second ratio is $(0.9930 \pm 0.0035)\%$ [85], hence assuming independent errors $r_{LD}^{K\pi} = 1.0003 \pm 0.0020$, 1.2 σ below the CKM unitarity prediction.

Figure 1: $|V_{us}|$ averages of this document compared with the FlaviaNet results [27].

We use the branching fraction $B(\tau^- \to K^- \nu_{\tau})$ to measure $|V_{us}|$ from the equation

$$B(au^- o K^-
u_ au) = rac{G_F^2 f_K^2 |V_{us}|^2 m_ au^3 au_ au}{16 \pi - h} \left(1 - rac{m_K^2}{m_ au^2}
ight)^2 S_{EW}$$
 ,

where $f_K = 156.1 \pm 1.1$ MeV [80] is the kaon decay constant estimated with lattice QCD, and $S_{EW} = 1.0201 \pm 0.0003$ [68] accounts for the radiative corrections. We obtain $|V_{us}|_{\tau K} = 0.2214 \pm 0.0022$, wich is 1.7σ below the CKM unitarity prediction. CODATA 2006 results [90] and PDG 2011 have been used for the physics constants.

5.3 |V_{us}| from tau summary

We summarize the $|V_{us}|$ results reporting the values, the discrepancy with respect to the $|V_{us}|$ determination from CKM unitarity, and an illustration of the measurement method:

$$\begin{split} |V_{us}|_{uni} &= 0.2255 \pm 0.0010 & \text{from } \sqrt{1 - |V_{ud}|^2} \quad (\text{CKM unitarity}) , \\ |V_{us}|_{\tau s} &= 0.2172 \pm 0.0022 & -3.4\sigma \quad \text{from } \Gamma(\tau^- \to X_s^- \nu_\tau) , \\ |V_{us}|_{\tau K/\pi} &= 0.2229 \pm 0.0020 & -1.2\sigma \quad \text{from } \Gamma(\tau^- \to K^- \nu_\tau) / \Gamma(\tau^- \to \pi^- \nu_\tau) , \\ |V_{us}|_{\tau K} &= 0.2214 \pm 0.0022 & -1.7\sigma \quad \text{from } \Gamma(\tau^- \to K^- \nu_\tau) . \end{split}$$

Thanks to the improved lattice QCD determination of f_K [80], the uncertainty on $|V_{us}|_{\tau K}$ has been significantly reduced with respect to the previous HFAG report. Averaging the three above $|V_{us}|$ determinations we obtain:

 $|V_{us}|_{\tau} = 0.2203 \pm 0.0015$ -2.9σ average of $3 |V_{us}|$ tau measurements.

We could not find a published estimate of the correlation of the uncertainties on f_K and f_K/f_{π} , but even if we assume $\pm 100\%$ correlation, the uncertainty on $|V_{us}|_{\tau}$ does not change more than about $\pm 5\%$. Figure 1 summarizes the $|V_{us}|$ results.

6 Upper limits on tau LFV branching fractions

We list in Table 10 the up-to-date upper limits on the tau LFV branching fractions.

Table 10: HFAG Winter 2012 upper limit for the lepton flavor violating τ decay modes. For convenience, the decay modes are grouped in categories labelled according to their particle content. The label "(L)" in the category column means that the decay mode implies lepton number violation as well as the lepton flavor violation.

Decay mode	Category	90% CL	Exp.	Ref.
- –				
$\Gamma_{156} = e \gamma$	$I\gamma$	$< 12.0 \cdot 10^{\circ}$	Belle	
- -		$< 3.3 \cdot 10^{\circ}$	BABAR	[43]
$\Gamma_{157} = \mu \gamma$		$< 4.5 \cdot 10^{-8}$	Belle	[76]
0	(5)	$< 4.4 \cdot 10^{-8}$	BABAR	43
$I_{158} = e^{-}\pi^{0}$	IP^{0}	$< 2.2 \cdot 10^{-8}$	Belle	[75]
- 0		$< 13.0 \cdot 10^{-8}$	BABAR	[35]
$\Gamma_{159} = \mu^- \pi^0$		$< 2.7 \cdot 10^{-8}$	Belle	[75]
		$< 11.0 \cdot 10^{-\circ}$	BABAR	35
$\Gamma_{162} = e^{-}\eta$		$< 4.4 \cdot 10^{-6}$	Belle	[75]
_		$< 16.0 \cdot 10^{-8}$	BABAR	[35]
$\Gamma_{163} = \mu^{-} \eta$		$< 2.3 \cdot 10^{-6}$	Belle	[75]
-		$< 15.0 \cdot 10^{-8}$	BABAR	[35]
$\Gamma_{172} = e^{-}\eta'(958)$		$< 3.6 \cdot 10^{-6}$	Belle	[75]
-		$< 24.0 \cdot 10^{-8}$	BABAR	[35]
$\Gamma_{173} = \mu^{-} \eta'(958)$		$< 3.8 \cdot 10^{-\circ}$	Belle	[75]
0		$< 14.0 \cdot 10^{-\circ}$	BABAR	35
$\Gamma_{160} = e^- K_S^0$		$< 2.6 \cdot 10^{-8}$	Belle	88
0		$< 3.3 \cdot 10^{-8}$	BABAR	[41]
$\Gamma_{161} = \mu^- K_S^0$		$< 2.3 \cdot 10^{-8}$	Belle	[88]
		$< 4.0 \cdot 10^{-8}$	BABAR	[41]
$\Gamma_{174} = e^- f_0(980)$	IS^0	$< 3.2 \cdot 10^{-8}$	Belle	[87]
$\Gamma_{175} = \mu^{-} f_0(980)$		$< 3.4 \cdot 10^{-8}$	Belle	[87]
$\Gamma_{164} = e^- \rho^0$	IV^0	$< 1.8 \cdot 10^{-8}$	Belle	[86]
_		$< 4.6 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{165} = \mu^- \rho^0$		$< 1.2 \cdot 10^{-8}$	Belle	[<mark>86</mark>]
_		$< 2.6 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{168} = e^- K^* (892)^0$		$< 3.2 \cdot 10^{-8}$	Belle	[86]
_		$< 5.9 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{169} = \mu^- K^* (892)^0$		$< 7.2 \cdot 10^{-8}$	Belle	[86]
		$< 17.0 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{170} = e^{-}\overline{K}^{*}(892)^{0}$		$< 3.4 \cdot 10^{-8}$	Belle	[<mark>86</mark>]
		$< 4.6 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{171} = \mu^{-}\overline{K}^{*}(892)^{0}$		$< 7.0 \cdot 10^{-8}$	Belle	[86]
		$< 7.3 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{176} = e^- \phi$		$< 3.1 \cdot 10^{-8}$	Belle	86
		$< 3.1 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{177} = \mu^- \phi$		$< 8.4 \cdot 10^{-8}$	Belle	[86]
		$< 19.0 \cdot 10^{-8}$	BABAR	[39]
$\Gamma_{166} = e^- \omega$		$< 4.8 \cdot 10^{-8}$	Belle	[86]
		$< 11.0 \cdot 10^{-8}$	BABAR	[<mark>38</mark>]
$\Gamma_{167} = \mu^- \omega$		$< 4.7 \cdot 10^{-8}$	Belle	[86]
		$< 10.0 \cdot 10^{-8}$	BABAR	[38]
$\Gamma_{178} = e^- e^+ e^-$		$< 2.7 \cdot 10^{-8}$	Belle	[77]
		$< 2.9 \cdot 10^{-8}$	BABAR	[<mark>82</mark>]
$\Gamma_{181} = \mu^- e^+ e^-$		$< 1.8 \cdot 10^{-8}$	Belle	[77]
		$< 2.2 \cdot 10^{-8}$	BABAR	82
$\Gamma_{179} = e^- \mu + \mu -$		$< 2.7 \cdot 10^{-8}$	Belle	[77]
		$< 3.2 \cdot 10^{-8}$	BABAR	[82]
$\Gamma_{183} = \mu^- \mu + \mu -$		$< 2.1 \cdot 10^{-8}$	Belle	[77]
		$< 3.3 \cdot 10^{-8}$	BABAR	[82]

