HFLAV-Tau Spring 2017 report

Sw. Banerjee, University of Louisville, USA

M. Chrząszcz, IFJ PAN, Kraków, Poland and Universität Zürich, Switzerland

K. Hayasaka, Niigata University, Japan

H. Hayashii, Nara Women's University, Japan

A. Lusiani, Scuola Normale Superiore and INFN Pisa, Italy

M. Roney, University of Victoria, Canada

B. Shwartz, Budker Institute of Nuclear Physics, Russia

18 April 2017

Contents

1	Introduction	2
2	Branching fraction fit2.1Technical implementation of the fit procedure2.2Fit results2.3Changes with respect to the previous report2.4Differences between the HFLAV Spring 2017 fit and the PDG 2016 fit2.5Branching ratio fit results and experimental inputs2.6Correlation terms between basis branching fractions uncertainties2.7Equality constraints	2 3 3 4 5 13 16
3	Tests of lepton universality	19
4	Universality improved ${\sf B}(au o { m e} u \overline{ u})$ and ${\sf R}_{\sf had}$	20
5	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	21 21 22 23
6	Upper limits on $ au$ lepton-flavour-violating branching fractions	24
7	Combination of upper limits on $ au$ lepton-flavour-violating branching fractions	26
A	Branching fractions fit measurement list by reference	31
Re	eferences	37

1 Introduction

We present averages of a selection of τ lepton quantities with the goal to provide the best tests of the universality of the charged-current weak interaction (Section 3) and of the Cabibbo-Kobayashi-Maskawa (CKM) matrix coefficient $|V_{us}|$ from τ decays (Section 5). We focus on the averages that benefit most from the adoption of the HFLAV methodology [1], namely a global fit of the τ branching fractions that best exploits the available experimental information. Since the 2016 edition, the HFLAV-Tau group has collaborated to the determination of the τ -lepton branching fractions based on a global fit and to the related mini-review that are included in the "Review of particle physics" [2]. The differences between the PDG 2016 fit and the fit presented here are detailed in Section 2.4.

All relevant published statistical correlations are used, and a selection of measurements, particularly the most precise and the most recent ones, was studied to take into account the significant systematic dependencies from external parameters and common sources of systematic uncertainty.

Finally, we report in Section 6 the latest limits on the lepton-flavour-violating τ branching fractions and in Section 7 we determine the combined upper limits for the branching fractions that have multiple experimental results.

The τ lepton results are obtained from inputs available through summer 2016 and have been published on the web in 2016 with the label "Summer 2016". However, there have been minor revisions since then, and we have updated tables and plots in this report with the label "Spring 2017".

2 Branching fraction fit

A global fit of the available experimental measurements is used to determine the τ branching fractions, together with their uncertainties and statistical correlations. The τ branching fractions provide a test for theory predictions based on the Standard Model (SM) EW and QCD interactions and can be further elaborated to test the EW charged-current universality for leptons, to determine the CKM matrix coefficient $|V_{us}|$ (and the QCD coupling constant α_s at the τ mass).

The measurements used in the fit are listed in Table 1 and consist of either τ decay branching fractions, labelled as Γ_i/Γ_j . A minimum χ^2 fit is performed for all the measured quantities and for some additional branching fractions and ratios of branching fractions, and all fit results are listed in Table 1. Some fitted quantities are equal to the ratio of two other fitted quantities, as documented with the notation Γ_i/Γ_j in Table 1. Some fitted quantities are sums of other fitted quantities, for instance $\Gamma_8 = B(\tau \rightarrow h^-\nu_{\tau})$ is the sum of $\Gamma_9 = B(\tau \rightarrow \pi^-\nu_{\tau})$ and $\Gamma_{10} = B(\tau \rightarrow K^-\nu_{\tau})$. The symbol *h* is used to mean either a π or *K*. Section 2.7 lists all equations relating one quantity to the sum of other quantities. In the following, we refer to both types of relations between fitted quantities collectively as constraint equations or constraints. The fit χ^2 is minimized subject to all the above mentioned constraints, listed in Table 1 and Section 2.7. The fit procedure is equivalent to that employed in the previous HFLAV reports [1, 3, 4].

2.1 Technical implementation of the fit procedure

The fit computes the quantities q_i by minimizing a χ^2 while respecting a series of equality constraints on the q_i . The χ^2 is computed using the measurements x_i and their covariance matrix V_{ij} as

$$\chi^2 = (x_i - A_{ik}q_k)^t V_{ij}^{-1} (x_j - A_{jl}q_l) , \qquad (1)$$

where the model matrix A_{ij} is used to get the vector of the predicted measurements x'_i from the vector of the fit parameters q_j as $x'_i = A_{ij}q_j$. In this particular implementation, the measurements are grouped according to the measured quantity, and all quantities with at least one measurement correspond to a fit parameter. Therefore, the matrix A_{ij} has one row per measurement x_i and one column per fitted quantity q_j , with unity coefficients for the rows and column that identify a measurement x_i of the quantity q_j . In summary, the χ^2 given in Eq. (1) is minimized subject to the constraints

$$f_r(q_s) - c_r = 0 \tag{2}$$

where Eq. (2) corresponds to the constraint equations, written as a set of "constraint expressions" that are equated to zero. Using the method of Lagrange multipliers, a set of equations is obtained by taking the derivatives with respect

to the fitted quantities q_k and the Lagrange multipliers λ_r of the sum of the χ^2 and the constraint expressions multiplied by the Lagrange multipliers λ_r , one for each constraint:

$$\min \left| (A_{ik}q_k - x_i)^t V_{ij}^{-1} (A_{jl}q_l - x_j) + 2\lambda_r (f_r(q_s) - c_r) \right|$$
(3)

$$(\partial/\partial q_k, \partial/\partial \lambda_r)$$
 [expression above] = 0. (4)

Equation (4) defines a set of equations for the vector of the unknowns (q_k, λ_r) , some of which may be non-linear, in case of non-linear constraints. An iterative minimization procedure approximates at each step the non-linear constraint expressions by their first order Taylor expansion around the current values of the fitted quantities, \overline{q}_s :

$$f_r(q_s) - c_r \simeq f_r(\overline{q}_s) + \left. \frac{\partial f_r(q_s)}{\partial q_s} \right|_{\overline{q}_s} (q_s - \overline{q}_s) - c_r , \qquad (5)$$

which can be written as

$$B_{rs}q_s - c_r'$$
, (6)

where c'_r are the resulting constant known terms, independent of q_s at first order. After linearization, the differentiation by q_k and λ_r is trivial and leads to a set of linear equations

$$A_{ki}^{t}V_{ji}^{-1}A_{jl}q_{l} + B_{kr}^{t}\lambda_{r} = A_{ki}^{t}V_{ji}^{-1}x_{j}$$

$$\tag{7}$$

$$B_{rs}q_s = c_r' , (8)$$

which can be expressed as:

$$F_{ij}u_j = v_i , \qquad (9)$$

where $u_j = (q_k, \lambda_r)$ and v_i is the vector of the known constant terms running over the index k and then r in the right terms of Eq. (7) and Eq. (8). Solving the equation set in Eq. (9) gives the fitted quantities and their covariance matrix, using the measurements and their covariance matrix. The fit procedure starts by computing the linear approximation of the non-linear constraint expressions around the quantities seed values. With an iterative procedure, the unknowns are updated at each step by solving the equations and the equations are then linearized around the updated values, until the RMS average of relative variation of the fitted unknowns is reduced below 10^{-12} .

2.2 Fit results

The fit output consists of 135 fitted quantities that correspond to either branching fractions or ratios of branching fractions. The fitted quantities values and uncertainties are listed in Table 1. The off-diagonal statistical correlation terms between a subset of 47 "basis quantities" are listed in Section 2.6. All the remaining statistical correlation terms can be obtained using the constraint equations listed in Table 1 and Section 2.7.

The fit has $\chi^2/d.o.f. = 137/123$, corresponding to a confidence level CL = 17.84%. We use a total of 170 measurements to fit the above mentioned 135 quantities subjected to 88 constraints. Although the unitarity constraint is not applied, the fit is statistically consistent with unitarity, where the residual is $\Gamma_{998} = 1 - \Gamma_{AII} = (0.0355 \pm 0.1031) \cdot 10^{-2}$.

