A global fit of the available experimental measurements is used to determine the τ branching fractions, together with their uncertainties and statistical correlations. The τ branching fractions provide a test for theory predictions based on the Standard Model (SM) EW and QCD interactions and can be further elaborated to test the EW charged-current universality for leptons, to determine the CKM matrix coefficient |Vus| and the QCD coupling constant αs at the τ mass.
The measurements used in the fit are listed in Table 1 and consist of either τ decay mode branching fractions, labelled as Γi, or ratios of two τ decay mode branching fractions, labelled as Γi/Γj. A minimum χ2 fit is performed for all the measured quantities and for some additional branching fractions and ratios of branching fractions, and all ft results are listed in Table 1. Some fitted quantities are equal to the ratio of two other fitted quantities, as documented with the notation Γi/Γj in Table 1. Some fitted quantities are sum of other fitted quantities, for instance Γ8 = B (τ→h− ντ) is the sum of Γ9 = B (τ→π− ντ) and Γ10 = B (τ→K− ντ). The symbol h is used to mean either a π or K. Section 2.7 lists all equations relating one quantity to the sum of other quantities. In the following, we refer to both types of relations between fitted quantities collectively as constraint equations or constraints. The fit χ2 is minimized subject to all these above mentioned constraints. The fit procedure is equivalent to the one employed in the former HFAG reports [1, 2, 3].
The fit computes the quantities qi by minimizing a χ2 while respecting a series of equality constraints on the qi. The χ2 is computed using the measurements mi and their covariance matrix Eij as χ2 = (mi − Aikqk)t Eij−1 (mj − Ajlql) where the model matrix Aij is used to get the vector of the predicted measurements mi′ from the vector of the fit parameters qj as mi′= Aijqj. In this particular implementation the measurements are grouped by the quantity that they measure, and all quantities with at least one measurement correspond to a fit parameter. Therefore, the matrix Aij has one row per measurement mi and one column per fitted quantity qj, with unity coefficients for the rows and column that identify a measurement mi of the quantity qj, respectively. In summary, the fit requires:
|
|
where Eq. 2 defines the relations between the quantities qi and its left term defines the respective constraint expressions. Using the method of Lagrange multipliers, a set of equations is obtained by taking the derivatives with respect to the fitted quantities qk and the Lagrange multipliers λr of the sum of the χ2 and the constraint expressions multiplied by the Lagrange multipliers λr, one for each constraint:
|
|
Eq. 4 defines a set of equations for the vector of the unknowns (qk, λr), some of which may be non-linear, in case of non-linear constraints. An iterative minimization procedure approximates at each step the non-linear constraint expressions by their first order Taylor expansion around the current values of the fitted quantities, qs:
|
which can be written as
|
where cr′ are the resulting constant known terms, independent of qs at first order. After linearization, the differentiation by qk and λr is trivial and leads to a set of linear equations
|
|
which can be expressed as:
|
where uj = (qk, λr) and vi is the vector of the known constant terms running over the index k and then r in the right terms of Eq. 7 and Eq. 8, respectively. Solving the equation set in Eq. 9 by matrix inversion gives the the fitted quantities and their variance and covariance matrix, using the measurements and their variance and covariance matrix. The fit procedure starts by computing the linear approximation of the non-linear constraint expressions around the quantities seed values. With an iterative procedure, the unknowns are updated at each step by solving the equations and the equations are then linearized around the updated values, until the variation of the fitted unknowns is reduced below a numerically small threshold.
The fit output consists of 135 fitted quantities that correspond to either branching fractions or ratios of branching fractions. The fitted quantities values and undertainties are listed in Table 1. The off-diagonal statistical correlation terms between a subset of 47 “basis quantities” are listed in Section 2.6. All the remaining statistical correlation terms can be obtained using the constraint equations listed in Table 1 and Section 2.7.
The fit has χ2/d.o.f. = 137.3/123, corresponding to a confidence level CL = 17.84%. We use a total of 170 measurements to fit the above mentioned 135 quantities subjected to 88 constraints. Although the unitarity constraint is not applied, the fit is statistically consistent with unitarity, where the residual is Γ998 = 1 − ΓAll = (0.0355 ± 0.1031) · 10−2.
A scale factor of 5.44 (as in the three previous reports [1, 2, 3]) has been applied to the published uncertainties of the two severely inconsistent measurements of Γ96 = τ → KKKν by BaBar and Belle. The scale factor has been determined using the PDG procedure, i.e. to the proper size in order to obtain a reduced χ2 equal to 1 when fitting just the two Γ96 measurements.
For several old results, for historical reasons, the table lists the statistical errors formed from the quadratic sum of the statistical and systematic errors, setting the systematics errors to zero: this does not affect the fit result as the systematic and statistical errors are treated in the same way.
The following changes have been introduced with respect to the previous HFAG report [3].
Two old preliminary results have been removed:
They where announced in 2008 and 2009, respectively, but have not been published yet.
In the 2014 report, for several BaBar and Belle experimental results we used more precise numerical values than the published ones, using internal information from the Collaborations. We revert to the published figures in this report, as the improvements in the fit results were negligible. In so doing, we use in this report the same values that are used in the PDG 2016 fit.
The Belle result on τ− → KS0 (particles)− ντ [6] has been discarded, because it was determined that the published information does not permit a reliable determination of the correlations with the other results in the same paper. The correlations estimated for the HFAG 2014 report were inconsistent and made the covariance matrix of the results in the corresponding paper non positive-definite, as well as the overall correlation matrix for the branching ratio fit results. It has been found that the inconsistency had negligible impact on lepton universality and |Vus| measurements.
The ALEPH result on Γ46 (τ− → π− K0 K0 ντ) [7] has been removed from the fit inputs, since it is the simply sum of twice Γ47 = π− KS0 KS0 ντ and Γ48 = π− KS0 KL0 ντ from the same paper, hence 100% correlated with them.
Several minor corrections have been applied to the constraints. The list of constraints included in the following fully documents the changes when compared with the same list in the 2014 edition. In some cases the relation equating one decay mode to a sum of modes included some minor terms that did not match the mode definitions. In other cases, the sum included modes with overlapping components. The effects on the 2014 fit results have been found to be modest with respect to the quoted uncertainties.