Docay mode	Catagory	90% CL	Evo	Pof
Decay mode	Category	Limit	⊾∧р.	Nel.
$\Gamma_{182} = e^- \mu + e^-$		$< 1.5 \cdot 10^{-8}$	Belle	[77]
		$< 1.8 \cdot 10^{-8}$	BABAR	[82]
$\Gamma_{180} = \mu^- e^+ \mu -$		$< 1.7 \cdot 10^{-8}$	Belle	[77]
		$< 2.6 \cdot 10^{-8}$	BABAR	[82]
$\Gamma_{184} = e^{-}\pi^{+}\pi^{-}$	lhh	$< 2.3 \cdot 10^{-8}$	Belle	[89]
		$< 12.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{186} = \mu^- \pi^+ \pi^-$		$< 2.1 \cdot 10^{-8}$	Belle	[89]
		$< 29.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{188} = e^{-}\pi^{+}K^{-}$		$< 3.7 \cdot 10^{-8}$	Belle	[89]
		$< 32.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{194} = \mu^- \pi^+ K^-$		$< 8.6 \cdot 10^{-8}$	Belle	[89]
		$< 26.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{189} = e^- K^+ \pi^-$		$< 3.1 \cdot 10^{-8}$	Belle	[89]
		$< 17.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{195} = \mu^- K^+ \pi^-$		$< 4.5 \cdot 10^{-8}$	Belle	[89]
		$< 32.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{192} = e^- K^+ K^-$		$< 3.4 \cdot 10^{-8}$	Belle	[89]
		$< 14.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{198} = \mu^- K^+ K^-$		$< 4.4 \cdot 10^{-8}$	Belle	[89]
		$< 25.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{191} = e^- K^0_S K^0_S$		$< 7.1 \cdot 10^{-8}$	Belle	[88]
$\Gamma_{197} = \mu^- K^0_S K^0_S$		$< 8.0 \cdot 10^{-8}$	Belle	[88]
$\Gamma_{185} = e^+ \pi^- \pi^-$	(L)	$< 2.0 \cdot 10^{-8}$	Belle	[89]
	(L)	$< 27.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{187} = \mu^+ \pi^- \pi^-$	(L)	$< 3.9 \cdot 10^{-8}$	Belle	[89]
	(L)	$< 7.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{190} = e^+ \pi^- K^-$	(L)	$< 3.2 \cdot 10^{-8}$	Belle	[89]
	(L)	$< 18. \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{196} = \mu^+ \pi^- K^-$	(L)	$< 4.8 \cdot 10^{-8}$	Belle	[89]
	(L)	$< 22.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{193} = e^+ K^- K^-$	(L)	$< 3.3 \cdot 10^{-8}$	Belle	[89]
	(L)	$< 15.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{199} = \mu^+ K^- K^-$	(L)	$< 4.7 \cdot 10^{-8}$	Belle	[89]
	(L)	$< 48.0 \cdot 10^{-8}$	BABAR	[32]
$\Gamma_{211} = \pi^{-} \Lambda$	Λ h	$< 3.0 \cdot 10^{-8}$	Belle	[74]
_		$< 5.8 \cdot 10^{-8}$	BABAR	[79]
$\Gamma_{212} = \pi^{-} \Lambda$		$< 2.8 \cdot 10^{-8}$	Belle	[74]
		$< 5.9 \cdot 10^{-8}$	BABAR	[79]
$\Gamma_{xx} = K^{-}\Lambda$		$< 4.2 \cdot 10^{-8}$	Belle	[74]
_		$< 15. \cdot 10^{-8}$	BABAR	[79]
$\Gamma_{xx} = K^{-}\Lambda$		$< 3.1 \cdot 10^{-8}$	Belle	[74]
		$< 7.2 \cdot 10^{-8}$	BABAR	[79]

Table 10 – continued from previous page

A Branching Fractions Fit Measurement List by Reference

Table 11 reports the measurements used for the HFAG-Tau branching fraction fit grouped by their bibliographic reference.

Table 11: By-reference measurements list.

Reference / Branching Fraction	Value
ALEPH pub SCHAEL 05C [96]	

Table 11 –	continued	from	previous	page
------------	-----------	------	----------	------

Reference / Branching Fraction	Value
$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$0.17319 \pm 0.000769675 \pm 0$
$\Gamma_5 = e^- \overline{ u}_e u_ au$	$0.17837 \pm 0.000804984 \pm 0$
$\Gamma_8 = h^- u_ au$	$0.11524 \pm 0.00104805 \pm 0$
$\Gamma_{13} = h^- \pi^0 \nu_\tau$	$0.25924 \pm 0.00128973 \pm 0$
$\Gamma_{19} = h^- 2\pi^0 \nu_\tau \; (\text{ex.} \mathcal{K}^0)$	$0.09295 \pm 0.00121655 \pm 0$
$\Gamma_{26} = h^- 3\pi^0 \nu_\tau$	$0.01082 \pm 0.000925581 \pm 0$
$\Gamma_{30} = h^- 4 \pi^0 u_ au$ (ex. \mathcal{K}^0, η)	$0.00112 \pm 0.000509313 \pm 0$
$\Gamma_{58} = h^- h^- h^+ \nu_\tau \; (\text{ex.} \mathcal{K}^0, \omega)$	$0.09469 \pm 0.000957758 \pm 0$
$\Gamma_{66} = h^- h^- h^+ \pi^0 \nu_{\tau} \; (\text{ex.} \mathcal{K}^0)$	$0.04734 \pm 0.000766942 \pm 0$
$\Gamma_{76} = h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} \mathcal{K}^0)$	$0.00435 \pm 0.000460977 \pm 0$
$\Gamma_{103} = 3h^- 2h^+ u_{ au} \; (\text{ex. } K^0)$	$0.00072 \pm 0.00015 \pm 0$
$\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$0.00021 \pm 9.21954 \cdot 10^{-5} \pm 0$
${\sf \Gamma}_{\tt 805} = {\sf a}_1^- (\rightarrow \pi^- \gamma) \nu_\tau$	$4\cdot 10^{-4}\pm 2\cdot 10^{-4}\pm 0$
ALEPH pub BARATE 99K [49]	
$\Gamma_{10} = K^- u_{ au}$	$0.00696 \pm 0.0002865 \pm 0$
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$0.00444 \pm 0.0003538 \pm 0$
$\Gamma_{23} = K^{-} 2 \pi^{0} \nu_{ au}$ (ex. K^{0})	$0.00056 \pm 0.00025 \pm 0$
$\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \; (\text{ex. } K^{0}, \eta)$	$0.00037 \pm 0.0002371 \pm 0$
$\Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau}$	$0.00928 \pm 0.000564 \pm 0$
$\Gamma_{37} = K^- K^0 \nu_\tau$	$0.00162 \pm 0.0002371 \pm 0$
$\Gamma_{40} = \pi^{-} \overline{K}^{0} \pi^{0} \nu_{\tau}$	$0.00347 \pm 0.0006464 \pm 0$
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	$0.00143 \pm 0.0002915 \pm 0$
ALEPH pub BUSKULIC 97C [59]	
$\Gamma_{126} = \pi^{-} \pi^{0} \eta \nu_{\tau}$	$0.0018 \pm 0.0004472 \pm 0$
$\Gamma_{150} = h^- \omega u_{ au}$	$0.0191 \pm 0.000922 \pm 0$
$\Gamma_{152} = h^- \pi^0 \omega \nu_\tau$	$0.0043 \pm 0.000781 \pm 0$
ALEPH pub BUSKULIC 96 [58]	
Γ_{150} _ $h^-\omega u_{ au}$	0 431 + 0 033 + 0
$\frac{\Gamma_{66} h^- h^- \pi^0 \nu_\tau \text{ (ex. } K^0)}{\Gamma_{66} h^- h^- \pi^0 \nu_\tau \text{ (ex. } K^0)}$	
ALEPH pub BARATE 98E [47]	
$\Gamma_{33} = K_s^{\circ}(\text{particles}) \nu_{\tau}$	$0.0097 \pm 0.000849 \pm 0$
$\Gamma_{37} = K^- K^0 \nu_{\tau}$	$0.00158 \pm 0.0004531 \pm 0$
$\Gamma_{40} = \pi K \pi^{\circ} \nu_{\tau}$	$0.00294 \pm 0.0008184 \pm 0$
$\Gamma_{42} = K^{-} \pi^{0} K^{0} \nu_{\tau}$	$0.00152 \pm 0.0007885 \pm 0$
$\Gamma_{46} = \pi^- K^0 K \nu_{\tau}$	$0.00153 \pm 0.00034 \pm 0$
$\Gamma_{47} = \pi K_S^* K_S^* \nu_{\tau}$	$0.00026 \pm 0.0001118 \pm 0$
$\Gamma_{48} = \pi^- K_s^c K_L^c \nu_\tau$	$0.00101 \pm 0.0002642 \pm 0$
$\Gamma_{53} = K h^- h^- h^- \nu_{\tau}$	$0.00023 \pm 0.000202485 \pm 0$
ALEPH pub BARATE 99R [50]	
$\Gamma_{44} = \pi^- K^- \pi^0 \pi^0 \nu_{\tau}$	$0.00026 \pm 0.00024 \pm 0$
$\Gamma_{49} = \pi^- K^\circ K^* \pi^o \nu_\tau$	$0.00031 \pm 0.00023 \pm 0$
ALEPH pub BARATE 98 [48]	
$\Gamma_{85} = K^- \pi^- \pi^+ \nu_\tau (\text{ex.} K^{\text{o}})$	$0.00214 \pm 0.0004701 \pm 0$
$\Gamma_{88} = K^{-} \pi^{-} \pi^{+} \pi^{o} \nu_{\tau} \; (\text{ex.} K^{o})$	$0.00061 \pm 0.0004295 \pm 0$
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	$0.00163 \pm 0.0002702 \pm 0$
$\Gamma_{94} = \pi^- K^- K^+ \pi^0 \nu_\tau$	$0.00075 \pm 0.0003265 \pm 0$