A scale factor of 5.44 (as in the three previous reports [1, 3, 4]) has been applied to the published uncertainties of the two severely inconsistent measurements of $\Gamma_{96} = \tau \rightarrow KKK\nu$ by BABAR and Belle. The scale factor has been determined using the PDG procedure, *i.e.*, to the proper size in order to obtain a reduced χ^2 equal to 1 when fitting just the two Γ_{96} measurements.

For several old results, for historical reasons, the table reports the total error (statistical plus systematic) in the position of the statistical error and zero in the position of the systematic error. Since the fit depends only on the total errors, the results are unaffected.

2.3 Changes with respect to the previous report

The following changes have been introduced with respect to the previous HFLAV report [4].

Two old preliminary results have been removed:

- $\Gamma_{35} = B(\tau \rightarrow \pi K_S \nu)$, BABAR [5],
- $\Gamma_{40} = B(\tau \to \pi K_S \pi^0 \nu)$, BABAR [6].

They were announced in 2008 and 2009 but have not been published.

In the 2014 report, for several *BABA*R and Belle experimental results we used more precise numerical values than the published ones, using internal information from the Collaborations. We revert to the published figures in this report, as the improvements in the fit results were negligible. In so doing, we use in this report the same values that are used in the PDG 2016 fit.

The Belle result on $\tau^- \rightarrow K_S^0$ (particles)^{- ν_{τ}} [7] has been discarded, because it was determined that the published information does not permit a reliable determination of the correlations with the other results in the same paper. The correlations estimated for the HFLAV 2014 report were inconsistent. As a result, both the covariance matrix of the Belle results and the overall correlation matrix for the branching ratio fit results were non-positive-definite. It has been found that the inconsistency had negligible impact on lepton universality tests and on the $|V_{us}|$ measurements.

The ALEPH result on Γ_{46} $(\tau^- \rightarrow \pi^- K^0 \overline{K}^0 \nu_{\tau})$ [8] has been removed from the fit inputs, since it is simply the sum of twice $\Gamma_{47} = \pi^- K_S^0 K_S^0 \nu_{\tau}$ and $\Gamma_{48} = \pi^- K_S^0 K_L^0 \nu_{\tau}$ from the same paper, hence 100% correlated with them.

Several minor corrections have been applied to the constraints. The list of constraints included in the following fully documents the changes when compared with the same list in the 2014 edition. In some cases the relation equating one decay mode to a sum of modes included some minor terms that did not match the mode definitions. In other cases, the sum included modes with overlapping components. The effects on the 2014 fit results have been found to be modest with respect to the quoted uncertainties. For instance, the definition of the total branching fraction has been updated as follows:

$$\begin{split} \Gamma_{\text{AII}} &= \quad \Gamma_3 + \Gamma_5 + \Gamma_9 + \Gamma_{10} + \Gamma_{14} + \Gamma_{16} + \Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + \Gamma_{35} + \Gamma_{37} + \Gamma_{40} + \Gamma_{42} + \Gamma_{47} \cdot (1 + ((\Gamma_{<\kappa^0|\mathcal{K}_L>} \cdot \Gamma_{<\bar{\kappa}^0|\mathcal{K}_L>})) + \Gamma_{48} + \Gamma_{62} + \Gamma_{70} + \Gamma_{77} + \Gamma_{811} + \Gamma_{812} + \Gamma_{93} + \Gamma_{94} + \Gamma_{832} + \Gamma_{833} + \Gamma_{126} + \Gamma_{128} + \Gamma_{802} + \Gamma_{803} + \Gamma_{800} + \Gamma_{151} + \Gamma_{130} + \Gamma_{132} + \Gamma_{44} + \Gamma_{53} + \Gamma_{50} \cdot (1 + ((\Gamma_{<\kappa^0|\mathcal{K}_L>} \cdot \Gamma_{<\bar{\kappa}^0|\mathcal{K}_L>})) + (\Gamma_{<\kappa^0|\mathcal{K}_s>} \cdot \Gamma_{<\bar{\kappa}^0|\mathcal{K}_s>}))) + \Gamma_{51} + \Gamma_{167} \cdot (\Gamma_{\phi \to \mathcal{K} + \mathcal{K}^-} + \Gamma_{\phi \to \mathcal{K}_s \mathcal{K}_L}) + \Gamma_{152} + \Gamma_{920} + \Gamma_{821} + \Gamma_{822} + \Gamma_{831} + \Gamma_{136} + \Gamma_{945} + \Gamma_{805} \\ \end{split}$$

In the 2014 definition, the term $\Gamma_{78} = h^- h^- h^+ 3\pi^0 \nu_{\tau}$ included the contributions of $\Gamma_{50} = \pi^- \pi^0 K_S^0 K_S^0 \nu_{\tau}$ and $\Gamma_{132} = \pi^- \overline{K}^0 \eta \nu_{\tau}$, which were already included explicitly in Γ_{AII} . In the present definition, Γ_{78} has been replaced with modes whose sum corresponds to

 $\Gamma_{810} = 2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0}).

As in 2014, the total τ branching fraction Γ_{AII} definition includes two modes that have overlapping final states, to a minor extent, which we consider negligible:

$$\begin{split} \Gamma_{50} &= \pi^- \pi^0 K^0_S K^0_S \nu_\tau \\ \Gamma_{132} &= \pi^- \overline{K}^0 \eta \nu_\tau \ . \end{split}$$

Finally, we updated to the PDG 2015 results [9] all the parameters corresponding to the measurements' systematic biases and uncertainties and all the parameters appearing in the constraint equations in Section 2.7 and Table 1.

2.4 Differences between the HFLAV Spring 2017 fit and the PDG 2016 fit

As is standard for the PDG branching fraction fits, the PDG 2016 τ branching fraction fit is unitarity constrained, while the HFLAV 2016 fit is unconstrained.

The HFLAV-Tau fit uses the ALEPH measurements of branching fractions defined according to the final state content of "hadrons" and kaons, where a "hadron" corresponds to either a pion or a kaon, since this set of results is closer to the actual experimental measurements and facilitates a more comprehensive treatment of the experimental results correlations [1]. The PDG 2016 fit on the other hand continues to use – as in the past editions – the ALEPH measurements of modes with pions and kaons, which correspond to the final set of published measurements of the collaboration. It is planned eventually to update the PDG fit to use the same ALEPH measurement set that is used by HFLAV.

The HFLAV Spring 2017 fit, as in 2014, uses the ALEPH estimate for $\Gamma_{805} = B(\tau \rightarrow a_1^-(\rightarrow \pi^-\gamma)\nu_{\tau})$, which is not a direct measurement. The PDG 2016 fit uses the PDG average of $B(a_1 \rightarrow \pi\gamma)$ as a parameter and defines $\Gamma_{805} = B(a_1 \rightarrow \pi\gamma) \times B(\tau \rightarrow 3\pi\nu)$. As a consequence, the PDG fit procedure does not take into account the large uncertainty on $B(a_1 \rightarrow \pi\gamma)$, resulting in an underestimated fit uncertainty on Γ_{805} . Therefore, in this case an appropriate correction has to be applied after the fit.

2.5 Branching ratio fit results and experimental inputs

Table 1 reports the τ branching ratio fit results and experimental inputs.

Table 1: HFLAV Spring 2017 branching fractions fit results.