For instance, the definition of the total branching fraction has been updated as follows:
ΓAll = | Γ3 + Γ5 + Γ9 + Γ10 + Γ14 + Γ16 + Γ20 + Γ23 + Γ27 + Γ28 + Γ30 + Γ35 + Γ37 + Γ40 + Γ42 + Γ47·(1 + ((Γ<K0|KL>·Γ<K0|KL>) / (Γ<K0|KS>·Γ<K0|KS>))) + Γ48 + Γ62 + Γ70 + Γ77 + Γ811 + Γ812 + Γ93 + Γ94 + Γ832 + Γ833 + Γ126 + Γ128 + Γ802 + Γ803 + Γ800 + Γ151 + Γ130 + Γ132 + Γ44 + Γ53 + Γ50·(1 + ((Γ<K0|KL>·Γ<K0|KL>) / (Γ<K0|KS>·Γ<K0|KS>))) + Γ51 + Γ167·(Γφ→ K+K−+Γφ→ KS KL) + Γ152 + Γ920 + Γ821 + Γ822 + Γ831 + Γ136 + Γ945 + Γ805 . |
In the 2014 definition, the term Γ78 = h− h− h+ 3π0 ντ included the contributions of Γ50 = π− π0 KS0 KS0 ντ and Γ132 = π− K0 η ντ, which were already included. In the present definition, Γ78 has been replaced with modes whose sum corresponds to Γ810 = 2π− π+ 3π0 ντ (ex. K0). As in 2014, the total τ branching fraction ΓAll definition includes two modes that have overlapping final states, to a minor extent that we consider negligible:
|
Finally, we updated to the PDG 2015 results [8] all the parameters corresponding to the measurements systematic biases and uncertainties and all the parameters appearing in the constraint equations in Section 2.7 and Table 1.
As is standard for the PDG branching fraction fits, the PDG 2016 τ branching fraction fit is unitarity constrained, while the HFAG 2016 fit is unconstrained.
The HFAG-Tau fit uses the ALEPH measurements of branching fractions defined according to the final state content of “hadrons” and kaons, where a “hadron” corresponds to either a pion or a kaon, since this set of results is closer to the actual experimental measurements and facilitates a more comprehensive treatment of the experimental results correlations [1]. The PDG 2016 fit on the other hand continues to use – as in the past editions – the ALEPH measurements of modes with pions and kaons, which correspond to the final set of published measurements of the collaboration. It is planned to eventually update the PDG fit to use the same ALEPH measurement set that is used by HFAG.
The HFAG 2016 fit, as in 2014, uses the ALEPH estimate for Γ805 = B (τ→a1− (→ π− γ) ντ), which is not a direct experimental measurement. The PDG 2016 fit uses the PDG average of B (a1→πγ) as a parameter and defines Γ805 = B (a1→πγ)×B (τ → 3π ν). As a consequence, the PDG fit procedure does not take into account the large uncertainty on B (a1→πγ), resulting in an underestimated fit uncertainty on Γ805. Therefore, in this case an appropriate correction has to be applied after the fit.
Table 1 reports the τ branching ratio fit results and experimental inputs.
τ lepton branching fraction Fit value / Exp. HFAG Fit / Ref.
Γ1 = (particles)− ≥ 0 neutrals ≥ 0 K0 ντ 0.8519 ± 0.0011 HFAG Summer 2016 fit
Γ2 = (particles)− ≥ 0 neutrals ≥ 0 KL0 ντ 0.8453 ± 0.0010 HFAG Summer 2016 fit
Γ3 = µ− νµντ 0.17392 ± 0.00040 HFAG Summer 2016 fit 0.17319 ± 0.00077 ± 0.00000 ALEPH [9] 0.17325 ± 0.00095 ± 0.00077 DELPHI [10] 0.17342 ± 0.00110 ± 0.00067 L3 [11] 0.17340 ± 0.00090 ± 0.00060 OPAL [12]
Γ3 Γ5 =
µ− νµντ e− νe ντ 0.9762 ± 0.0028 HFAG Summer 2016 fit 0.9970 ± 0.0350 ± 0.0400 ARGUS [13] 0.9796 ± 0.0016 ± 0.0036 BaBar [14] 0.9777 ± 0.0063 ± 0.0087 CLEO [15]