ARGUS pub ALBRECHT 88B [21]

Reference / Branching Fraction	Value
$\Gamma_{103} = 3h^- 2h^+ u_{ au}$ (ex. K^0)	$0.00064 \pm 0.0002508 \pm 0$
ARGUS pub ALBRECHT 92D [22]	
$\frac{\Gamma_3}{\Gamma_5} = \frac{\mu^- \overline{\nu}_\mu \nu_\tau}{e^- \overline{\nu}_e \nu_\tau}$	$0.997 \pm 0.05315 \pm 0$
BABAR pub AUBERT,B 05W [33]	
$\Gamma_{103} = 3h^- 2h^+ \nu_{ au}$ (ex. K^0)	$0.000856 \pm 5 \cdot 10^{-6} \pm 4.2 \cdot 10^{-5}$
BABAR pub AUBERT 10F [42]	
$\frac{\Gamma_3}{\Gamma_5} = \frac{\mu^- \overline{\nu}_\mu \nu_\tau}{e^- \overline{\nu}_e \nu_\tau}$	$0.9796 \pm 0.00390406 \pm 0.00052753$
$\frac{\Gamma_9}{\Gamma_5} = \frac{\pi^- \nu_\tau}{e^- \overline{\nu}_e \nu_\tau}$	$0.5945 \pm 0.00574448 \pm 0.00248413$
$\frac{\Gamma_{10}}{\Gamma_5} = \frac{K^- \nu_{\tau}}{e^- \overline{\nu_e} \nu_{\tau}}$	$0.03882 \pm 0.000630207 \pm 0.000173608$
BABAR pub DEL-AMO-SANCHEZ 11E [2	4]
$\Gamma_{128} = K^{-} \eta \nu_{\tau}$	$0.000142 \pm 1.1 \cdot 10^{-5} \pm 7 \cdot 10^{-6}$
BABAR pub AUBERT 08AE [37]	
$\Gamma_{136} = \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau} \; (ex.\mathcal{K}^{0})$	$0.00016 \pm 5 \cdot 10^{-6} \pm 1.1 \cdot 10^{-5}$
BABAR pub AUBERT 07AP [34]	
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$0.00416 \pm 3 \cdot 10^{-5} \pm 0.00018$
BABAR prelim ICHEP08 [40]	
$\Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau}$	$0.0084 \pm 4 \cdot 10^{-5} \pm 0.00023$
BABAR prelim DPF09 [92]	
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$0.00342 \pm 6 \cdot 10^{-5} \pm 0.00015$
BABAR pub AUBERT 08 [36]	
$\Gamma_{60} = \pi^- \pi^- \pi^+ \nu_\tau \; (\text{ex.} \mathcal{K}^0)$	$0.088337 \pm 7.4 \cdot 10^{-5} \pm 0.00126724$
$\Gamma_{85} = K^- \pi^- \pi^+ \nu_\tau \; (\text{ex.} K^0)$	$0.0027257 \pm 1.8 \cdot 10^{-5} \pm 9.2441 \cdot 10^{-5}$
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	$0.0013461 \pm 1 \cdot 10^{-5} \pm 3.6413 \cdot 10^{-5}$
$\Gamma_{96} = K^- K^- K^+ \nu_\tau$	$1.5777 \cdot 10^{-5} \pm 1.3 \cdot 10^{-6} \pm 1.2308 \cdot 10^{-6}$
Belle pub INAMI 09 [78]	
$\Gamma_{126} = \pi^- \pi^0 \eta \nu_\tau$	$0.00135 \pm 3 \cdot 10^{-5} \pm 7 \cdot 10^{-5}$
$\Gamma_{128} = K^{-} \eta \nu_{\tau}$	$0.000158 \pm 5 \cdot 10^{-6} \pm 9 \cdot 10^{-6}$
$\Gamma_{130} = K^{-} \pi^{0} \eta \nu_{\tau}$	$4.6\cdot 10^{-5}\pm 1.1\cdot 10^{-5}\pm 4\cdot 10^{-6}$
$\Gamma_{132} = \pi^- \overline{K}^0 \eta \nu_\tau$	$8.8\cdot 10^{-5}\pm 1.4\cdot 10^{-5}\pm 6\cdot 10^{-6}$
Belle pub FUJIKAWA 08 [69]	
$\Gamma_{13}=h^{-}\pi^{0}\nu_{\tau}$	$0.2567 \pm 1 \cdot 10^{-4} \pm 0.0039$
Belle pub EPIFANOV 07 [67]	
$\Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau}$	$0.00808 \pm 4 \cdot 10^{-5} \pm 0.00026$
Belle prelim PHIPSI11 [95]	
$\Gamma_{40} = \pi^{-} \overline{K}^{0} \pi^{0} \nu_{\tau}$	$0.00384 \pm 0.00004 \pm 0.00016$
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	$0.00148 \pm 0.00002 \pm 0.00008$
Belle pub LEE 10 [81]	
$\Gamma_{60} = \pi^{-}\pi^{-}\pi^{+}\nu_{\tau} \; (\text{ex.} K^{0})$	$0.0842 \pm 3.3211 \cdot 10^{-5} \pm 0.0025879$
$\Gamma_{85} = K^- \pi^- \pi^+ \nu_\tau \text{ (ex. } K^0\text{)}$	$0.0033 \pm 1.274 \cdot 10^{-5} \pm 0.00016625$
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	$0.00155 \pm 6.575 \cdot 10^{-6} \pm 5.5579 \cdot 10^{-5}$
$\Gamma_{96} = K^- K^- K^+ \nu_\tau$	$3.29\cdot 10^{-5}\pm 1.6941\cdot 10^{-6}\pm 1.9621\cdot 10^{-6}$
CELLO pub BEHREND 89B [54]	
${\sf \Gamma}_{{\sf 54}}=h^-h^-h^+\geq {\sf 0}$ neutrals $\geq {\sf 0}{\sf K}_L^{\sf 0} u_ au$	$0.15 \pm 0.005 \pm 0$
CLEO3 pub ARMS 05 [28]	
$\Gamma_{88} = K^- \pi^- \pi^+ \pi^0 \nu_\tau (\text{ex} K^0)$	$0.00074 \pm 0.000136 \pm 0$