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$\Gamma_1 = (particles)^- \geq 0 neutrals \geq 0 \mathcal{K}^0 u_{ au}$	0.8519 ± 0.0011	HFLAV Spring 2017 fit
$\Gamma_2 = (particles)^- \geq 0 neutrals \geq 0 K^0_L u_{ au}$	0.8453 ± 0.0010	HFLAV Spring 2017 fit
$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	0.17392 ± 0.00040	HFLAV Spring 2017 fit
$0.17319 \pm 0.00077 \pm 0.00000$	ALEPH	[10]
$0.17325 \pm 0.00095 \pm 0.00077$	DELPHI	[11]
$0.17342 \pm 0.00110 \pm 0.00067$	L3	[12]
$0.17340 \pm 0.00090 \pm 0.00060$	OPAL	[13]
$\frac{\Gamma_3}{\Gamma_5} = \frac{\mu^- \overline{\nu}_\mu \nu_\tau}{e^- \overline{\nu}_e \nu_\tau}$	0.9762 ± 0.0028	HFLAV Spring 2017 fit
$0.9970 \pm 0.0350 \pm 0.0400$	ARGUS	[14]
$0.9796 \pm 0.0016 \pm 0.0036$	BABAR	[15]
$0.9777 \pm 0.0063 \pm 0.0087$	CLEO	[16]
$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$	0.17816 ± 0.00041	HFLAV Spring 2017 fit
$0.17837 \pm 0.00080 \pm 0.00000$	ALEPH	[10]
$0.17760 \pm 0.00060 \pm 0.00170$	CLEO	[16]
$0.17877 \pm 0.00109 \pm 0.00110$	DELPHI	[11]
$0.17806 \pm 0.00104 \pm 0.00076$	L3	[12]
$0.17810 \pm 0.00090 \pm 0.00060$	OPAL	[17]
$\Gamma_7 = h^- \ge 0 \mathcal{K}_L^0 u_ au$	0.12023 ± 0.00054	HFLAV Spring 2017 fit
$0.12400 \pm 0.00700 \pm 0.00700$	DELPHI	[18]
$0.12470 \pm 0.00260 \pm 0.00430$	L3	[19]
$0.12100\pm0.00700\pm0.00500$	OPAL	[20]
$\Gamma_8 = h^- \nu_{\tau}$	0.11506 ± 0.00054	HFLAV Spring 2017 fit
$0.11524 \pm 0.00105 \pm 0.00000$	ALEPH	[10]
$0.11520 \pm 0.00050 \pm 0.00120$	CLEO	[16]
$0.11571 \pm 0.00120 \pm 0.00114$	DELPHI	[21]
$0.11980 \pm 0.00130 \pm 0.00160$	OPAL	[22]
$\frac{\Gamma_8}{\Gamma_5} = \frac{h^- \nu_{\tau}}{e^- \overline{\nu}_e \nu_{\tau}}$	0.6458 ± 0.0033	HFLAV Spring 2017 fit
$\Gamma_9 = \pi^- \nu_\tau$	0.10810 ± 0.00053	HFLAV Spring 2017 fit
$\frac{\Gamma_9}{\Gamma_5} = \frac{\pi^- \nu_\tau}{e^- \overline{\nu}_e \nu_\tau}$	0.6068 ± 0.0032	HFLAV Spring 2017 fit
$0.5945 \pm 0.0014 \pm 0.0061$	BABAR	[15]
$\Gamma_{10} = K^{-} \nu_{\tau}$ (0.6960 ± 0.0287 ± 0.0000) · 10 ⁻²	$(0.6960 \pm 0.0096) \cdot 10^{-2}$ ALEPH	HFLAV Spring 2017 fit [23]

T 1 1 4			c	•	
Table 1	-	continued	trom	previous	page

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$(0.6600 \pm 0.0700 \pm 0.0900) \cdot 10^{-2}$	CLEO	[24]
$(0.8500\pm 0.1800\pm 0.0000)\cdot 10^{-2}$	DELPHI	[25]
$(0.6580 \pm 0.0270 \pm 0.0290) \cdot 10^{-2}$	OPAL	[26]
$\frac{\Gamma_{10}}{\Gamma} = \frac{K^- \nu_{\tau}}{\Gamma}$	$(3.906 \pm 0.054) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$ \begin{bmatrix} \Gamma_5 & e^{-}\overline{\nu}_e\nu_{\tau} \\ (3.882 \pm 0.032 \pm 0.057) \cdot 10^{-2} \end{bmatrix} $	BABAR	[15]
$\frac{1}{\Gamma_{10} K^{-} \nu_{-}}$		[]
$\frac{1}{\Gamma_9} = \frac{\pi \nu_7}{\pi^- \nu_7}$	$(6.438 \pm 0.094) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{11}=h^-\geq 1$ neutrals $ u_ au$	0.36973 ± 0.00097	HFLAV Spring 2017 fit
$\Gamma_{12} = h^- \ge 1 \pi^0 \nu_{\tau} \text{ (ex. } \mathcal{K}^0 \text{)}$	0.36475 ± 0.00097	HFLAV Spring 2017 fit
$\Gamma_{13} = h^- \pi^0 \nu_\tau$	0.25935 ± 0.00091	HFLAV Spring 2017 fit
$0.25924 \pm 0.00129 \pm 0.00000$	ALEPH	[10]
$0.25670 \pm 0.00010 \pm 0.00390$	Belle	[27]
$0.25870 \pm 0.00120 \pm 0.00420$	CLEO	[28]
$0.25740 \pm 0.00201 \pm 0.00138$	DELPHI	[21]
$0.25050 \pm 0.00350 \pm 0.00500$	L3	[19]
$0.25890 \pm 0.00170 \pm 0.00290$	OPAL	[22]
$\Gamma_{14} = \pi^- \pi^0 \nu_\tau$	0.25502 ± 0.00092	HFLAV Spring 2017 fit
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$(0.4327\pm0.0149)\cdot10^{-2}$	HFLAV Spring 2017 fit
$(0.4440 \pm 0.0354 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[23]
$(0.4160\pm 0.0030\pm 0.0180)\cdot 10^{-2}$	BABAR	[29]
$(0.5100\pm 0.1000\pm 0.0700)\cdot 10^{-2}$	CLEO	[24]
$(0.4710 \pm 0.0590 \pm 0.0230) \cdot 10^{-2}$	OPAL	[30]
${\sf \Gamma}_{17}=h^-\geq 2\pi^0 u_ au$	0.10775 ± 0.00095	HFLAV Spring 2017 fit
$0.09910 \pm 0.00310 \pm 0.00270$	OPAL	[22]
$\Gamma_{18} = h^- 2\pi^0 \nu_\tau$	$(9.458\pm 0.097)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{19} = h^- 2\pi^0 \nu_\tau \text{ (ex. } \mathcal{K}^0\text{)}$	$(9.306\pm 0.097)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(9.295\pm 0.122\pm 0.000)\cdot 10^{-2}$	ALEPH	[10]
$(9.498\pm 0.320\pm 0.275)\cdot 10^{-2}$	DELPHI	[21]
$(8.880\pm0.370\pm0.420)\cdot10^{-2}$	L3	[19]
$\frac{\Gamma_{19}}{\Gamma} = \frac{h^{-}2\pi^{0}\nu_{\tau} \text{ (ex. } \mathcal{K}^{0})}{\mu_{\tau}}$	0.3588 ± 0.0044	HFLAV Spring 2017 fit
$\begin{array}{ccc} & & & & & & & \\ 1_{13} & & & & & & & \\ 0.3420 \pm 0.0060 \pm 0.0160 \end{array}$	CLEO	[31]
$\Gamma_{20} = \pi^{-} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$(9.242\pm 0.100)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{23} = K^- 2\pi^0 \nu_\tau \text{ (ex. } K^0\text{)}$	$(0.0640 \pm 0.0220) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.0560 \pm 0.0250 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[23]
$(0.0900\pm 0.1000\pm 0.0300)\cdot 10^{-2}$	CLEO	[24]
$\Gamma_{24} = h^- \ge 3 \pi^0 \nu_\tau$	$(1.318\pm 0.065)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{25} = h^- > 3 \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$(1.233 \pm 0.065) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$(1.403 \pm 0.214 \pm 0.224) \cdot 10^{-2}$	DELPHI	[21]
$\Gamma_{26} = h^- 3\pi^0 \nu_{\tau}$	$(1.158 \pm 0.072) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$(1.082\pm0.093\pm0.000)\cdot10^{-2}$	ALEPH	[10]