Γ5 = e− νe ντ 0.17816 ± 0.00041 HFAG Summer 2016 fit 0.17837 ± 0.00080 ± 0.00000 ALEPH [9] 0.17760 ± 0.00060 ± 0.00170 CLEO [15] 0.17877 ± 0.00109 ± 0.00110 DELPHI [10] 0.17806 ± 0.00104 ± 0.00076 L3 [11] 0.17810 ± 0.00090 ± 0.00060 OPAL [16]
Γ7 = h− ≥ 0 KL0 ντ 0.12023 ± 0.00054 HFAG Summer 2016 fit 0.12400 ± 0.00700 ± 0.00700 DELPHI [17] 0.12470 ± 0.00260 ± 0.00430 L3 [18] 0.12100 ± 0.00700 ± 0.00500 OPAL [19]
Γ8 = h− ντ 0.11506 ± 0.00054 HFAG Summer 2016 fit 0.11524 ± 0.00105 ± 0.00000 ALEPH [9] 0.11520 ± 0.00050 ± 0.00120 CLEO [15] 0.11571 ± 0.00120 ± 0.00114 DELPHI [20] 0.11980 ± 0.00130 ± 0.00160 OPAL [21]
Γ8 Γ5 =
h− ντ e− νe ντ 0.6458 ± 0.0033 HFAG Summer 2016 fit
Γ9 = π− ντ 0.10810 ± 0.00053 HFAG Summer 2016 fit
Γ9 Γ5 =
π− ντ e− νe ντ 0.6068 ± 0.0032 HFAG Summer 2016 fit 0.5945 ± 0.0014 ± 0.0061 BaBar [14]
Γ10 = K− ντ (0.6960 ± 0.0096) · 10−2 HFAG Summer 2016 fit (0.6960 ± 0.0287 ± 0.0000) · 10−2 ALEPH [22] (0.6600 ± 0.0700 ± 0.0900) · 10−2 CLEO [23] (0.8500 ± 0.1800 ± 0.0000) · 10−2 DELPHI [24] (0.6580 ± 0.0270 ± 0.0290) · 10−2 OPAL [25]
Γ10 Γ5 =
K− ντ e− νe ντ (3.906 ± 0.054) · 10−2 HFAG Summer 2016 fit (3.882 ± 0.032 ± 0.057) · 10−2 BaBar [14]
Γ10 Γ9 =
K− ντ π− ντ (6.438 ± 0.094) · 10−2 HFAG Summer 2016 fit
Γ11 = h− ≥ 1 neutrals ντ 0.36973 ± 0.00097 HFAG Summer 2016 fit
Γ12 = h− ≥ 1 π0 ντ (ex. K0) 0.36475 ± 0.00097 HFAG Summer 2016 fit
Γ13 = h− π0 ντ 0.25935 ± 0.00091 HFAG Summer 2016 fit 0.25924 ± 0.00129 ± 0.00000 ALEPH [9] 0.25670 ± 0.00010 ± 0.00390 Belle [26] 0.25870 ± 0.00120 ± 0.00420 CLEO [27] 0.25740 ± 0.00201 ± 0.00138 DELPHI [20] 0.25050 ± 0.00350 ± 0.00500 L3 [18] 0.25890 ± 0.00170 ± 0.00290 OPAL [21]
Γ14 = π− π0 ντ 0.25502 ± 0.00092 HFAG Summer 2016 fit
Γ16 = K− π0 ντ (0.4327 ± 0.0149) · 10−2 HFAG Summer 2016 fit (0.4440 ± 0.0354 ± 0.0000) · 10−2 ALEPH [22] (0.4160 ± 0.0030 ± 0.0180) · 10−2 BaBar [28] (0.5100 ± 0.1000 ± 0.0700) · 10−2 CLEO [23] (0.4710 ± 0.0590 ± 0.0230) · 10−2 OPAL [29]
Γ17 = h− ≥ 2 π0 ντ 0.10775 ± 0.00095 HFAG Summer 2016 fit 0.09910 ± 0.00310 ± 0.00270 OPAL [21]
Γ18 = h− 2π0 ντ (9.458 ± 0.097) · 10−2 HFAG Summer 2016 fit
Γ19 = h− 2π0 ντ (ex. K0) (9.306 ± 0.097) · 10−2 HFAG Summer 2016 fit (9.295 ± 0.122 ± 0.000) · 10−2 ALEPH [9] (9.498 ± 0.320 ± 0.275) · 10−2 DELPHI [20] (8.880 ± 0.370 ± 0.420) · 10−2 L3 [18]
Γ19 Γ13 =
h− 2π0 ντ (ex. K0) h− π0 ντ 0.3588 ± 0.0044 HFAG Summer 2016 fit 0.3420 ± 0.0060 ± 0.0160 CLEO [30]
Γ20 = π− 2π0 ντ (ex. K0) (9.242 ± 0.100) · 10−2 HFAG Summer 2016 fit
Γ23 = K− 2π0 ντ (ex. K0) (0.0640 ± 0.0220) · 10−2 HFAG Summer 2016 fit (0.0560 ± 0.0250 ± 0.0000) · 10−2 ALEPH [22] (0.0900 ± 0.1000 ± 0.0300) · 10−2 CLEO [23]
Γ24 = h− ≥ 3 π0 ντ (1.318 ± 0.065) · 10−2 HFAG Summer 2016 fit
Γ25 = h− ≥ 3 π0 ντ (ex. K0) (1.233 ± 0.065) · 10−2 HFAG Summer 2016 fit (1.403 ± 0.214 ± 0.224) · 10−2 DELPHI [20]
Γ26 = h− 3π0 ντ (1.158 ± 0.072) · 10−2 HFAG Summer 2016 fit (1.082 ± 0.093 ± 0.000) · 10−2 ALEPH [9] (1.700 ± 0.240 ± 0.380) · 10−2 L3 [18]
Γ26 Γ13 =
h− 3π0 ντ h− π0 ντ (4.465 ± 0.277) · 10−2 HFAG Summer 2016 fit (4.400 ± 0.300 ± 0.500) · 10−2 CLEO [30]
Γ27 = π− 3π0 ντ (ex. K0) (1.029 ± 0.075) · 10−2 HFAG Summer 2016 fit
Γ28 = K− 3π0 ντ (ex. K0,η) (4.283 ± 2.161) · 10−4 HFAG Summer 2016 fit (3.700 ± 2.371 ± 0.000) · 10−4 ALEPH [22]
Γ29 = h− 4π0 ντ (ex. K0) (0.1568 ± 0.0391) · 10−2 HFAG Summer 2016 fit (0.1600 ± 0.0500 ± 0.0500) · 10−2 CLEO [30]