Table 11 – continued from previous page

Reference / Branching Fraction	Value
$\Gamma_{94} = \pi^- K^- K^+ \pi^0 \nu_\tau$	$5.5\cdot 10^{-5}\pm 1.844\cdot 10^{-5}\pm 0$
$\Gamma_{151} = K^- \omega \nu_\tau$	$0.00041 \pm 9.21954 \cdot 10^{-5} \pm 0$
CLEO3 pub BRIERE 03 [57]	
$\Gamma_{60} = \pi^- \pi^- \pi^+ \nu_\tau \text{ (ex } \mathcal{K}^0)$	$0.0913 \pm 0.004627 \pm 0$
$\Gamma_{85} = K^- \pi^- \pi^+ \nu_\tau \text{ (ex } K^0\text{)}$	$0.00384 \pm 0.000405 \pm 0$
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	$0.00155 \pm 0.0001082 \pm 0$
CLEO pub GIBAUT 94B [72]	
$\Gamma_{102} = 3h^{-}2h^{+} > 0$ neutrals ν_{τ} (ex. K^{0})	$0.00097 \pm 0.0001208 \pm 0$
$\Gamma_{103} = 3h^{-}2h^{+}\nu_{\pi} \text{ (ex. } K^{0}\text{)}$	$0.00077 \pm 0.000103 \pm 0$
CLEO pub ANASTASSOV 01 [26]	
$\Gamma_{78} = h^{-} h^{+} 3\pi^{0} \nu_{\pi}$	$0.00022 + 5 \cdot 10^{-5} + 0$
$\Gamma_{104} = 3h^{-2}h^{+}\pi^{0}\nu_{-} (\text{ex } K^{0})$	$0.00017 \pm 2.828 \cdot 10^{-5} \pm 0$
$\Gamma_{104} = 5\pi^{-}\pi^{-}\pi^{+}\pi^{\mu} (ex K^{0})$	$0.00017 \pm 2.020 + 10^{-5} \pm 0$
$\frac{1}{136} = \frac{1}{136} + \frac{1}$	0.00023 ± 3 10 ± 0
$\begin{bmatrix} -k^{-} \\ k \end{bmatrix}$	0 0066 ± 0 00114 ± 0
$\Gamma_{10} = K^{-} \nu_{\tau}$	$0.0000 \pm 0.00114 \pm 0$
$\Gamma_{16} = K^{-} 2^{-0} \dots (\alpha K^{0})$	$0.0031 \pm 0.001221 \pm 0$
$\Gamma_{23} = \kappa \ 2\pi \ \nu_{\tau} \ (\text{ex. } \kappa \)$	$9 \cdot 10 \pm 0.001044 \pm 0$
$\Gamma_{31} = K \ge 0\pi \ge 0K \ge 0\gamma\nu_{\tau}$	$0.017 \pm 0.002247 \pm 0$
$\frac{1}{2} = \frac{1}{2}$	0.0017 0.0000000 0
$\Gamma_{126} = \pi \pi \eta \nu_{\tau}$	$0.0017 \pm 0.0002828 \pm 0$
	0.000177 + 0.04000 10 ⁻⁵ + 0
$\Gamma_{130} = \kappa \pi \eta \nu_{\tau}$	$0.000177 \pm 9.04268 \cdot 10^{-5} \pm 0$
$I_{132} = \pi K \eta \nu_{\tau}$	$0.00022 \pm 7.33757 \cdot 10^{-5} \pm 0$
CLEO pub ARTUSO 94 [30]	
$I_{13} = h \pi^{\circ} \nu_{\tau}$	$0.2587 \pm 0.004368 \pm 0$
CLEO pub BALEST 95C [44]	
$\Gamma_{57} = h^- h^- h^+ \nu_\tau \text{ (ex. } K^\circ\text{)}$	$0.0951 \pm 0.002119 \pm 0$
$\Gamma_{66} = h^{-} h^{-} h^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$0.0423 \pm 0.00228 \pm 0$
$\frac{1}{\Gamma_{cc}} = \frac{h}{h^- h^- h^+ \pi^0 u} \left(\exp K^0 \right)$	$0.464 \pm 0.02335 \pm 0$
CLEO pub BARINGER 87 [51]	
$\Gamma_{150} = h^{-} \omega \nu_{\tau}$	$0.016 \pm 0.004909 \pm 0$
CLEO pub BORTOLETTO 93 [56]	
Γ_{76} $h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex } K^0)$	0.024 0.002606 0
$\overline{\Gamma_{54}} = \frac{1}{h^- h^- h^+ \ge 0 \text{ neutrals} \ge 0 K_L^0 \nu_{\tau}}$	$0.034 \pm 0.003606 \pm 0$
$\frac{\Gamma_{152}}{\Gamma} = \frac{h^- \omega \pi^0 \nu_{\tau}}{\mu - \mu + 2 \omega_{\tau}^0}$	$0.81 \pm 0.08485 \pm 0$
$\frac{1}{76} h^- h^- 2\pi^{\circ} \nu_{\tau} \text{ (ex. K^{\circ})}$	
$\Gamma_{10} = h^{-}2\pi^{0}\nu_{\tau} (\text{ex.}K^{0})$	
$\frac{\Gamma_{13}}{\Gamma_{13}} = \frac{m \Gamma_{13} + \rho(m r_{13})}{h^2 - \pi^0 \nu_{\tau}}$	$0.342 \pm 0.01709 \pm 0$
$\frac{\Gamma_{26}}{\Gamma} = \frac{h^- 3\pi^0 \nu_{\tau}}{\mu_{\tau}}$	$0.044 \pm 0.005831 \pm 0$
	$0.0016 \pm 0.0007071 \pm 0.0007071$
$\Gamma_{24} = h^{-} \overline{K}^{0} \nu$	0 00855 + 0 0008139 + 0
$\Gamma_{27} = K^{-} K^{0} \mu$	$0.00151 \pm 0.0003041 \pm 0$
$\Gamma_{20} = h^{-} \overline{K}^{0} \pi^{0} \mu$	$0.00562 \pm 0.0006031 \pm 0$
$\Gamma_{39} = K^{-} \pi^{0} K^{0} \mu$	$0.00145 \pm 0.0000000118 \pm 0$
$\Gamma = \pi^{-} K^{0} K^{0}$	$0.00143 \pm 0.0004110 \pm 0$ 0.00023 $\pm 5.821 \cdot 10^{-5} \pm 0$
$147 - \pi \Lambda_S \Lambda_S \nu_{\tau}$	$0.00023 \pm 3.031 \cdot 10 \pm 0$

Table 11 – continued from previous page

Reference / Branching Fraction	Value
CLEO pub ANASTASSOV 97 [25]	
$\frac{\Gamma_3}{\Gamma} = \frac{\mu^- \overline{\nu}_\mu \nu_\tau}{\Gamma}$	$0.9777 \pm 0.01074 \pm 0$
$I_5 e^- \overline{\nu}_e \nu_\tau$	$0.1776 \pm 0.001803 \pm 0.001803$
$\Gamma_{\circ} = b^{-} \nu_{\tau}$	$0.1152 \pm 0.001303 \pm 0$
CLEO pub EDWARDS 00A [66]	0.1132 ± 0.0013 ± 0
$\Gamma_{e0} = \pi^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{-} (\text{ex } K^{0})$	$0.0419 \pm 0.002326 \pm 0.002326 \pm 0.0000000000000000000000000000000000$
CLEO nub RICHICHI 99 [94]	0.0119 ± 0.002320 ± 0
$\Gamma_{80} \qquad K^- \pi^- h^+ \nu_\tau \text{ (ex. } K^0 \text{)}$	
$\overline{\Gamma_{60}} = \frac{\pi^{-}\pi^{-}\pi^{+}\nu_{\tau} (\text{ex}.K^{0})}{\pi^{-}\pi^{-}\pi^{+}\nu_{\tau} (\text{ex}.K^{0})}$	$0.0544 \pm 0.005701 \pm 0$
$\frac{\Gamma_{81}}{\Gamma} = \frac{K^{-}\pi^{-}h^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}\text{)}}{\pi^{-}\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}\text{)}}$	$0.0261 \pm 0.006155 \pm 0$
$\Gamma_{69} = \pi - \pi - \pi^{-} \pi^{-} \nu_{\tau} \text{ (ex. } \kappa^{-} \text{)}$ $\Gamma_{93} = \pi^{-} K^{-} K^{+} \nu_{\tau}$	
$\overline{\Gamma_{60}} = \frac{\pi^{-}\pi^{-}\pi^{+}\nu_{\tau} (\text{ex}.K^{0})}{\pi^{-}\pi^{-}\pi^{+}\nu_{\tau} (\text{ex}.K^{0})}$	$0.016 \pm 0.003354 \pm 0$
$\frac{\Gamma_{94}}{\Gamma} = \frac{\pi^{-}K^{-}K^{+}\pi^{0}\nu_{\tau}}{\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}}$	$0.0079 \pm 0.004682 \pm 0$
DEL PHI pub ABDALLAH 06A [7]	
$\Gamma_8 = h^- \nu_\tau$	$0.11571 \pm 0.001655 \pm 0$
$\Gamma_{13} = h^- \pi^0 \nu_{\tau}$	$0.2574 \pm 0.002438 \pm 0$
$\Gamma_{19} = h^{-} 2 \pi^{0} \nu_{\tau} (\text{ex.} K^{0})$	$0.09498 \pm 0.004219 \pm 0$
$\Gamma_{25} = h^{-} > 3\pi^{0}\nu_{\tau} \text{ (ex.}K^{0})$	$0.01403 \pm 0.003098 \pm 0$
$\Gamma_{57} = h^- h^- h^+ \nu_{\tau} (\text{ex.} K^0)$	$0.09317 \pm 0.001218 \pm 0$
$\Gamma_{66} = h^- h^- h^+ \pi^0 \nu_{\tau} (\text{ex.} K^0)$	$0.04545 \pm 0.001478 \pm 0$
$\Gamma_{74} = h^- h^- h^+ > 2\pi^0 \nu_\tau (\text{ex.} K^0)$	$0.00561 \pm 0.001168 \pm 0$
$\Gamma_{103} = 3h^{-}2h^{+}\nu_{\tau} \text{ (ex. } K^{0}\text{)}$	$0.00097 \pm 0.0001581 \pm 0$
$\Gamma_{104} = 3h^{-}2h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	$0.00016 \pm 0.0001342 \pm 0$
DELPHI pub ABREU 94K [9]	
$\Gamma_{10} = K^- \nu_{\tau}$	$0.0085 \pm 0.0018 \pm 0$
${\sf \Gamma}_{{\tt 31}}={\it K}^-\geq 0\pi^{\tt 0}\geq 0{\it K}^{\tt 0}\geq 0\gamma u_ au$	$0.0154 \pm 0.0024 \pm 0$
DELPHI pub ABREU 99X [10]	
$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$0.17325 \pm 0.001223 \pm 0$
$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$	$0.17877 \pm 0.001549 \pm 0$
DELPHI pub ABREU 92N [8]	
$\Gamma_7 = h^- \ge 0 K_L^0 u_ au$	$0.124 \pm 0.009899 \pm 0$
HRS pub BYLSMA 87 [60]	
$\Gamma_{102} = 3h^-2h^+ \ge 0$ neutrals $ u_ au$ (ex. K^0)	$0.00102 \pm 0.00029 \pm 0$
$\Gamma_{103} = 3h^- 2h^+ \nu_{\tau} (\text{ex. } K^0)$	$0.00051 \pm 2 \cdot 10^{-4} \pm 0$
L3 pub ACHARD 01D [14]	
$\Gamma_{55}=h^-h^-h^+\geq 0$ neutrals $ u_ au$ (ex. ${\cal K}^0$)	$0.14556 \pm 0.001296 \pm 0$
$\Gamma_{102} = 3h^-2h^+ \ge 0$ neutrals ν_{τ} (ex. K^0)	$0.0017 \pm 0.0003406 \pm 0$
L3 pub ACCIARRI 95 [11]	
$\Gamma_7=h^-\geq 0 {\cal K}^0_L u_ au$	$0.1247 \pm 0.005025 \pm 0$
$\Gamma_{13} = h^- \pi^0 \nu_\tau$	$0.2505 \pm 0.006103 \pm 0$
$\Gamma_{19} = h^- 2\pi^0 \nu_\tau \; (\text{ex.} \mathcal{K}^0)$	$0.0888 \pm 0.005597 \pm 0$
$\Gamma_{26} = h^- 3\pi^0 \nu_\tau$	$0.017 \pm 0.004494 \pm 0$
L3 pub ACCIARRI 95F [12]	
$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	$0.0095 \pm 0.001616 \pm 0$
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$0.0041 \pm 0.001237 \pm 0$
L3 pub ACCIARRI 01F [13]	