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$(1.700\pm 0.240\pm 0.380)\cdot 10^{-2}$	L3	[19]
$\frac{\Gamma_{26}}{\Gamma} = \frac{h^- 3\pi^0 \nu_\tau}{h^- \tau^0}$	$(4.465 \pm 0.277) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$\begin{array}{ccc} 1_{13} & n & \pi^{\circ} \nu_{\tau} \\ (4.400 \pm 0.300 \pm 0.500) \cdot 10^{-2} \end{array}$	CLEO	[31]
$\Gamma_{27} = \pi^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$(1.029\pm 0.075)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$	$(4.283\pm2.161)\cdot10^{-4}$	HFLAV Spring 2017 fit
$(3.700 \pm 2.371 \pm 0.000) \cdot 10^{-4}$	ALEPH	[23]
$\Gamma_{29} = h^{-} 4\pi^{0} \nu_{\tau} \text{ (ex. } \mathcal{K}^{0}\text{)}$	$(0.1568 \pm 0.0391) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$\frac{(0.1600 \pm 0.0500 \pm 0.0500) \cdot 10^{-2}}{5}$		
$\Gamma_{30} = h^{-} 4\pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$ $(0.1120 + 0.0509 + 0.0000) \cdot 10^{-2}$	$(0.1099 \pm 0.0391) \cdot 10^{-2}$ ALEPH	HFLAV Spring 2017 fit
$\frac{1}{\Gamma_{21} = K^{-} > 0 \pi^{0} > 0 K^{0} > 0 \gamma \nu_{-}}$	$(1.545 \pm 0.030) \cdot 10^{-2}$	HELAV Spring 2017 fit
$(1.700 \pm 0.120 \pm 0.190) \cdot 10^{-2}$	CLEO	[24]
$(1.540\pm 0.240\pm 0.000)\cdot 10^{-2}$	DELPHI	[25]
$(1.528 \pm 0.039 \pm 0.040) \cdot 10^{-2}$	OPAL	[26]
$\Gamma_{32} = \mathcal{K}^- \geq 1 (\pi^0 \text{or} \mathcal{K}^0 \text{or} \gamma) u_{ au}$	$(0.8528\pm 0.0286)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{33} = K_S^0(\text{particles})^- u_{ au}$	$(0.9372\pm 0.0292)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.9700\pm 0.0849\pm 0.0000)\cdot 10^{-2}$	ALEPH	[8]
$(0.9700 \pm 0.0900 \pm 0.0600) \cdot 10^{-2}$	OPAL	[32]
$\Gamma_{34} = h^- \overline{K}^0 \nu_{\tau}$	$(0.9865\pm 0.0139)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.8550 \pm 0.0360 \pm 0.0730) \cdot 10^{-2}$	CLEO	[33]
$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	$(0.8386\pm 0.0141)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.9280 \pm 0.0564 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[23]
$(0.8320 \pm 0.0025 \pm 0.0150) \cdot 10^{-2}$	Belle	[7]
$(0.9500 \pm 0.1500 \pm 0.0600) \cdot 10^{-2}$	L3	[34]
$(0.9330 \pm 0.0680 \pm 0.0490) \cdot 10^{-2}$	OPAL	[35]
$\Gamma_{37} = K^- K^0 \nu_{\tau}$	$(0.1479\pm0.0053)\cdot10^{-2}$	HFLAV Spring 2017 fit
$(0.1580 \pm 0.0453 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[8]
$(0.1620 \pm 0.0237 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[23]
$(0.1480 \pm 0.0013 \pm 0.0055) \cdot 10^{-2}$	Belle	[7]
$(0.1510 \pm 0.0210 \pm 0.0220) \cdot 10^{-2}$	CLEO	[33]
$\Gamma_{38} = K^- K^0 \ge 0 \pi^0 \nu_\tau$	$(0.2982\pm 0.0079)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.3300 \pm 0.0550 \pm 0.0390) \cdot 10^{-2}$	OPAL	[35]
$\Gamma_{39} = h^- \overline{K}^0 \pi^0 \nu_\tau$	$(0.5314\pm 0.0134)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.5620 \pm 0.0500 \pm 0.0480) \cdot 10^{-2}$	CLEO	[33]
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$(0.3812\pm 0.0129)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.2940 \pm 0.0818 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[8]
$(0.3470 \pm 0.0646 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[23]
$(0.3860 \pm 0.0031 \pm 0.0135) \cdot 10^{-2}$	Belle	[7]
$(0.4100 \pm 0.1200 \pm 0.0300) \cdot 10^{-2}$	L3	[34]
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	$(0.1502\pm0.0071)\cdot10^{-2}$	HFLAV Spring 2017 fit
$(0.1520\pm 0.0789\pm 0.0000)\cdot 10^{-2}$	ALEPH	[8]

Table 1 – continued from previous page

		c	•	
Table 1	 continued 	trom	previous	page

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$(0.1430 \pm 0.0291 \pm 0.0000) \cdot 10^{-2}$	ALEPH	[23]
$(0.1496 \pm 0.0019 \pm 0.0073) \cdot 10^{-2}$	Belle	[7]
$(0.1450\pm 0.0360\pm 0.0200)\cdot 10^{-2}$	CLEO	[33]
$\Gamma_{43} = \pi^- \overline{K}^0 \ge 1 \pi^0 \nu_\tau$	$(0.4046 \pm 0.0260) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.3240\pm 0.0740\pm 0.0660)\cdot 10^{-2}$	OPAL	[35]
$\Gamma_{44} = \pi^- \overline{K}^0 \pi^0 \pi^0 \nu_\tau \text{ (ex. } K^0\text{)}$	$(2.340 \pm 2.306) \cdot 10^{-4}$	HFLAV Spring 2017 fit
$(2.600\pm2.400\pm0.000)\cdot10^{-4}$	ALEPH	[36]
$\Gamma_{46} = \pi^- \mathcal{K}^0 \overline{\mathcal{K}}^0 \nu_\tau$	$(0.1513\pm 0.0247)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{47} = \pi^- K_S^0 K_S^0 \nu_\tau$	$(2.332\pm 0.065)\cdot 10^{-4}$	HFLAV Spring 2017 fit
$(2.600\pm1.118\pm0.000)\cdot10^{-4}$	ALEPH	[8]
$(2.310\pm 0.040\pm 0.080)\cdot 10^{-4}$	BABAR	[37]
$(2.330\pm 0.033\pm 0.093)\cdot 10^{-4}$	Belle	[7]
$(2.300\pm0.500\pm0.300)\cdot10^{-4}$	CLEO	[33]
$\Gamma_{48} = \pi^- K_S^0 K_L^0 \nu_\tau$	$(0.1047\pm 0.0247)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.1010\pm 0.0264\pm 0.0000)\cdot 10^{-2}$	ALEPH	[8]
$\Gamma_{49} = \pi^- \mathcal{K}^0 \overline{\mathcal{K}}^0 \pi^0 \nu_\tau$	$(3.540 \pm 1.193) \cdot 10^{-4}$	HFLAV Spring 2017 fit
$\Gamma_{50} = \pi^- \pi^0 K_S^0 K_S^0 \nu_\tau$	$(1.815\pm 0.207)\cdot 10^{-5}$	HFLAV Spring 2017 fit
$(1.600\pm 0.200\pm 0.220)\cdot 10^{-5}$	BABAR	[37]
$(2.000\pm0.216\pm0.202)\cdot10^{-5}$	Belle	[7]
$\Gamma_{51} = \pi^- \pi^0 K_S^0 K_L^0 \nu_\tau$	$(3.177 \pm 1.192) \cdot 10^{-4}$	HFLAV Spring 2017 fit
$(3.100\pm1.100\pm0.500)\cdot10^{-4}$	ALEPH	[8]
$\Gamma_{53} = \overline{K}^0 h^- h^- h^+ \nu_{\tau}$	$(2.218 \pm 2.024) \cdot 10^{-4}$	HFLAV Spring 2017 fit
$(2.300\pm2.025\pm0.000)\cdot10^{-4}$	ALEPH	[8]
${\sf \Gamma}_{54}=h^-h^-h^+\ge 0$ neutrals ≥ 0 ${\cal K}^0_L$ $ u_ au$	0.15215 ± 0.00061	HFLAV Spring 2017 fit
$0.15000 \pm 0.00400 \pm 0.00300$	CELLO	[38]
$0.14400 \pm 0.00600 \pm 0.00300$	L3	[39]
$0.15100 \pm 0.00800 \pm 0.00600$	ТРС	[40]
$\Gamma_{55} = h^- h^- h^+ \ge 0 \text{ neutrals } \nu_\tau \text{ (ex. } \mathcal{K}^0\text{)}$	0.14567 ± 0.00057	HFLAV Spring 2017 fit
$0.14556 \pm 0.00105 \pm 0.00076$	L3	[41]
$0.14960 \pm 0.00090 \pm 0.00220$	OPAL	[42]
$\Gamma_{56} = h^- h^- h^+ \nu_\tau$	$(9.780\pm 0.054)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{57} = h^- h^- h^+ \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$(9.439\pm 0.053)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(9.510\pm 0.070\pm 0.200)\cdot 10^{-2}$	CLEO	[43]
$(9.317\pm0.090\pm0.082)\cdot10^{-2}$	DELPHI	[21]
$\frac{\Gamma_{57}}{\Gamma_{rr}} = \frac{h^- h^- h^+ \nu_{\tau} \text{ (ex. } K^0)}{h^- h^- h^+ > 0 \text{ peutrals } \nu_{\tau} \text{ (ex. } K^0)}$	0.6480 ± 0.0030	HFLAV Spring 2017 fit
$0.6600 \pm 0.0040 \pm 0.0140$	OPAL	[42]
$\Gamma_{58} = h^- h^- h^+ \nu_\tau \text{ (ex. } \mathcal{K}^0, \omega)$	$(9.408 \pm 0.053) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$(9.469 \pm 0.096 \pm 0.000) \cdot 10^{-2}$	ALEPH	[10]
$\Gamma_{59} = \pi^- \pi^+ \pi^- \nu_\tau$	$(9.290\pm 0.052)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{60} = \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \text{ (ex. } \mathcal{K}^{0})$	$(9.000 \pm 0.051) \cdot 10^{-2}$	HFLAV Spring 2017 fit