Γ30 = h− 4π0 ντ (ex. K0,η) (0.1099 ± 0.0391) · 10−2 HFAG Summer 2016 fit (0.1120 ± 0.0509 ± 0.0000) · 10−2 ALEPH [9]
Γ31 = K− ≥ 0 π0 ≥ 0 K0 ≥ 0 γ ντ (1.545 ± 0.030) · 10−2 HFAG Summer 2016 fit (1.700 ± 0.120 ± 0.190) · 10−2 CLEO [23] (1.540 ± 0.240 ± 0.000) · 10−2 DELPHI [24] (1.528 ± 0.039 ± 0.040) · 10−2 OPAL [25]
Γ32 = K− ≥ 1 (π0 or K0 or γ) ντ (0.8528 ± 0.0286) · 10−2 HFAG Summer 2016 fit
Γ33 = KS0 (particles)− ντ (0.9372 ± 0.0292) · 10−2 HFAG Summer 2016 fit (0.9700 ± 0.0849 ± 0.0000) · 10−2 ALEPH [7] (0.9700 ± 0.0900 ± 0.0600) · 10−2 OPAL [31]
Γ34 = h− K0 ντ (0.9865 ± 0.0139) · 10−2 HFAG Summer 2016 fit (0.8550 ± 0.0360 ± 0.0730) · 10−2 CLEO [32]
Γ35 = π− K0 ντ (0.8386 ± 0.0141) · 10−2 HFAG Summer 2016 fit (0.9280 ± 0.0564 ± 0.0000) · 10−2 ALEPH [22] (0.8320 ± 0.0025 ± 0.0150) · 10−2 Belle [6] (0.9500 ± 0.1500 ± 0.0600) · 10−2 L3 [33] (0.9330 ± 0.0680 ± 0.0490) · 10−2 OPAL [34]
Γ37 = K− K0 ντ (0.1479 ± 0.0053) · 10−2 HFAG Summer 2016 fit (0.1580 ± 0.0453 ± 0.0000) · 10−2 ALEPH [7] (0.1620 ± 0.0237 ± 0.0000) · 10−2 ALEPH [22] (0.1480 ± 0.0013 ± 0.0055) · 10−2 Belle [6] (0.1510 ± 0.0210 ± 0.0220) · 10−2 CLEO [32]
Γ38 = K− K0 ≥ 0 π0 ντ (0.2982 ± 0.0079) · 10−2 HFAG Summer 2016 fit (0.3300 ± 0.0550 ± 0.0390) · 10−2 OPAL [34]
Γ39 = h− K0 π0 ντ (0.5314 ± 0.0134) · 10−2 HFAG Summer 2016 fit (0.5620 ± 0.0500 ± 0.0480) · 10−2 CLEO [32]
Γ40 = π− K0 π0 ντ (0.3812 ± 0.0129) · 10−2 HFAG Summer 2016 fit (0.2940 ± 0.0818 ± 0.0000) · 10−2 ALEPH [7] (0.3470 ± 0.0646 ± 0.0000) · 10−2 ALEPH [22] (0.3860 ± 0.0031 ± 0.0135) · 10−2 Belle [6] (0.4100 ± 0.1200 ± 0.0300) · 10−2 L3 [33]
Γ42 = K− π0 K0 ντ (0.1502 ± 0.0071) · 10−2 HFAG Summer 2016 fit (0.1520 ± 0.0789 ± 0.0000) · 10−2 ALEPH [7] (0.1430 ± 0.0291 ± 0.0000) · 10−2 ALEPH [22] (0.1496 ± 0.0019 ± 0.0073) · 10−2 Belle [6] (0.1450 ± 0.0360 ± 0.0200) · 10−2 CLEO [32]
Γ43 = π− K0 ≥ 1 π0 ντ (0.4046 ± 0.0260) · 10−2 HFAG Summer 2016 fit (0.3240 ± 0.0740 ± 0.0660) · 10−2 OPAL [34]
Γ44 = π− K0 π0 π0 ντ (ex. K0) (2.340 ± 2.306) · 10−4 HFAG Summer 2016 fit (2.600 ± 2.400 ± 0.000) · 10−4 ALEPH [35]
Γ46 = π− K0 K0 ντ (0.1513 ± 0.0247) · 10−2 HFAG Summer 2016 fit
Γ47 = π− KS0 KS0 ντ (2.332 ± 0.065) · 10−4 HFAG Summer 2016 fit (2.600 ± 1.118 ± 0.000) · 10−4 ALEPH [7] (2.310 ± 0.040 ± 0.080) · 10−4 BaBar [36] (2.330 ± 0.033 ± 0.093) · 10−4 Belle [6] (2.300 ± 0.500 ± 0.300) · 10−4 CLEO [32]
Γ48 = π− KS0 KL0 ντ (0.1047 ± 0.0247) · 10−2 HFAG Summer 2016 fit (0.1010 ± 0.0264 ± 0.0000) · 10−2 ALEPH [7]
Γ49 = π− K0 K0 π0 ντ (3.540 ± 1.193) · 10−4 HFAG Summer 2016 fit
Γ50 = π− π0 KS0 KS0 ντ (1.815 ± 0.207) · 10−5 HFAG Summer 2016 fit (1.600 ± 0.200 ± 0.220) · 10−5 BaBar [36] (2.000 ± 0.216 ± 0.202) · 10−5 Belle [6]
Γ51 = π− π0 KS0 KL0 ντ (3.177 ± 1.192) · 10−4 HFAG Summer 2016 fit (3.100 ± 1.100 ± 0.500) · 10−4 ALEPH [7]
Γ53 = K0 h− h− h+ ντ (2.218 ± 2.024) · 10−4 HFAG Summer 2016 fit (2.300 ± 2.025 ± 0.000) · 10−4 ALEPH [7]
Γ54 = h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ 0.15215 ± 0.00061 HFAG Summer 2016 fit 0.15000 ± 0.00400 ± 0.00300 CELLO [37] 0.14400 ± 0.00600 ± 0.00300 L3 [38] 0.15100 ± 0.00800 ± 0.00600 TPC [39]
Γ55 = h− h− h+ ≥ 0 neutrals ντ (ex. K0) 0.14567 ± 0.00057 HFAG Summer 2016 fit 0.14556 ± 0.00105 ± 0.00076 L3 [40] 0.14960 ± 0.00090 ± 0.00220 OPAL [41]