Table 11	continued	from	nrovious	
Table 11	- continueu	mom	previous	page

Reference / Branching Fraction	Value		
$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$0.17342 \pm 0.001288 \pm 0$		
$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$	$0.17806 \pm 0.001288 \pm 0$		
L3 pub ADEVA 91F [17]			
$\Gamma_{54}=h^-h^-h^+\geq 0$ neutrals $\geq 0{\cal K}^0_L u_ au$	$0.144 \pm 0.006708 \pm 0$		
OPAL pub ACKERSTAFF 99E [16]			
$\Gamma_{103} = 3h^- 2h^+ u_{ au}$ (ex. K^0)	$0.00091 \pm 0.0001523 \pm 0$		
$\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{ au}$ (ex. K^0)	$0.00027 \pm 0.0002012 \pm 0$		
OPAL pub ABBIENDI 01J [4]			
$\Gamma_{10} = K^- \nu_{\tau}$	$0.00658 \pm 0.0003962 \pm 0$		
$\Gamma_{31} = K^- \ge 0\pi^0 \ge 0K^0 \ge 0\gamma\nu_\tau$	$0.01528 \pm 0.0005587 \pm 0$		
OPAL pub ACKERSTAFF 98M [15]			
$\Gamma_8 = h^- \nu_{ au}$	$0.1198 \pm 0.002062 \pm 0$		
$\Gamma_{13}=h^{-}\pi^{0}\nu_{\tau}$	$0.2589 \pm 0.003362 \pm 0$		
$\Gamma_{17}=h^-\geq 2\pi^0 u_ au$	$0.0991 \pm 0.004111 \pm 0$		
OPAL pub ABBIENDI 04J [6]			
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$0.00471 \pm 0.0006332 \pm 0$		
$\Gamma_{85} = K^- \pi^- \pi^+ \nu_\tau \; (\text{ex.} K^0)$	$0.00415 \pm 0.000664 \pm 0$		
OPAL pub AKERS 94G [19]			
$\Gamma_{33}=K_{S}^{0}({\sf particles})^{-} u_{ au}$	$0.0097 \pm 0.001082 \pm 0$		
OPAL pub ABBIENDI 00C [3]			
$\Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau}$	$0.00933 \pm 0.0008382 \pm 0$		
$\Gamma_{38} = K^- K^0 \ge 0 \pi^0 \nu_\tau$	$0.0033 \pm 0.0006742 \pm 0$		
$\Gamma_{43} = \pi^- \overline{K}^{0} \geq 1 \pi^{0} \nu_\tau$	$0.00324 \pm 0.000991564 \pm 0$		
OPAL pub ABBIENDI 03 [5]			
$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$0.1734 \pm 0.001082 \pm 0$		
OPAL pub AKERS 95Y [20]			
$\Gamma_{55} = h^- h^- h^+ \ge 0$ neutrals $ u_{ au}$ (ex. \mathcal{K}^0)	$0.1496 \pm 0.002377 \pm 0$		
$\frac{\Gamma_{57}}{\Gamma} = \frac{h^- h^- h^+ \nu_\tau (\text{ex.} K^0)}{h^- h^+ \nu_\tau (\text{ex.} K^0)}$	$0.66 \pm 0.01456 \pm 0$		
$\frac{1}{55} n^- n^- n^+ \ge 0 \text{ neutrals} \nu_\tau \text{ (ex. } \mathcal{K}^\circ\text{)}$			
$\Gamma_r = e^{-\pi} u$	0 1781 + 0 001082 + 0		
OPAL nub ALEXANDER 91D [23]	0.1701 ± 0.001002 ± 0		
$\Gamma_{\tau} = h^{-} > 0 K_{0}^{0} \mu$	$0.121 \pm 0.008602 \pm 0.008602$		
OPAL pub ABBIENDI 00D [2]	0.121 ± 0.000002 ± 0		
$\Gamma_{aa} = \pi^{-} K^{-} K^{+} > 0$	$0.00159 \pm 0.0005665 \pm 0$		
$\frac{192 - \pi}{192} \frac{1}{2} \frac{1}{100} $	0.00139 ± 0.0003003 ± 0		
$\Gamma_{-1} = b^{-}b^{-}b^{+} \ge 0$	$0.151 \pm 0.01 \pm 0.01$		
TPC pub BAIIER 04 [52]	0.131 ± 0.01 ± 0		
$\Gamma = \mu \sigma D \Delta \sigma E (34 [35])$ $\Gamma_{aa} = K^{-} \pi^{-} \pi^{+} > 0 \text{ neutralize}$	$0.0058 \pm 0.001845 \pm 0.001845$		
$\Gamma_{22} = \pi^- K^- K^+ > 0$	$0.0030 \pm 0.001045 \pm 0$		
$r_{92} = \pi - \pi - \pi - \chi = 0$ neutrals ν_{τ}	$0.0010 \pm 0.00000010 \pm 0$		

Table 11 - continued from previous page

B Upper Limits on Tau LFV Branching Fractions: Summary Plot

Figure 2 summarizes the upper limits on the tau lepton-flavor-violating branching fractions.

90% C.L. upper limits for LFV τ decays

Figure 2: Tau lepton-flavor-violating branching fraction upper limits summary.