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$(8.830\pm 0.010\pm 0.130)\cdot 10^{-2}$	BABAR	[44]
$(8.420 \pm 0.000^{+0.260}_{-0.250}) \cdot 10^{-2}$	Belle	[45]
$(9.130\pm 0.050\pm 0.460)\cdot 10^{-2}$	CLEO3	[46]
$\Gamma_{62} = \pi^- \pi^- \pi^+ \nu_\tau \text{ (ex. } \mathcal{K}^0, \omega)$	$(8.970\pm0.052)\cdot10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{63}=h^-h^-h^+\geq 1$ neutrals $ u_ au$	$(5.325\pm0.050)\cdot10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{64} = h^- h^- h^+ \ge 1 \pi^0 \nu_{\tau} \text{ (ex. } \mathcal{K}^0 \text{)}$	$(5.120\pm 0.049)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{65} = h^- h^- h^+ \pi^0 \nu_\tau$	$(4.790\pm 0.052)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{66} = h^- h^- h^+ \pi^0 \nu_{\tau} \text{ (ex. } \mathcal{K}^0)$	$(4.606\pm 0.051)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(4.734\pm0.077\pm0.000)\cdot10^{-2}$	ALEPH	[10]
$(4.230\pm 0.060\pm 0.220)\cdot 10^{-2}$	CLEO	[43]
$(4.545\pm0.106\pm0.103)\cdot10^{-2}$	DELPHI	[21]
$\Gamma_{67} = h^- h^- h^+ \pi^0 \nu_{\tau} $ (ex. K^0, ω)	$(2.820\pm 0.070)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{68} = \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$(4.651\pm 0.053)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{69} = \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$(4.519 \pm 0.052) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$(4.190\pm 0.100\pm 0.210)\cdot 10^{-2}$	CLEO	[47]
$\Gamma_{70} = \pi^- \pi^- \pi^+ \pi^0 \nu_\tau \text{ (ex. } \mathcal{K}^0, \omega)$	$(2.769\pm 0.071)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{74} = h^- h^- h^+ \ge 2 \pi^0 \nu_{\tau} \text{ (ex. } \mathcal{K}^0 \text{)}$	$(0.5135\pm 0.0312)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.5610\pm0.0680\pm0.0950)\cdot10^{-2}$	DELPHI	[21]
$\Gamma_{75} = h^- h^- h^+ 2\pi^0 \nu_\tau$	$(0.5024\pm 0.0310)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{76} = h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}\text{)}$	$(0.4925 \pm 0.0310) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$(0.4350\pm 0.0461\pm 0.0000)\cdot 10^{-2}$	ALEPH	[10]
$\frac{\Gamma_{76}}{\Gamma_{76}} = \frac{h^- h^- h^+ 2\pi^0 \nu_{\tau} \text{ (ex. } K^0)}{(1 - 1)^{1/2} (1 - 1)^{$	$(3.237 \pm 0.202) \cdot 10^{-2}$	HFLAV Spring 2017 fit
Γ_{54} $h^-h^-h^+ \ge 0$ neutrals $\ge 0 K_L^0 \nu_{\tau}$		[40]
$\frac{(5.400 \pm 0.200 \pm 0.300) \cdot 10}{5}$	$(0.750 + 2.550) + 10^{-4}$	
$I_{77} = n n n^2 2\pi^2 \nu_{\tau} (\text{ex. } \kappa^2, \omega, \eta)$	$(9.759 \pm 3.550) \cdot 10^{-1}$	HFLAV Spring 2017 fit
$\Gamma_{78} = h^{-} h^{-} h^{+} 3 \pi^{0} \nu_{\tau}$	$(2.107 \pm 0.299) \cdot 10^{-4}$	HFLAV Spring 2017 fit
$(2.200 \pm 0.300 \pm 0.400) \cdot 10^{-4}$	CLEO	[49]
$\Gamma_{79} = K^- h^- h^+ \ge 0$ neutrals $ u_{ au}$	$(0.6297\pm 0.0141)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{80} = \mathcal{K}^- \pi^- h^+ \nu_\tau \text{ (ex. } \mathcal{K}^0\text{)}$	$(0.4363\pm 0.0073)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\frac{\Gamma_{80}}{\Gamma} = \frac{K^{-}\pi^{-}h^{+}\nu_{\tau} \text{ (ex. } K^{0})}{\pi^{-} \pi^{+} \pi^{-} \pi^{-} \mu^{-} (m - K^{0})}$	$(4.847 \pm 0.080) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$ \begin{array}{c} 1_{60} & \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} \ (\text{ex. } K^{\circ}) \\ (5.440 \pm 0.210 \pm 0.530) \cdot 10^{-2} \end{array} $	CLEO	[50]
$\frac{1}{\Gamma_{81} = K^{-}\pi^{-}h^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0})}$	$(8.726 \pm 1.177) \cdot 10^{-4}$	HFLAV Spring 2017 fit
$\frac{\Gamma_{81}}{\Gamma_{81}} = \frac{K^{-}\pi^{-}h^{+}\pi^{0}\nu_{\tau} (\text{ex. } K^{0})}{(1 - 1)^{2}}$	$(1.931 \pm 0.266) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$\begin{array}{l} \mathbf{I}_{69} & \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}) \\ (2.610 \pm 0.450 \pm 0.420) \cdot 10^{-2} \end{array}$	CLEO	[50]
$ = K^{-} \pi^{-} \pi^{+} > 0 $	$(0.4790 \pm 0.0127) 10^{-2}$	
$\nu_{82} = n - n - n - 2 \ge 0$ neutrals ν_{τ} (0.5800 ^{+0.1500} + 0.1200) · 10 ⁻²	$(0.4700 \pm 0.0137) \cdot 10$	[51]
$\Gamma_{83} = K^{-} \pi^{-} \pi^{\tau} \ge 0 \pi^{\circ} \nu_{\tau} \text{ (ex. } K^{\circ} \text{)}$	$(0.3741 \pm 0.0135) \cdot 10^{-2}$	HFLAV Spring 2017 fit