Γ56 = h− h− h+ ντ (9.780 ± 0.054) · 10−2 HFAG Summer 2016 fit
Γ57 = h− h− h+ ντ (ex. K0) (9.439 ± 0.053) · 10−2 HFAG Summer 2016 fit (9.510 ± 0.070 ± 0.200) · 10−2 CLEO [42] (9.317 ± 0.090 ± 0.082) · 10−2 DELPHI [20]
Γ57 Γ55 =
h− h− h+ ντ (ex. K0) h− h− h+ ≥ 0 neutrals ντ (ex. K0) 0.6480 ± 0.0030 HFAG Summer 2016 fit 0.6600 ± 0.0040 ± 0.0140 OPAL [41]
Γ58 = h− h− h+ ντ (ex. K0, ω) (9.408 ± 0.053) · 10−2 HFAG Summer 2016 fit (9.469 ± 0.096 ± 0.000) · 10−2 ALEPH [9]
Γ59 = π− π+ π− ντ (9.290 ± 0.052) · 10−2 HFAG Summer 2016 fit
Γ60 = π− π+ π− ντ (ex. K0) (9.000 ± 0.051) · 10−2 HFAG Summer 2016 fit (8.830 ± 0.010 ± 0.130) · 10−2 BaBar [43] (8.420 ± 0.000 −0.250+0.260) · 10−2 Belle [44] (9.130 ± 0.050 ± 0.460) · 10−2 CLEO3 [45]
Γ62 = π− π− π+ ντ (ex. K0,ω) (8.970 ± 0.052) · 10−2 HFAG Summer 2016 fit
Γ63 = h− h− h+ ≥ 1 neutrals ντ (5.325 ± 0.050) · 10−2 HFAG Summer 2016 fit
Γ64 = h− h− h+ ≥ 1 π0 ντ (ex. K0) (5.120 ± 0.049) · 10−2 HFAG Summer 2016 fit
Γ65 = h− h− h+ π0 ντ (4.790 ± 0.052) · 10−2 HFAG Summer 2016 fit
Γ66 = h− h− h+ π0 ντ (ex. K0) (4.606 ± 0.051) · 10−2 HFAG Summer 2016 fit (4.734 ± 0.077 ± 0.000) · 10−2 ALEPH [9] (4.230 ± 0.060 ± 0.220) · 10−2 CLEO [42] (4.545 ± 0.106 ± 0.103) · 10−2 DELPHI [20]
Γ67 = h− h− h+ π0 ντ (ex. K0, ω) (2.820 ± 0.070) · 10−2 HFAG Summer 2016 fit
Γ68 = π− π+ π− π0 ντ (4.651 ± 0.053) · 10−2 HFAG Summer 2016 fit
Γ69 = π− π+ π− π0 ντ (ex. K0) (4.519 ± 0.052) · 10−2 HFAG Summer 2016 fit (4.190 ± 0.100 ± 0.210) · 10−2 CLEO [46]
Γ70 = π− π− π+ π0 ντ (ex. K0,ω) (2.769 ± 0.071) · 10−2 HFAG Summer 2016 fit
Γ74 = h− h− h+ ≥ 2 π0 ντ (ex. K0) (0.5135 ± 0.0312) · 10−2 HFAG Summer 2016 fit (0.5610 ± 0.0680 ± 0.0950) · 10−2 DELPHI [20]
Γ75 = h− h− h+ 2π0 ντ (0.5024 ± 0.0310) · 10−2 HFAG Summer 2016 fit
Γ76 = h− h− h+ 2π0 ντ (ex. K0) (0.4925 ± 0.0310) · 10−2 HFAG Summer 2016 fit (0.4350 ± 0.0461 ± 0.0000) · 10−2 ALEPH [9]
Γ76 Γ54 =
h− h− h+ 2π0 ντ (ex. K0) h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ (3.237 ± 0.202) · 10−2 HFAG Summer 2016 fit (3.400 ± 0.200 ± 0.300) · 10−2 CLEO [47]
Γ77 = h− h− h+ 2π0 ντ (ex. K0,ω,η) (9.759 ± 3.550) · 10−4 HFAG Summer 2016 fit
Γ78 = h− h− h+ 3π0 ντ (2.107 ± 0.299) · 10−4 HFAG Summer 2016 fit (2.200 ± 0.300 ± 0.400) · 10−4 CLEO [48]
Γ79 = K− h− h+ ≥ 0 neutrals ντ (0.6297 ± 0.0141) · 10−2 HFAG Summer 2016 fit
Γ80 = K− π− h+ ντ (ex. K0) (0.4363 ± 0.0073) · 10−2 HFAG Summer 2016 fit
Γ80 Γ60 =
K− π− h+ ντ (ex. K0) π− π+ π− ντ (ex. K0) (4.847 ± 0.080) · 10−2 HFAG Summer 2016 fit (5.440 ± 0.210 ± 0.530) · 10−2 CLEO [49]
Γ81 = K− π− h+ π0 ντ (ex. K0) (8.726 ± 1.177) · 10−4 HFAG Summer 2016 fit
Γ81 Γ69 =
K− π− h+ π0 ντ (ex. K0) π− π+ π− π0 ντ (ex. K0) (1.931 ± 0.266) · 10−2 HFAG Summer 2016 fit (2.610 ± 0.450 ± 0.420) · 10−2 CLEO [49]
Γ82 = K− π− π+ ≥ 0 neutrals ντ (0.4780 ± 0.0137) · 10−2 HFAG Summer 2016 fit (0.5800 −0.1300+0.1500 ± 0.1200) · 10−2 TPC [50]
Γ83 = K− π− π+ ≥ 0 π0 ντ (ex. K0) (0.3741 ± 0.0135) · 10−2 HFAG Summer 2016 fit
Γ84 = K− π− π+ ντ (0.3441 ± 0.0070) · 10−2 HFAG Summer 2016 fit
Γ85 = K− π+ π− ντ (ex. K0) (0.2929 ± 0.0067) · 10−2 HFAG Summer 2016 fit (0.2140 ± 0.0470 ± 0.0000) · 10−2 ALEPH [51] (0.2730 ± 0.0020 ± 0.0090) · 10−2 BaBar [43] (0.3300 ± 0.0010 −0.0170+0.0160) · 10−2 Belle [44] (0.3840 ± 0.0140 ± 0.0380) · 10−2 CLEO3 [45] (0.4150 ± 0.0530 ± 0.0400) · 10−2 OPAL [29]