References

- G. Abbiendi et al., (OPAL collaboration), "A Measurement of the tau- -> e- anti-neutrino(e) neutrino(tau) branching ratio", *Phys.Lett.* B447:134–146, 1999, doi:10.1016/S0370-2693(98)01553-6, arXiv:hep-ex/9812017 [hep-ex].
- G. Abbiendi et al., (OPAL collaboration), "A Study of three prong tau decays with charged kaons", Eur.Phys.J. C13:197-212, 2000, doi:10.1007/s100520000272, arXiv:hep-ex/9908013 [hep-ex].
- [3] G. Abbiendi et al., (OPAL collaboration), "Tau decays with neutral kaons", Eur. Phys. J. C13:213-223, 2000, doi:10.1007/s100520000317, arXiv:hep-ex/9911029 [hep-ex].
- [4] G. Abbiendi et al., (OPAL collaboration), "A Study of one prong tau decays with a charged kaon", Eur.Phys.J. C19:653-665, 2001, doi:10.1007/s100520100632, arXiv:hep-ex/0009017 [hep-ex].
- [5] G. Abbiendi et al., (OPAL collaboration), "A Measurement of the tau- -> mu- anti-nu(mu) nu(tau) branching ratios", Phys.Lett. B551:35-48, 2003, doi:10.1016/S0370-2693(02)03020-4, arXiv:hep-ex/0211066 [hep-ex].
- [6] G. Abbiendi et al., (OPAL collaboration), "Measurement of the strange spectral function in hadronic tau decays", Eur. Phys. J. C35:437-455, 2004, doi:10.1140/epjc/s2004-01877-2, arXiv:hep-ex/0406007 [hep-ex].
- [7] J. Abdallah et al., (DELPHI collaboration), "A Measurement of the tau hadronic branching ratios", *Eur.Phys.J.* C46:1–26, 2006, doi:10.1140/epjc/s2006-02494-9, arXiv:hep-ex/0603044 [hep-ex].
- [8] P. Abreu et al., (DELPHI collaboration), "A Study of the decays of tau leptons produced on the Z resonance at LEP", Z.Phys. C55:555–568, 1992, doi:10.1007/BF01561293.
- [9] P. Abreu et al., (DELPHI collaboration), "Charged kaon production in tau decays at LEP", *Phys.Lett.* B334:435–449, 1994, doi:10.1016/0370-2693(94)90711-0.
- [10] P. Abreu et al., (DELPHI collaboration), "Measurements of the leptonic branching fractions of the tau", Eur.Phys.J. C10:201-218, 1999, doi:10.1007/s100520050583.
- [11] M. Acciarri et al., (L3 collaboration), "Measurement of exclusive branching fractions of hadronic one space prong tau decays", *Phys.Lett.* B345:93–102, 1995, doi:10.1016/0370-2693(94)01587-3.
- [12] M. Acciarri et al., (L3 collaboration), "One prong tau decays with neutral kaons", Phys.Lett. B352:487-497, 1995, doi:10.1016/0370-2693(95)00509-J.
- [13] M. Acciarri et al., (L3 collaboration), "Measurement of the τ branching fractions into leptons", *Phys.Lett*. B507:47–60, 2001, doi:10.1016/S0370-2693(01)00294-5, arXiv:hep-ex/0102023 [hep-ex].
- [14] P. Achard et al., (L3 collaboration), "Measurement of the topological branching fractions of the τ lepton at LEP", *Phys.Lett.* B519:189–198, 2001, doi:10.1016/S0370-2693(01)01099-1, arXiv:hep-ex/0107055 [hep-ex].
- [15] K. Ackerstaff et al., (OPAL collaboration), "Measurement of the one prong hadronic tau branching ratios at LEP", Eur.Phys.J. C4:193-206, 1998, doi:10.1007/s100520050197, arXiv:hep-ex/9801029 [hep-ex].
- [16] K. Ackerstaff et al., (OPAL collaboration), "Measurement of tau branching ratios to five charged hadrons", Eur.Phys.J. C8:183–189, 1999, doi:10.1007/s100529901057, arXiv:hep-ex/9808011 [hep-ex].
- [17] B. Adeva et al., (L3 collaboration), "Decay properties of tau leptons measured at the Z0 resonance", *Phys.Lett.* B265:451-461, 1991, doi:10.1016/0370-2693(91)90081-Z.
- [18] H. Aihara et al., (TPC/Two Gamma collaboration), "Measurement of τ branching ratios", *Phys.Rev.* D35:1553, 1987, doi:10.1103/PhysRevD.35.1553.
- [19] R. Akers et al., (OPAL collaboration), "Measurements of the inclusive branching ratios of tau leptons to K0(s) and charged K* (892)", Phys.Lett. B339:278-292, 1994, doi:10.1016/0370-2693(94)90645-9.
- [20] R. Akers et al., (OPAL collaboration), "Measurement of the tau- -> h- h+ h- tau-neutrino and tau- -> h- h+ h- >= 1 pi0 tau-neutrino branching ratios", Z.Phys. C68:555–568, 1995, doi:10.1007/BF01565256.
- [21] H. Albrecht et al., (ARGUS collaboration), "An Improved Upper Limit on the tau-neutrino Mass from the Decay tau- -> pi- pi- pi- pi+ pi+ tau-neutrino", Phys.Lett. B202:149, 1988, doi:10.1016/0370-2693(88)90870-2.

- [22] H. Albrecht et al., (ARGUS collaboration), "Measurement of exclusive one prong and inclusive three prong branching ratios of the tau lepton", Z.Phys. C53:367-374, 1992, doi:10.1007/BF01625895.
- [23] G. Alexander et al., (OPAL collaboration), "Measurement of branching ratios and tau polarization from tau -> e neutrino anti-neutrino, tau -> mu neutrino anti-neutrino, and tau -> pi (K) neutrino decays at LEP", Phys.Lett. B266:201-217, 1991, doi:10.1016/0370-2693(91)90768-L.
- [24] P. del Amo Sanchez et al., (BABAR collaboration), "Studies of tau- -> eta K-nu and tau- -> eta pi- nu(tau) at BaBar and a search for a second-class current", Phys. Rev. D83:032002, 2011, doi:10.1103/PhysRevD.83.032002, arXiv:1011.3917 [hep-ex].
- [25] A. Anastassov et al., (CLEO collaboration), "Experimental test of lepton universality in tau decay", *Phys.Rev.* D55:2559–2576, 1997, doi:10.1103/PhysRevD.55.2559, erratum ibid D58, 119903, (1998).
- [26] A. Anastassov et al., (CLEO collaboration), "Study of tau decays to six pions and neutrino", Phys.Rev.Lett. 86:4467-4471, 2001, doi:10.1103/PhysRevLett.86.4467, arXiv:hep-ex/0010025 [hep-ex].
- [27] M. Antonelli, V. Cirigliano, G. Isidori, F. Mescia, M. Moulson, et al., "An Evaluation of |V_{us}| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays", *Eur.Phys.J.* C69:399–424, 2010, doi:10.1140/epjc/s10052-010-1406-3, arXiv:1005.2323 [hep-ph].
- [28] K. E. Arms et al., (CLEO collaboration), "Study of tau decays to four-hadron final states with kaons", *Phys.Rev.Lett.* 94:241802, 2005, doi:10.1103/PhysRevLett.94.241802, arXiv:hep-ex/0501042 [hep-ex].
- [29] M. Artuso et al., (CLEO collaboration), "Measurement of tau decays involving eta mesons", Phys.Rev.Lett. 69:3278-3281, 1992, doi:10.1103/PhysRevLett.69.3278.
- [30] M. Artuso et al., (CLEO collaboration), "A Measurement of the branching fraction Beta (tau+--> h+- pi0 tau-neutrino)", Phys.Rev.Lett. 72:3762–3766, 1994, doi:10.1103/PhysRevLett.72.3762, arXiv:hep-ph/9404310 [hep-ph].
- [31] D. Asner et al., (Heavy Flavor Averaging Group collaboration), "Averages of *b*-hadron, *c*-hadron, and τ -lepton Properties", 2010, arXiv:1010.1589 [hep-ex].
- [32] B. Aubert et al., (*BABAR* collaboration), "Search for lepton-flavor and lepton-number violation in the decay $\tau^- \rightarrow \ell^{\mp} h^{\pm} h'^{-}$ ", *Phys.Rev.Lett.* 95:191801, 2005, doi:10.1103/PhysRevLett.95.191801, arXiv:hep-ex/0506066 [hep-ex].
- [33] B. Aubert et al., (BaBaR collaboration), "Study of the $\tau^- \rightarrow 3h^-2h^+\nu_{\tau}$ decay", *Phys.Rev.* D72:072001, 2005, doi:10.1103/PhysRevD.72.072001, arXiv:hep-ex/0505004 [hep-ex].
- [34] B. Aubert et al., (*BABAR* collaboration), "Measurement of the $\tau^- \rightarrow K^- \pi^0 \nu_{tau}$ branching fraction", *Phys.Rev.* D76:051104, 2007, doi:10.1103/PhysRevD.76.051104, arXiv:0707.2922 [hep-ex].
- [35] B. Aubert et al., (*BABAR* collaboration), "Search for Lepton Flavor Violating Decays $\tau^{\pm} \rightarrow \ell^{\pm} \pi^{0}$, $\ell^{\pm} \eta$, $\ell^{\pm} \eta'''$, *Phys.Rev.Lett.* 98:061803, 2007, doi:10.1103/PhysRevLett.98.061803, arXiv:hep-ex/0610067 [hep-ex].
- [36] B. Aubert et al., (BABAR collaboration), "Exclusive branching fraction measurements of semileptonic tau decays into three charged hadrons, tau- -> phi pi- nu(tau) and tau- -> phi K- nu(tau)", Phys.Rev.Lett. 100:011801, 2008, doi:10.1103/PhysRevLett.100.011801, arXiv:0707.2981 [hep-ex].
- [37] B. Aubert et al., (*BABAR* collaboration), "Measurement of the $\tau^- \rightarrow \eta \pi^- \pi \pi^- \nu_{tau}$ Branching Fraction and a Search for a Second-Class Current in the $\tau^- \rightarrow \eta'(958) \pi^- \nu_{tau}$ Decay", *Phys.Rev.* D77:112002, 2008, doi:10.1103/PhysRevD.77.112002, arXiv:0803.0772 [hep-ex].
- [38] B. Aubert et al., (BABAR collaboration), "Search for lepton flavor violating decays tau+- -> l+- omega (l = e, mu)", Phys.Rev.Lett. 100:071802, 2008, doi:10.1103/PhysRevLett.100.071802, arXiv:0711.0980 [hep-ex].
- [39] B. Aubert et al., (BABAR collaboration), "Improved limits on lepton flavor violating tau decays to l phi, l rho, l K* and l anti-K*", Phys. Rev. Lett. 103:021801, 2009, doi:10.1103/PhysRevLett.103.021801, arXiv:0904.0339 [hep-ex].
- [40] B. Aubert et al., (BABAR collaboration), "Measurement of B(tau- —> anti-K0 pi- nu(tau)) using the BaBar detector", Nucl. Phys. Proc. Suppl. 189:193–198, 2009, doi:10.1016/j.nuclphysbps.2009.03.034, arXiv:0808.1121 [hep-ex], contributed to 34th International Conference on High Energy Physics (ICHEP 2008), Philadelphia, Pennsylvania, 30 Jul - 5 Aug 2008.