Table 1 – continued from previous page

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$\Gamma_{84} = K^- \pi^- \pi^+ \nu_\tau$	$(0.3441\pm 0.0070)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\begin{aligned} & \Gamma_{85} = \mathcal{K}^{-} \pi^{+} \pi^{-} \nu_{\tau} \text{ (ex. } \mathcal{K}^{0} \text{)} \\ & (0.2140 \pm 0.0470 \pm 0.0000) \cdot 10^{-2} \\ & (0.2730 \pm 0.0020 \pm 0.0090) \cdot 10^{-2} \\ & (0.3300 \pm 0.0010^{+0.0160}_{-0.0170}) \cdot 10^{-2} \\ & (0.3840 \pm 0.0140 \pm 0.0380) \cdot 10^{-2} \\ & (0.4150 \pm 0.0530 \pm 0.0400) \cdot 10^{-2} \end{aligned}$	$(0.2929 \pm 0.0067) \cdot 10^{-2}$ ALEPH BABAR Belle CLEO3 OPAL	HFLAV Spring 2017 fit [52] [44] [45] [46] [30]
$\frac{\Gamma_{85}}{\Gamma_{60}} = \frac{K^{-}\pi^{+}\pi^{-}\nu_{\tau} \text{ (ex. } K^{0})}{\pi^{-}\pi^{+}\pi^{-}\nu_{\tau} \text{ (ex. } K^{0})}$	$(3.254\pm 0.074)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{87} = \mathcal{K}^- \pi^- \pi^+ \pi^0 \nu_\tau$	$(0.1331\pm 0.0119)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$ \begin{aligned} & \Gamma_{88} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)} \\ & (6.100 \pm 4.295 \pm 0.000) \cdot 10^{-4} \\ & (7.400 \pm 0.800 \pm 1.100) \cdot 10^{-4} \end{aligned} $	$(8.115 \pm 1.168) \cdot 10^{-4}$ ALEPH CLEO3	HFLAV Spring 2017 fit [52] [53]
$\Gamma_{89} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$	$(7.761 \pm 1.168) \cdot 10^{-4}$	HFLAV Spring 2017 fit
$\begin{split} & \Gamma_{92} = \pi^- K^- K^+ \geq 0 \text{ neutrals } \nu_\tau \\ & (0.1590 \pm 0.0530 \pm 0.0200) \cdot 10^{-2} \\ & (0.1500^{+0.0900}_{-0.0700} \pm 0.0300) \cdot 10^{-2} \end{split}$	$(0.1495 \pm 0.0033) \cdot 10^{-2}$ OPAL TPC	HFLAV Spring 2017 fit [54] [51]
$\begin{split} \Gamma_{93} &= \pi^{-} \mathcal{K}^{-} \mathcal{K}^{+} \nu_{\tau} \\ (0.1630 \pm 0.0270 \pm 0.0000) \cdot 10^{-2} \\ (0.1346 \pm 0.0010 \pm 0.0036) \cdot 10^{-2} \\ (0.1550 \pm 0.0010^{+0.0060}_{-0.0050}) \cdot 10^{-2} \\ (0.1550 \pm 0.0060 \pm 0.0090) \cdot 10^{-2} \end{split}$	$(0.1434 \pm 0.0027) \cdot 10^{-2}$ ALEPH BABAR Belle CLEO3	HFLAV Spring 2017 fit [52] [44] [45] [46]
$ \frac{\Gamma_{93}}{\Gamma_{60}} = \frac{\pi^- K^- K^+ \nu_\tau}{\pi^- \pi^+ \pi^- \nu_\tau \text{ (ex. } K^0)} $ (1.600 ± 0.150 ± 0.300) · 10 ⁻²	$(1.593 \pm 0.030) \cdot 10^{-2}$ CLEO	HFLAV Spring 2017 fit [50]
$\Gamma_{94} = \pi^{-} K^{-} K^{+} \pi^{0} \nu_{\tau}$ $(7.500 \pm 3.265 \pm 0.000) \cdot 10^{-4}$ $(0.550 \pm 0.140 \pm 0.120) \cdot 10^{-4}$	$(0.611 \pm 0.183) \cdot 10^{-4}$ ALEPH CLEO3	HFLAV Spring 2017 fit [52] [53]
$\frac{\Gamma_{94}}{\Gamma_{69}} = \frac{\pi^- K^- K^+ \pi^0 \nu_\tau}{\pi^- \pi^+ \pi^- \pi^0 \nu_\tau \text{ (ex. } K^0)}$ $(0.7900 \pm 0.4400 \pm 0.1600) \cdot 10^{-2}$	$(0.1353 \pm 0.0405) \cdot 10^{-2}$ CLEO	HFLAV Spring 2017 fit [50]
$\Gamma_{96} = K^{-}K^{-}K^{+}\nu_{\tau}$ $(1.578 \pm 0.130 \pm 0.123) \cdot 10^{-5}$ $(3.290 \pm 0.170^{+0.190}_{-0.200}) \cdot 10^{-5}$	$(2.174 \pm 0.800) \cdot 10^{-5}$ BABAR Belle	HFLAV Spring 2017 fit [44] [45]
$\begin{split} &\Gamma_{102} = 3h^-2h^+ \geq 0 \text{ neutrals } \nu_\tau \text{ (ex. } \mathcal{K}^0) \\ &(0.0970 \pm 0.0050 \pm 0.0110) \cdot 10^{-2} \\ &(0.1020 \pm 0.0290 \pm 0.0000) \cdot 10^{-2} \\ &(0.1700 \pm 0.0220 \pm 0.0260) \cdot 10^{-2} \end{split}$	$(0.0985 \pm 0.0037) \cdot 10^{-2}$ CLEO HRS L3	HFLAV Spring 2017 fit [55] [56] [41]
$\Gamma_{103} = 3h^{-}2h^{+}\nu_{\tau} \text{ (ex. } \mathcal{K}^{0}\text{)}$ $(7.200 \pm 1.500 \pm 0.000) \cdot 10^{-4}$ $(6.400 \pm 2.300 \pm 1.000) \cdot 10^{-4}$ $(7.700 \pm 0.500 \pm 0.900) \cdot 10^{-4}$ $(9.700 \pm 1.500 \pm 0.500) \cdot 10^{-4}$	$(8.216 \pm 0.316) \cdot 10^{-4}$ ALEPH ARGUS CLEO DELPHI	HFLAV Spring 2017 fit [10] [57] [55] [21]