Γ85 Γ60 =
K− π+ π− ντ (ex. K0) π− π+ π− ντ (ex. K0) (3.254 ± 0.074) · 10−2 HFAG Summer 2016 fit
Γ87 = K− π− π+ π0 ντ (0.1331 ± 0.0119) · 10−2 HFAG Summer 2016 fit
Γ88 = K− π− π+ π0 ντ (ex. K0) (8.115 ± 1.168) · 10−4 HFAG Summer 2016 fit (6.100 ± 4.295 ± 0.000) · 10−4 ALEPH [51] (7.400 ± 0.800 ± 1.100) · 10−4 CLEO3 [52]
Γ89 = K− π− π+ π0 ντ (ex. K0, η) (7.761 ± 1.168) · 10−4 HFAG Summer 2016 fit
Γ92 = π− K− K+ ≥ 0 neutrals ντ (0.1495 ± 0.0033) · 10−2 HFAG Summer 2016 fit (0.1590 ± 0.0530 ± 0.0200) · 10−2 OPAL [53] (0.1500 −0.0700+0.0900 ± 0.0300) · 10−2 TPC [50]
Γ93 = π− K− K+ ντ (0.1434 ± 0.0027) · 10−2 HFAG Summer 2016 fit (0.1630 ± 0.0270 ± 0.0000) · 10−2 ALEPH [51] (0.1346 ± 0.0010 ± 0.0036) · 10−2 BaBar [43] (0.1550 ± 0.0010 −0.0050+0.0060) · 10−2 Belle [44] (0.1550 ± 0.0060 ± 0.0090) · 10−2 CLEO3 [45]
Γ93 Γ60 =
π− K− K+ ντ π− π+ π− ντ (ex. K0) (1.593 ± 0.030) · 10−2 HFAG Summer 2016 fit (1.600 ± 0.150 ± 0.300) · 10−2 CLEO [49]
Γ94 = π− K− K+ π0 ντ (0.611 ± 0.183) · 10−4 HFAG Summer 2016 fit (7.500 ± 3.265 ± 0.000) · 10−4 ALEPH [51] (0.550 ± 0.140 ± 0.120) · 10−4 CLEO3 [52]
Γ94 Γ69 =
π− K− K+ π0 ντ π− π+ π− π0 ντ (ex. K0) (0.1353 ± 0.0405) · 10−2 HFAG Summer 2016 fit (0.7900 ± 0.4400 ± 0.1600) · 10−2 CLEO [49]
Γ96 = K− K− K+ ντ (2.174 ± 0.800) · 10−5 HFAG Summer 2016 fit (1.578 ± 0.130 ± 0.123) · 10−5 BaBar [43] (3.290 ± 0.170 −0.200+0.190) · 10−5 Belle [44]
Γ102 = 3h− 2h+ ≥ 0 neutrals ντ (ex. K0) (0.0985 ± 0.0037) · 10−2 HFAG Summer 2016 fit (0.0970 ± 0.0050 ± 0.0110) · 10−2 CLEO [54] (0.1020 ± 0.0290 ± 0.0000) · 10−2 HRS [55] (0.1700 ± 0.0220 ± 0.0260) · 10−2 L3 [40]
Γ103 = 3h− 2h+ ντ (ex. K0) (8.216 ± 0.316) · 10−4 HFAG Summer 2016 fit (7.200 ± 1.500 ± 0.000) · 10−4 ALEPH [9] (6.400 ± 2.300 ± 1.000) · 10−4 ARGUS [56] (7.700 ± 0.500 ± 0.900) · 10−4 CLEO [54] (9.700 ± 1.500 ± 0.500) · 10−4 DELPHI [20] (5.100 ± 2.000 ± 0.000) · 10−4 HRS [55] (9.100 ± 1.400 ± 0.600) · 10−4 OPAL [57]
Γ104 = 3h− 2h+ π0 ντ (ex. K0) (1.634 ± 0.114) · 10−4 HFAG Summer 2016 fit (2.100 ± 0.700 ± 0.900) · 10−4 ALEPH [9] (1.700 ± 0.200 ± 0.200) · 10−4 CLEO [48] (1.600 ± 1.200 ± 0.600) · 10−4 DELPHI [20] (2.700 ± 1.800 ± 0.900) · 10−4 OPAL [57]
Γ106 = (5π)− ντ (0.7748 ± 0.0534) · 10−2 HFAG Summer 2016 fit
Γ110 = Xs− ντ (2.909 ± 0.048) · 10−2 HFAG Summer 2016 fit
Γ126 = π− π0 η ντ (0.1386 ± 0.0072) · 10−2 HFAG Summer 2016 fit (0.1800 ± 0.0447 ± 0.0000) · 10−2 ALEPH [58] (0.1350 ± 0.0030 ± 0.0070) · 10−2 Belle [59] (0.1700 ± 0.0200 ± 0.0200) · 10−2 CLEO [60]
Γ128 = K− η ντ (1.547 ± 0.080) · 10−4 HFAG Summer 2016 fit (2.900 −1.200+1.300 ± 0.700) · 10−4 ALEPH [58] (1.420 ± 0.110 ± 0.070) · 10−4 BaBar [61] (1.580 ± 0.050 ± 0.090) · 10−4 Belle [59] (2.600 ± 0.500 ± 0.500) · 10−4 CLEO [62]
Γ130 = K− π0 η ντ (0.483 ± 0.116) · 10−4 HFAG Summer 2016 fit (0.460 ± 0.110 ± 0.040) · 10−4 Belle [59] (1.770 ± 0.560 ± 0.710) · 10−4 CLEO [63]
Γ132 = π− K0 η ντ (0.937 ± 0.149) · 10−4 HFAG Summer 2016 fit (0.880 ± 0.140 ± 0.060) · 10−4 Belle [59] (2.200 ± 0.700 ± 0.220) · 10−4 CLEO [63]
Γ136 = π− π+ π− η ντ (ex. K0) (2.184 ± 0.130) · 10−4 HFAG Summer 2016 fit
Γ149 = h− ω ≥ 0 neutrals ντ (2.401 ± 0.075) · 10−2 HFAG Summer 2016 fit