- [41] B. Aubert et al., (BABAR collaboration), "Search for Lepton Flavor Violating Decays tau -> I-K0(s) with the BABAR Experiment", Phys.Rev. D79:012004, 2009, doi:10.1103/PhysRevD.79.012004, arXiv:0812.3804 [hep-ex].
- [42] B. Aubert et al., (BABAR collaboration), "Measurements of Charged Current Lepton Universality and |V(us)| using Tau Lepton Decays to e- nu(e)-bar nu(tau), mu-bar nu(mu)-bar nu(tau), pi- nu(tau) and K- nu(tau)", Phys.Rev.Lett. 105:051602, 2010, doi:10.1103/PhysRevLett.105.051602, arXiv:0912.0242 [hep-ex].
- [43] B. Aubert et al., (BABAR collaboration), "Searches for Lepton Flavor Violation in the Decays tau+- -> e+gamma and tau+- -> mu+- gamma", Phys.Rev.Lett. 104:021802, 2010, doi:10.1103/PhysRevLett.104.021802, arXiv:0908.2381 [hep-ex].
- [44] R. Balest et al., (CLEO collaboration), "Measurements of the decays tau- -> h- h+ h- tau-neutrino and tau--> h- h+ h- pi0 tau-neutrino", *Phys.Rev.Lett.* 75:3809–3813, 1995, doi:10.1103/PhysRevLett.75.3809.
- [45] S. Banerjee, (BABAR collaboration), "Lepton Universality, |Vus| and search for second class current in tau decays", 2008, arXiv:0811.1429 [hep-ex], presented at ICHEP08, Philadelphia, USA, July, 2008.
- [46] S. Banerjee, K. Hayasaka, H. Hayashii, A. Lusiani, J. Roney, et al., "Status Report from Tau subgroup of the HFAG", Nucl. Phys. Proc. Suppl. 218:329–334, 2011, doi:10.1016/j.nuclphysbps.2011.06.053, arXiv:1101.5138 [hep-ex].
- [47] R. Barate et al., (ALEPH collaboration), "K0(S) production in tau decays", Eur. Phys. J. C4:29-45, 1998, doi:10.1007/s100520050184, http://cdsweb.cern.ch/record/346304.
- [48] R. Barate et al., (ALEPH collaboration), "Three prong tau decays with charged kaons", Eur.Phys.J. C1:65–79, 1998, doi:10.1007/s100520050062.
- [49] R. Barate et al., (ALEPH collaboration), "One prong tau decays with kaons", Eur.Phys.J. C10:1–18, 1999, doi:10.1007/s100529900146, arXiv:hep-ex/9903014 [hep-ex].
- [50] R. Barate et al., (ALEPH collaboration), "Study of tau decays involving kaons, spectral functions and determination of the strange quark mass", *Eur.Phys.J.* C11:599-618, 1999, doi:10.1007/s100520050659, arXiv:hep-ex/9903015 [hep-ex].
- [51] P. S. Baringer et al., (CLEO collaboration), "PRODUCTION OF eta AND omega MESONS IN tau DECAY AND A SEARCH FOR SECOND CLASS CURRENTS", *Phys.Rev.Lett.* 59:1993, 1987, doi:10.1103/PhysRevLett.59.1993.
- [52] M. Battle et al., (CLEO collaboration), "Measurement of Cabibbo suppressed decays of the tau lepton", *Phys.Rev.Lett.* 73:1079–1083, 1994, doi:10.1103/PhysRevLett.73.1079, arXiv:hep-ph/9403329 [hep-ph].
- [53] D. A. Bauer et al., (TPC/Two Gamma collaboration), "Measurement of the kaon content of three prong tau decays", *Phys.Rev.* D50:13–17, 1994, doi:10.1103/PhysRevD.50.13.
- [54] H. Behrend et al., (CELLO collaboration), "tau PRODUCTION AND DECAY WITH THE CELLO DETECTOR AT PETRA", Phys.Lett. B222:163, 1989, doi:10.1016/0370-2693(89)90741-7.
- [55] M. Bishai et al., (CLEO collaboration), "First observation of the decay tau- -> K*- eta tau-neutrino", Phys.Rev.Lett. 82:281-285, 1999, doi:10.1103/PhysRevLett.82.281, arXiv:hep-ex/9809012 [hep-ex].
- [56] D. Bortoletto et al., (CLEO collaboration), "Measurement of the decay tau- -> pi- pi+ pi- 2 pi0 tau-neutrino", Phys.Rev.Lett. 71:1791-1795, 1993, doi:10.1103/PhysRevLett.71.1791.
- [57] R. A. Briere et al., (CLEO collaboration), "Branching fractions of tau leptons decays to three charged hadrons", *Phys.Rev.Lett.* 90:181802, 2003, doi:10.1103/PhysRevLett.90.181802, arXiv:hep-ex/0302028 [hep-ex].
- [58] D. Buskulic et al., (ALEPH collaboration), "Tau hadronic branching ratios", Z.Phys. C70:579–608, 1996, doi:10.1007/s002880050134.
- [59] D. Buskulic et al., (ALEPH collaboration), "A Study of tau decays involving eta and omega mesons", Z.Phys. C74:263-273, 1997, doi:10.1007/s002880050387.
- [60] B. Bylsma, S. Abachi, P. S. Baringer, R. DeBonte, D. Koltick, et al., "LIMIT ON tau DECAY TO SEVEN CHARGED PARTICLES", *Phys. Rev.* D35:2269, 1987, doi:10.1103/PhysRevD.35.2269.