Table 1 – continued from previous page

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$(5.100 \pm 2.000 \pm 0.000) \cdot 10^{-4}$	HRS	[56]
$(9.100\pm1.400\pm0.600)\cdot10^{-4}$	OPAL	[58]
$ \overline{\Gamma_{104} = 3h^{-}2h^{+}\pi^{0}\nu_{\tau} \text{ (ex. } \mathcal{K}^{0})} (2.100 \pm 0.700 \pm 0.900) \cdot 10^{-4} (1.700 \pm 0.200 \pm 0.200) \cdot 10^{-4} (1.600 \pm 1.200 \pm 0.600) \cdot 10^{-4} (2.700 \pm 1.800 \pm 0.900) \cdot 10^{-4} $	$(1.634 \pm 0.114) \cdot 10^{-4}$ ALEPH CLEO DELPHI OPAL	HFLAV Spring 2017 fit [10] [49] [21] [58]
$\Gamma_{106} = (5\pi)^- \nu_{\tau}$	$(0.7748 \pm 0.0534) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.909 \pm 0.048) \cdot 10^{-2}$	HFLAV Spring 2017 fit
$\begin{aligned} & \Gamma_{126} = \pi^{-} \pi^{0} \eta \nu_{\tau} \\ & (0.1800 \pm 0.0447 \pm 0.0000) \cdot 10^{-2} \\ & (0.1350 \pm 0.0030 \pm 0.0070) \cdot 10^{-2} \\ & (0.1700 \pm 0.0200 \pm 0.0200) \cdot 10^{-2} \end{aligned}$	$(0.1386 \pm 0.0072) \cdot 10^{-2}$ ALEPH Belle CLEO	HFLAV Spring 2017 fit [59] [60] [61]
$\Gamma_{128} = K^{-} \eta \nu_{\tau}$ $(2.900^{+1.300}_{-1.200} \pm 0.700) \cdot 10^{-4}$ $(1.420 \pm 0.110 \pm 0.070) \cdot 10^{-4}$ $(1.580 \pm 0.050 \pm 0.090) \cdot 10^{-4}$ $(2.600 \pm 0.500 \pm 0.500) \cdot 10^{-4}$	$(1.547 \pm 0.080) \cdot 10^{-4}$ ALEPH BABAR Belle CLEO	HFLAV Spring 2017 fit [59] [62] [60] [63]
$\Gamma_{130} = K^{-} \pi^{0} \eta \nu_{\tau}$ $(0.460 \pm 0.110 \pm 0.040) \cdot 10^{-4}$ $(1.770 \pm 0.560 \pm 0.710) \cdot 10^{-4}$	$(0.483 \pm 0.116) \cdot 10^{-4}$ Belle CLEO	HFLAV Spring 2017 fit [60] [64]
$\Gamma_{132} = \pi^{-} \overline{K}^{0} \eta \nu_{\tau}$ (0.880 ± 0.140 ± 0.060) · 10 ⁻⁴ (2.200 ± 0.700 ± 0.220) · 10 ⁻⁴	$(0.937 \pm 0.149) \cdot 10^{-4}$ Belle CLEO	HFLAV Spring 2017 fit [60] [64]
$\Gamma_{136} = \pi^- \pi^+ \pi^- \eta \nu_\tau \text{ (ex. } \mathcal{K}^0\text{)}$	$(2.184\pm 0.130)\cdot 10^{-4}$	HFLAV Spring 2017 fit
$\Gamma_{149} = h^- \omega \geq 0$ neutrals $ u_{ au}$	$(2.401\pm 0.075)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\begin{split} & \Gamma_{150} = h^- \omega \nu_\tau \\ & (1.910 \pm 0.092 \pm 0.000) \cdot 10^{-2} \\ & (1.600 \pm 0.270 \pm 0.410) \cdot 10^{-2} \end{split}$	$(1.995 \pm 0.064) \cdot 10^{-2}$ ALEPH CLEO	HFLAV Spring 2017 fit [59] [65]
$\frac{\Gamma_{150}}{\Gamma_{66}} = \frac{h^- \omega \nu_{\tau}}{h^- h^- h^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0)}$ 0.4310 ± 0.0330 ± 0.0000 0.4640 ± 0.0160 ± 0.0170	0.4332 ± 0.0139 ALEPH CLEO	HFLAV Spring 2017 fit [66] [43]
$\Gamma_{151} = K^{-} \omega \nu_{\tau}$ $(4.100 \pm 0.600 \pm 0.700) \cdot 10^{-4}$	$(4.100 \pm 0.922) \cdot 10^{-4}$ CLEO3	HFLAV Spring 2017 fit [53]
$\Gamma_{152} = h^{-} \pi^{0} \omega \nu_{\tau}$ $(0.4300 \pm 0.0781 \pm 0.0000) \cdot 10^{-2}$	$(0.4058 \pm 0.0419) \cdot 10^{-2}$ ALEPH	HFLAV Spring 2017 fit [59]
$\frac{\Gamma_{152}}{\Gamma_{54}} = \frac{h^- \omega \pi^0 \nu_\tau}{h^- h^+ \ge 0 \text{ neutrals} \ge 0 \ K_L^0 \nu_\tau}$	$(2.667\pm 0.275)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\frac{\Gamma_{152}}{\Gamma_{76}} = \frac{h^- \omega \pi^0 \nu_{\tau}}{h^- h^- h^+ 2 \pi^0 \nu_{\tau} \text{ (ex. } K^0)}$ 0.8100 ± 0.0600 ± 0.0600	0.8241 ± 0.0757 CLEO	HFLAV Spring 2017 fit [48]

Table 1 – continued from previous page

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.
$\Gamma_{167} = K^- \phi \nu_\tau$	$(4.445 \pm 1.636) \cdot 10^{-5}$	HFLAV Spring 2017 fit
$\Gamma_{168} = K^- \phi \nu_\tau \ (\phi \to K^+ K^-)$	$(2.174\pm0.800)\cdot10^{-5}$	HFLAV Spring 2017 fit
$\Gamma_{169}=K^-\phi\nu_\tau\;(\phi\toK^0_{\mathcal{S}}K^0_{\mathcal{L}})$	$(1.520\pm0.560)\cdot10^{-5}$	HFLAV Spring 2017 fit
$\Gamma_{800} = \pi^- \omega \nu_\tau$	$(1.954\pm0.065)\cdot10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{802} = K^{-} \pi^{-} \pi^{+} \nu_{\tau} \text{ (ex. } K^{0}, \omega)$	$(0.2923\pm 0.0067)\cdot 10^{-2}$	HFLAV Spring 2017 fit
$\Gamma_{803} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \omega, \eta)$	$(4.103\pm1.429)\cdot10^{-4}$	HFLAV Spring 2017 fit
$\Gamma_{804} = \pi^- K_L^0 K_L^0 \nu_\tau$	$(2.332\pm0.065)\cdot10^{-4}$	HFLAV Spring 2017 fit
$\Gamma_{805} = a_1^- (\to \pi^- \gamma) \nu_\tau$ $(4.000 \pm 2.000 \pm 0.000) \cdot 10^{-4}$	$(4.000 \pm 2.000) \cdot 10^{-4}$ ALEPH	HFLAV Spring 2017 fit [10]
$\Gamma_{806} = \pi^- \pi^0 K_L^0 K_L^0 \nu_\tau$	$(1.815\pm0.207)\cdot10^{-5}$	HFLAV Spring 2017 fit
$\Gamma_{810} = 2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0})	$(1.924\pm 0.298)\cdot 10^{-4}$	HFLAV Spring 2017 fit
$\Gamma_{811} = \pi^{-} 2\pi^{0} \omega \nu_{\tau} \text{ (ex. } \mathcal{K}^{0}\text{)}$ $(7.300 \pm 1.200 \pm 1.200) \cdot 10^{-5}$	$(7.105 \pm 1.586) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{812} = 2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau} \text{ (ex. } \mathcal{K}^{0}, \eta, \omega, f_{1})$ $(1.000 \pm 0.800 \pm 3.000) \cdot 10^{-5}$	$(1.344 \pm 2.683) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{820} = 3\pi^{-}2\pi^{+}\nu_{\tau} \text{ (ex. } \mathcal{K}^{0}, \omega)$	$(8.197\pm 0.315)\cdot 10^{-4}$	HFLAV Spring 2017 fit
$\Gamma_{821} = 3\pi^{-}2\pi^{+}\nu_{\tau} \text{ (ex. } \mathcal{K}^{0}, \omega, f_{1})$ (7.680 ± 0.040 ± 0.400) · 10 ⁻⁴	$(7.677 \pm 0.297) \cdot 10^{-4}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{822} = K^{-}2\pi^{-}2\pi^{+}\nu_{\tau} \text{ (ex. } K^{0}\text{)}$ $(0.600 \pm 0.500 \pm 1.100) \cdot 10^{-6}$	$(0.596 \pm 1.208) \cdot 10^{-6}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{830} = 3\pi^- 2\pi^+ \pi^0 \nu_{\tau} \text{ (ex. } \mathcal{K}^0\text{)}$	$(1.623\pm0.114)\cdot10^{-4}$	HFLAV Spring 2017 fit
$\Gamma_{831} = 2\pi^{-}\pi^{+}\omega\nu_{\tau} \text{ (ex. } \mathcal{K}^{0}\text{)}$ $(8.400 \pm 0.400 \pm 0.600) \cdot 10^{-5}$	$(8.359 \pm 0.626) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$ \Gamma_{832} = 3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau} \text{ (ex. } \mathcal{K}^{0}, \eta, \omega, f_{1}) $ $ (3.600 \pm 0.300 \pm 0.900) \cdot 10^{-5} $	$(3.771 \pm 0.875) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{833} = K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}\text{)}$ $(1.100 \pm 0.400 \pm 0.400) \cdot 10^{-6}$	$(1.108 \pm 0.566) \cdot 10^{-6}$ BABAR	HFLAV Spring 2017 fit [67]
$ \frac{\Gamma_{910} = 2\pi^{-}\pi^{+}\eta\nu_{\tau} \ (\eta \to 3\pi^{0}) \ (\text{ex. } K^{0}) }{(8.270 \pm 0.880 \pm 0.810) \cdot 10^{-5} } $	$(7.136 \pm 0.424) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$\overline{\Gamma_{911} = \pi^{-} 2\pi^{0} \eta \nu_{\tau} \ (\eta \to \pi^{+} \pi^{-} \pi^{0}) \ (\text{ex. } \mathcal{K}^{0})}$ $(4.570 \pm 0.770 \pm 0.500) \cdot 10^{-5}$	$(4.420 \pm 0.867) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{920} = \pi^{-} f_{1} \nu_{\tau} \ (f_{1} \to 2\pi^{-} 2\pi^{+})$ (5.200 ± 0.310 ± 0.370) · 10 ⁻⁵	$(5.197 \pm 0.444) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{930} = 2\pi^{-}\pi^{+}\eta\nu_{\tau} \ (\eta \to \pi^{+}\pi^{-}\pi^{0}) \ (\text{ex. } \mathcal{K}^{0})$ (5.390 ± 0.270 ± 0.410) · 10 ⁻⁵	$(5.005 \pm 0.297) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]
$\Gamma_{944} = 2\pi^{-}\pi^{+}\eta\nu_{\tau} \ (\eta \to \gamma\gamma) \ (\text{ex. } \mathcal{K}^{0})$ $(8.260 \pm 0.350 \pm 0.510) \cdot 10^{-5}$	$(8.606 \pm 0.511) \cdot 10^{-5}$ BABAR	HFLAV Spring 2017 fit [67]