Γ150 = h− ω ντ (1.995 ± 0.064) · 10−2 HFAG Summer 2016 fit (1.910 ± 0.092 ± 0.000) · 10−2 ALEPH [58] (1.600 ± 0.270 ± 0.410) · 10−2 CLEO [64]
Γ150 Γ66 =
h− ω ντ h− h− h+ π0 ντ (ex. K0) 0.4332 ± 0.0139 HFAG Summer 2016 fit 0.4310 ± 0.0330 ± 0.0000 ALEPH [65] 0.4640 ± 0.0160 ± 0.0170 CLEO [42]
Γ151 = K− ω ντ (4.100 ± 0.922) · 10−4 HFAG Summer 2016 fit (4.100 ± 0.600 ± 0.700) · 10−4 CLEO3 [52]
Γ152 = h− π0 ω ντ (0.4058 ± 0.0419) · 10−2 HFAG Summer 2016 fit (0.4300 ± 0.0781 ± 0.0000) · 10−2 ALEPH [58]
Γ152 Γ54 =
h− ω π0 ντ h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ (2.667 ± 0.275) · 10−2 HFAG Summer 2016 fit
Γ152 Γ76 =
h− ω π0 ντ h− h− h+ 2π0 ντ (ex. K0) 0.8241 ± 0.0757 HFAG Summer 2016 fit 0.8100 ± 0.0600 ± 0.0600 CLEO [47]
Γ167 = K− φ ντ (4.445 ± 1.636) · 10−5 HFAG Summer 2016 fit
Γ168 = K− φ ντ (φ → K+ K−) (2.174 ± 0.800) · 10−5 HFAG Summer 2016 fit
Γ169 = K− φ ντ (φ → KS0 KL0) (1.520 ± 0.560) · 10−5 HFAG Summer 2016 fit
Γ800 = π− ω ντ (1.954 ± 0.065) · 10−2 HFAG Summer 2016 fit
Γ802 = K− π− π+ ντ (ex. K0,ω) (0.2923 ± 0.0067) · 10−2 HFAG Summer 2016 fit
Γ803 = K− π− π+ π0 ντ (ex. K0,ω,η) (4.103 ± 1.429) · 10−4 HFAG Summer 2016 fit
Γ804 = π− KL0 KL0 ντ (2.332 ± 0.065) · 10−4 HFAG Summer 2016 fit
Γ805 = a1− (→ π− γ) ντ (4.000 ± 2.000) · 10−4 HFAG Summer 2016 fit (4.000 ± 2.000 ± 0.000) · 10−4 ALEPH [9]
Γ806 = π− π0 KL0 KL0 ντ (1.815 ± 0.207) · 10−5 HFAG Summer 2016 fit
Γ810 = 2π− π+ 3π0 ντ (ex. K0) (1.924 ± 0.298) · 10−4 HFAG Summer 2016 fit
Γ811 = π− 2π0 ω ντ (ex. K0) (7.105 ± 1.586) · 10−5 HFAG Summer 2016 fit (7.300 ± 1.200 ± 1.200) · 10−5 BaBar [66]
Γ812 = 2π− π+ 3π0 ντ (ex. K0, η, ω, f1) (1.344 ± 2.683) · 10−5 HFAG Summer 2016 fit (1.000 ± 0.800 ± 3.000) · 10−5 BaBar [66]
Γ820 = 3π− 2π+ ντ (ex. K0, ω) (8.197 ± 0.315) · 10−4 HFAG Summer 2016 fit
Γ821 = 3π− 2π+ ντ (ex. K0, ω, f1) (7.677 ± 0.297) · 10−4 HFAG Summer 2016 fit (7.680 ± 0.040 ± 0.400) · 10−4 BaBar [66]
Γ822 = K− 2π− 2π+ ντ (ex. K0) (0.596 ± 1.208) · 10−6 HFAG Summer 2016 fit (0.600 ± 0.500 ± 1.100) · 10−6 BaBar [66]
Γ830 = 3π− 2π+ π0 ντ (ex. K0) (1.623 ± 0.114) · 10−4 HFAG Summer 2016 fit
Γ831 = 2π− π+ ω ντ (ex. K0) (8.359 ± 0.626) · 10−5 HFAG Summer 2016 fit (8.400 ± 0.400 ± 0.600) · 10−5 BaBar [66]
Γ832 = 3π− 2π+ π0 ντ (ex. K0, η, ω, f1) (3.771 ± 0.875) · 10−5 HFAG Summer 2016 fit (3.600 ± 0.300 ± 0.900) · 10−5 BaBar [66]
Γ833 = K− 2π− 2π+ π0 ντ (ex. K0) (1.108 ± 0.566) · 10−6 HFAG Summer 2016 fit (1.100 ± 0.400 ± 0.400) · 10−6 BaBar [66]
Γ910 = 2π− π+ η ντ (η → 3π0) (ex. K0) (7.136 ± 0.424) · 10−5 HFAG Summer 2016 fit (8.270 ± 0.880 ± 0.810) · 10−5 BaBar [66]
Γ911 = π− 2π0 η ντ (η → π+ π− π0) (ex. K0) (4.420 ± 0.867) · 10−5 HFAG Summer 2016 fit (4.570 ± 0.770 ± 0.500) · 10−5 BaBar [66]
Γ920 = π− f1 ντ (f1 → 2π− 2π+) (5.197 ± 0.444) · 10−5 HFAG Summer 2016 fit (5.200 ± 0.310 ± 0.370) · 10−5 BaBar [66]
Γ930 = 2π− π+ η ντ (η → π+π−π0) (ex. K0) (5.005 ± 0.297) · 10−5 HFAG Summer 2016 fit (5.390 ± 0.270 ± 0.410) · 10−5 BaBar [66]
Γ944 = 2π− π+ η ντ (η → γγ) (ex. K0) (8.606 ± 0.511) · 10−5 HFAG Summer 2016 fit (8.260 ± 0.350 ± 0.510) · 10−5 BaBar [66]
Γ945 = π− 2π0 η ντ (1.929 ± 0.378) · 10−4 HFAG Summer 2016 fit
Γ998 = 1 − ΓAll (0.0355 ± 0.1031) · 10−2 HFAG Summer 2016 fit
The following tables report the correlation coefficients between basis nodes, in percent.