- [61] T. Coan et al., (CLEO collaboration), "Decays of tau leptons to final states containing K(s)0 mesons", Phys. Rev. D53:6037-6053, 1996, doi:10.1103/PhysRevD.53.6037.
- [62] M. Davier, private communication, 2011.
- [63] M. Davier, A. Hocker, and Z. Zhang, "The Physics of hadronic tau decays", *Rev.Mod.Phys.* 78:1043–1109, 2006, doi:10.1103/RevModPhys.78.1043, arXiv:hep-ph/0507078 [hep-ph].
- [64] R. Decker and M. Finkemeier, "Radiative corrections to the decay tau -> pi (K) tau-neutrino. 2", Phys.Lett. B334:199-202, 1994, doi:10.1016/0370-2693(94)90611-4.
- [65] R. Decker and M. Finkemeier, "Short and long distance effects in the decay tau -> pi tau-neutrino (gamma)", Nucl. Phys. B438:17-53, 1995, doi:10.1016/0550-3213(95)00597-L, arXiv:hep-ph/9403385.
- [66] K. Edwards et al., (CLEO collaboration), "Resonant structure of tau -> three pi pi0 neutrino(tau) and tau -> omega pi neutrino(tau) decays", *Phys.Rev.* D61:072003, 2000, doi:10.1103/PhysRevD.61.072003, arXiv:hep-ex/9908024 [hep-ex].
- [67] D. Epifanov et al., (Belle collaboration), "Study of tau- -> K(S) pi- nu(tau) decay at Belle", Phys.Lett. B654:65-73, 2007, doi:10.1016/j.physletb.2007.08.045, arXiv:0706.2231 [hep-ex].
- [68] J. Erler, "Electroweak radiative corrections to semileptonic tau decays", Rev. Mex. Fis. 50:200-202, 2004, arXiv:hep-ph/0211345.
- [69] M. Fujikawa et al., (Belle collaboration), "High-Statistics Study of the tau- -> pi- pi0 nu(tau) Decay", Phys. Rev. D78:072006, 2008, doi:10.1103/PhysRevD.78.072006, arXiv:0805.3773 [hep-ex].
- [70] E. Gamiz, M. Jamin, A. Pich, J. Prades, and F. Schwab, "|V(us)| and m(s) from hadronic tau decays", Nucl. Phys. Proc. Suppl. 169:85-89, 2007, doi:10.1016/j.nuclphysbps.2007.02.053, arXiv:hep-ph/0612154.
- [71] E. Gamiz, M. Jamin, A. Pich, J. Prades, and F. Schwab, "Theoretical progress on the Vus determination from tau decays", PoS KAON:008, 2008, arXiv:0709.0282 [hep-ph].
- [72] D. Gibaut et al., (CLEO collaboration), "Study of the five charged pion decay of the tau lepton", *Phys.Rev.Lett.* 73:934–938, 1994, doi:10.1103/PhysRevLett.73.934.
- [73] J. C. Hardy and I. S. Towner, "Superallowed 0+ to 0+ nuclear beta decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model", *Phys. Rev.* C79:055502, 2009, doi:10.1103/PhysRevC.79.055502, arXiv:0812.1202 [nucl-ex].
- [74] K. Hayasaka, (Belle collaboration), "Recent LFV results on tau lepton from Belle", presented at the International Workshop on e⁺e⁻ collisions from phi to psi (PHIPSI11), Novosibirsk, 19-22 Sep, 2011, http://phipsi11.inp.nsk.su/talks/phipsi11_hayasaka.pdf, To be published in Nucl. Phys. B Proceedings Supplement.
- [75] K. Hayasaka, (Belle collaboration), "Tau lepton physics at Belle", J.Phys.Conf.Ser. 335:012029, 2011, doi:10.1088/1742-6596/335/1/012029.
- [76] K. Hayasaka et al., (Belle collaboration), "New search for tau -> mu gamma and tau -> e gamma decays at Belle", Phys.Lett. B666:16-22, 2008, doi:10.1016/j.physletb.2008.06.056, arXiv:0705.0650 [hep-ex].
- [77] K. Hayasaka, K. Inami, Y. Miyazaki, K. Arinstein, V. Aulchenko, et al., "Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs", *Phys.Lett.* B687:139–143, 2010, doi:10.1016/j.physletb.2010.03.037, arXiv:1001.3221 [hep-ex].
- [78] K. Inami et al., (Belle collaboration), "Precise measurement of hadronic tau-decays with an eta meson", *Phys.Lett.* B672:209–218, 2009, doi:10.1016/j.physletb.2009.01.047, arXiv:0811.0088 [hep-ex].
- [79] G. Lafferty, (BABAR collaboration), "Lepton flavour violation and baryon number non-conservation in $\tau^- \rightarrow -\Lambda + h$ ", Nucl.Phys.Proc.Suppl. 169:186–191, 2007, doi:10.1016/j.nuclphysbps.2007.02.111.
- [80] J. Laiho, E. Lunghi, and R. S. Van de Water, "Lattice QCD inputs to the CKM unitarity triangle analysis", *Phys. Rev.* D81:034503, 2010, doi:10.1103/PhysRevD.81.034503, arXiv:0910.2928 [hep-ph], updated results and plots available at http://www.latticeaverages.org.

- [81] M. Lee et al., (Belle collaboration), "Measurement of the branching fractions and the invariant mass distributions for $\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$ decays", *Phys.Rev.* D81:113007, 2010, doi:10.1103/PhysRevD.81.113007, arXiv:1001.0083 [hep-ex], HFAG-tau uses more detailed and numerically precise information on errors and correlations that has been privately provided by the Belle collaboration; the errors have been symmetrized.
- [82] J. Lees et al., (BABAR collaboration), "Limits on tau Lepton-Flavor Violating Decays in three charged leptons", Phys. Rev. D81:111101, 2010, doi:10.1103/PhysRevD.81.111101, arXiv:1002.4550 [hep-ex].
- [83] K. Maltman, "A critical look at Vus determinations from hadronic tau decay data", 2010, arXiv:1011.6391 [hep-ph].
- [84] W. Marciano and A. Sirlin, "Electroweak Radiative Corrections to tau Decay", Phys.Rev.Lett. 61:1815–1818, 1988, doi:10.1103/PhysRevLett.61.1815.
- [85] W. J. Marciano, "Precise determination of |V(us)| from lattice calculations of pseudoscalar decay constants", *Phys. Rev. Lett.* 93:231803, 2004, doi:10.1103/PhysRevLett.93.231803, arXiv:hep-ph/0402299.
- [86] Y. Miyazaki, (Belle collaboration), "Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson", Phys.Lett. B699:251-257, 2011, doi:10.1016/j.physletb.2011.04.011, arXiv:1101.0755 [hep-ex].
- [87] Y. Miyazaki et al., (Belle collaboration), "Search for Lepton-Flavor-Violating tau Decays into Lepton and f0(980) Meson", Phys.Lett. B672:317-322, 2009, doi:10.1016/j.physletb.2009.01.058, arXiv:0810.3519 [hep-ex].
- [88] Y. Miyazaki et al., (Belle collaboration), "Search for Lepton Flavor Violating tau- Decays into *l*-K0s and *l*-K0sK0s", *Phys.Lett.* B692:4–9, 2010, doi:10.1016/j.physletb.2010.07.012, arXiv:1003.1183 [hep-ex].
- [89] Y. Miyazaki et al., (Belle collaboration), "Search for Lepton-Flavor-Violating and Lepton-Number-Violating $\tau \rightarrow \ell h h'$ Decay Modes", 2012, arXiv:1206.5595 [hep-ex].
- [90] P. J. Mohr, B. N. Taylor, and D. B. Newell, "CODATA Recommended Values of the Fundamental Physical Constants: 2006", *Rev.Mod.Phys.* 80:633-730, 2008, doi:10.1103//RevModPhys.80.633, arXiv:0801.0028 [physics.atom-ph].
- [91] K. Nakamura et al., (Particle Data Group), "Review of particle physics", J. Phys. G37:075021, 2010, doi:10.1088/0954-3899/37/7A/075021, and 2011 partial update for the 2012 edition.
- [92] S. Paramesvaran, (BABAR collaboration), "Selected topics in tau physics from BaBar", 2009, arXiv:0910.2884 [hep-ex], contributed to the proceedings of Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009), Detroit, Michigan, 26-31 Jul 2009.
- [93] M. Procario et al., (CLEO collaboration), "Tau decays with one charged particle plus multiple pi0s", *Phys.Rev.Lett.* 70:1207–1211, 1993, doi:10.1103/PhysRevLett.70.1207.
- [94] S. Richichi et al., (CLEO collaboration), "Study of three prong hadronic tau decays with charged kaons", *Phys.Rev.* D60:112002, 1999, doi:10.1103/PhysRevD.60.112002, arXiv:hep-ex/9810026 [hep-ex].
- [95] S. Ryu, (Belle collaboration), "Measurement of the branching fractions for $\tau^- \rightarrow \pi^- K_S \pi^0 \nu_{\tau}$ and $\tau^- \rightarrow K^- K_S \pi^0 \nu_{\tau}$ ", presented at the International Workshop on e^+e^- collisions from phi to psi (PHIPSI11), Novosibirsk, 19-22 Sep, 2011, http://q2c.snu.ac.kr/sryu/phipsi2011_sryu.pdf, To be published in Nucl. Phys. B Proceedings Supplement.
- [96] S. Schael et al., (ALEPH collaboration), "Branching ratios and spectral functions of tau decays: Final ALEPH measurements and physics implications", *Phys.Rept.* 421:191–284, 2005, doi:10.1016/j.physrep.2005.06.007, arXiv:hep-ex/0506072 [hep-ex], HFAG-tau uses measurements of $\tau \to hX$ and $\tau \to KX$ and obtains $\tau \to \pi X$ by difference; the measurement of $\mathcal{B} (\tau^- \to 3h^-2h^+\pi^0\nu_{\tau} (ex.K^0))$ has been read as $(2.1 \pm 0.7 \pm 0.6) \times 10^{-4}$ whereas PDG11 uses $(2.1 \pm 0.7 \pm 0.9) \times 10^{-4}$.