Γ5 23 Γ9 7 5 Γ10 3 5 1 Γ14 -13 -14 -12 -3 Γ16 0 -1 2 -1 -16 Γ20 -5 -5 -7 -1 -40 2 Γ23 0 0 0 -2 2 -13 -22 Γ27 -4 -3 -8 -1 0 3 -36 6 Γ28 0 0 0 -2 2 -13 5 -21 -29 Γ30 -5 -4 -11 -2 -9 0 6 0 -42 0 Γ35 0 0 0 0 0 0 0 1 0 1 0 Γ37 0 0 0 0 0 -2 1 -3 1 -3 0 -22 Γ40 0 0 0 0 0 1 0 1 -2 1 0 -12 4 Γ3 Γ5 Γ9 Γ10 Γ14 Γ16 Γ20 Γ23 Γ27 Γ28 Γ30 Γ35 Γ37 Γ40
Γ42 0 0 0 0 1 -3 1 -5 1 -5 0 2 -21 -20 Γ44 0 0 0 0 0 0 0 0 0 0 0 -1 0 -4 Γ47 0 0 0 0 0 0 0 0 0 0 0 -1 1 -4 Γ48 0 0 0 0 0 0 0 0 0 0 0 -3 0 -2 Γ50 0 0 0 0 0 0 0 -1 0 -1 0 0 7 0 Γ51 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 Γ53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ62 -3 -5 8 0 -4 5 -7 -1 -5 -1 -5 0 0 0 Γ70 -6 -6 -7 -1 -8 -1 -1 0 -1 0 3 0 0 0 Γ77 -1 0 -3 -1 -2 0 0 0 2 0 2 0 0 0 Γ93 -1 -1 3 0 -1 2 -1 0 -1 0 -1 0 0 0 Γ94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ126 0 0 0 0 0 0 -1 0 0 0 -2 0 0 0 Γ128 0 0 1 0 0 1 0 -1 0 -1 0 0 0 0 Γ3 Γ5 Γ9 Γ10 Γ14 Γ16 Γ20 Γ23 Γ27 Γ28 Γ30 Γ35 Γ37 Γ40
Γ130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ152 -1 0 -3 -1 -2 0 -1 0 2 0 2 0 0 0 Γ167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ800 -2 -2 -2 0 -3 0 0 0 0 0 1 0 0 0 Γ802 -1 -1 0 0 -1 0 -2 0 -2 0 -1 0 0 0 Γ803 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ811 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ812 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Γ821 0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 Γ822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ3 Γ5 Γ9 Γ10 Γ14 Γ16 Γ20 Γ23 Γ27 Γ28 Γ30 Γ35 Γ37 Γ40
Γ831 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ832 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ920 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ3 Γ5 Γ9 Γ10 Γ14 Γ16 Γ20 Γ23 Γ27 Γ28 Γ30 Γ35 Γ37 Γ40
Γ44 0 Γ47 1 0 Γ48 -1 -6 0 Γ50 5 0 -7 0 Γ51 0 -3 0 -6 0 Γ53 0 0 0 0 0 0 Γ62 0 0 1 0 0 0 0 Γ70 0 0 0 0 0 0 0 -20 Γ77 0 0 0 0 0 0 0 -1 -7 Γ93 0 0 0 0 0 0 0 14 -4 0 Γ94 0 0 0 0 0 0 0 0 -2 0 0 Γ126 0 0 1 0 0 0 0 1 0 -5 0 0 Γ128 0 0 1 0 0 0 0 2 0 0 1 0 4 Γ42 Γ44 Γ47 Γ48 Γ50 Γ51 Γ53 Γ62 Γ70 Γ77 Γ93 Γ94 Γ126 Γ128
Γ130 0 0 0 0 0 0 0 0 0 -1 0 0 1 1 Γ132 0 0 0 0 0 0 0 0 0 0 0 0 2 1 Γ136 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 Γ151 0 0 0 0 0 0 0 0 12 0 0 0 0 0 Γ152 0 0 0 0 0 0 0 -1 -11 -64 0 0 0 0 Γ167 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 Γ800 0 0 0 0 0 0 0 -8 -69 -2 -1 0 0 0 Γ802 0 0 0 0 0 0 0 16 -6 0 0 0 0 0 Γ803 0 0 0 0 0 0 0 -1 -19 0 0 -2 0 -1 Γ805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ811 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ812 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 Γ821 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 Γ822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ42 Γ44 Γ47 Γ48 Γ50 Γ51 Γ53 Γ62 Γ70 Γ77 Γ93 Γ94 Γ126 Γ128
Γ831 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ832 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ920 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Γ42 Γ44 Γ47 Γ48 Γ50 Γ51 Γ53 Γ62 Γ70 Γ77 Γ93 Γ94 Γ126 Γ128
Γ132 0 Γ136 0 0 Γ151 0 0 0 Γ152 0 0 0 0 Γ167 0 0 0 0 0 Γ800 0 0 0 -14 -3 0 Γ802 0 0 0 -2 0 1 -1 Γ803 0 0 0 -58 0 0 9 1 Γ805 0 0 0 0 0 0 0 0 0 Γ811 0 -1 20 0 0 0 0 0 0 0 Γ812 0 -2 -8 0 0 0 0 0 0 0 -16 Γ821 0 0 47 0 0 0 0 0 0 0 8 -4 Γ822 0 0 -1 0 0 0 0 0 0 0 0 0 -1 Γ130 Γ132 Γ136 Γ151 Γ152 Γ167 Γ800 Γ802 Γ803 Γ805 Γ811 Γ812 Γ821 Γ822
Γ831 0 0 39 0 0 0 0 0 0 0 14 -4 39 -1 Γ832 0 0 3 0 0 0 0 0 0 0 2 0 3 0 Γ833 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 Γ920 0 0 21 0 0 0 0 0 0 0 3 -2 35 -1 Γ945 0 -1 25 0 0 0 0 0 0 0 10 -11 10 0 Γ130 Γ132 Γ136 Γ151 Γ152 Γ167 Γ800 Γ802 Γ803 Γ805 Γ811 Γ812 Γ821 Γ822
Γ832 -2 Γ833 -1 -1 Γ920 17 1 0 Γ945 17 2 0 4 Γ831 Γ832 Γ833 Γ920 Γ945
We list in the following the equality constraints that relate a branching fraction to a sum of branching fractions, which have been introduced in Section 2. In the constraint equations, the τ branching fractions are denoted with Γn labels. The equations include as coefficients the values of some non-tau branching fractions, denoted e.g. with the self-describing notation ΓKS → π0π0. Some coefficients are probabilities corresponding to modulus square amplitudes describing quantum mixtures of states such as K0, K0, KS, KL, denoted with e.g. Γ<K0|KS> = |<K0|KS>|2. All non-tau quantities are taken from the PDG 2015 [8] fits (when available) or averages, and are used without accounting for their uncertainties, which are however in general small with respect to the uncertainties on the τ branching fractions.
The following list does not include the constraints already introduced in Section 2, and listed in Table 1, where some measured ratios of branching fractions are expressed as ratios of two branching fractions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|