Table 1 – continued from previous page

au lepton branching fraction	Fit value / Exp.	HFLAV Fit / Ref.	
$\Gamma_{945} = \pi^- 2\pi^0 \eta \nu_\tau$	$(1.929\pm0.378)\cdot10^{-4}$	HFLAV Spring 2017 fit	
$\Gamma_{998} = 1 - \Gamma_{AII}$	$(0.0355\pm0.1031)\cdot10^{-2}$	HFLAV Spring 2017 fit	

Table 1 – continued from previous page

2.6 Correlation terms between basis branching fractions uncertainties

The following tables report the correlation coefficients between basis quantities, in percent.

Table 2: Basis quantities correlation coefficients in percent, subtable 1.

Г5	23													
Г9	7	5												
Γ_{10}	3	5	1											
Γ_{14}	-13	-14	-12	-3										
Γ_{16}	0	-1	2	-1	-16									
Γ ₂₀	-5	-5	-7	-1	-40	2								
Γ ₂₃	0	0	0	-2	2	-13	-22							
Γ ₂₇	-4	-3	-8	-1	0	3	-36	6						
Γ ₂₈	0	0	0	-2	2	-13	5	-21	-29					
Γ ₃₀	-5	-4	-11	-2	-9	0	6	0	-42	0				
Γ ₃₅	0	0	0	0	0	0	0	1	0	1	0			
Г ₃₇	0	0	0	0	0	-2	1	-3	1	-3	0	-22		
Γ ₄₀	0	0	0	0	0	1	0	1	-2	1	0	-12	4	
	Гз	Γ ₅	Г9	Γ ₁₀	Γ_{14}	Γ_{16}	Γ ₂₀	Γ ₂₃	Γ_{27}	Γ ₂₈	Γ ₃₀	Γ ₃₅	Γ ₃₇	Γ ₄₀

Table 3: Basis quantities correlation coefficients in percent, subtable 2.

Γ ₄₂	0	0	0	0	1	-3	1	-5	1	-5	0	2	-21	-20
Γ_{44}	0	0	0	0	0	0	0	0	0	0	0	-1	0	-4
Γ47	0	0	0	0	0	0	0	0	0	0	0	-1	1	-4
Γ ₄₈	0	0	0	0	0	0	0	0	0	0	0	-3	0	-2
Γ ₅₀	0	0	0	0	0	0	0	-1	0	-1	0	0	7	0
Γ_{51}	0	0	0	0	0	0	0	0	0	0	0	-1	0	-1
Γ ₅₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₆₂	-3	-5	8	0	-4	5	-7	-1	-5	-1	-5	0	0	0
Γ ₇₀	-6	-6	-7	-1	-8	-1	-1	0	-1	0	3	0	0	0
Γ77	-1	0	-3	-1	-2	0	0	0	2	0	2	0	0	0
Γ ₉₃	-1	-1	3	0	-1	2	-1	0	-1	0	-1	0	0	0
Γ ₉₄	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ_{126}	0	0	0	0	0	0	-1	0	0	0	-2	0	0	0
Γ ₁₂₈	0	0	1	0	0	1	0	-1	0	-1	0	0	0	0
	Гз	Г5	Г9	Γ ₁₀	Γ_{14}	Γ_{16}	Γ ₂₀	Γ_{23}	Γ_{27}	Γ ₂₈	Γ ₃₀	Γ ₃₅	Γ37	Γ ₄₀

Γ ₁₃₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₁₃₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ_{136}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ_{151}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ_{152}	-1	0	-3	-1	-2	0	-1	0	2	0	2	0	0	0
Γ ₁₆₇	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₀₀	-2	-2	-2	0	-3	0	0	0	0	0	1	0	0	0
Γ ₈₀₂	-1	-1	0	0	-1	0	-2	0	-2	0	-1	0	0	0
Γ ₈₀₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₀₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₁₁	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₁₂	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₂₁	0	0	1	0	0	0	-1	0	0	0	-1	0	0	0
Γ ₈₂₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Гз	Γ_5	Г9	Γ_{10}	Γ_{14}	Γ_{16}	Γ_{20}	Γ_{23}	Γ_{27}	Γ ₂₈	Γ ₃₀	Γ ₃₅	Γ ₃₇	Γ_{40}

Table 4: Basis quantities correlation coefficients in percent, subtable 3.

Table 5: Basis quantities correlation coefficients in percent, subtable 4.

Γ ₈₃₁	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₃₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Г ₈₃₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₉₂₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₉₄₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Гз	Γ ₅	Г9	Γ ₁₀	Γ_{14}	Γ_{16}	Γ ₂₀	Γ ₂₃	Γ ₂₇	Γ ₂₈	Γ ₃₀	Γ ₃₅	Γ ₃₇	Γ ₄₀

Table 6: Basis quantities correlation coefficients in percent, subtable 5.

Γ ₄₄	0													
Γ ₄₇	1	0												
Γ ₄₈	-1	-6	0											
Γ ₅₀	5	0	-7	0										
Γ_{51}	0	-3	0	-6	0									
Γ ₅₃	0	0	0	0	0	0								
Γ ₆₂	0	0	1	0	0	0	0							
Γ ₇₀	0	0	0	0	0	0	0	-20						
Γ ₇₇	0	0	0	0	0	0	0	-1	-7					
Γ ₉₃	0	0	0	0	0	0	0	14	-4	0				
Γ ₉₄	0	0	0	0	0	0	0	0	-2	0	0			
Γ ₁₂₆	0	0	1	0	0	0	0	1	0	-5	0	0		
Γ_{128}	0	0	1	0	0	0	0	2	0	0	1	0	4	
	Γ ₄₂	Γ ₄₄	Γ ₄₇	Γ ₄₈	Γ ₅₀	Γ_{51}	Γ ₅₃	Γ ₆₂	Γ ₇₀	Γ ₇₇	Г ₉₃	Γ ₉₄	Γ ₁₂₆	Γ ₁₂₈

Γ ₁₃₀	0	0	0	0	0	0	0	0	0	-1	0	0	1	1
Γ_{132}	0	0	0	0	0	0	0	0	0	0	0	0	2	1
Γ_{136}	0	0	0	0	0	0	0	0	-1	0	0	0	0	0
Γ_{151}	0	0	0	0	0	0	0	0	12	0	0	0	0	0
Γ_{152}	0	0	0	0	0	0	0	-1	-11	-64	0	0	0	0
Γ_{167}	0	0	0	0	0	0	0	-1	0	0	1	0	0	0
Γ ₈₀₀	0	0	0	0	0	0	0	-8	-69	-2	-1	0	0	0
Γ ₈₀₂	0	0	0	0	0	0	0	16	-6	0	0	0	0	0
Γ ₈₀₃	0	0	0	0	0	0	0	-1	-19	0	0	-2	0	-1
Γ ₈₀₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₁₁	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₁₂	0	0	0	0	-1	0	0	0	-1	0	0	0	0	0
Γ ₈₂₁	0	0	0	0	0	0	0	0	-1	0	0	0	0	0
Γ ₈₂₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Γ_{42}	Γ_{44}	Γ ₄₇	Γ_{48}	Γ_{50}	Γ_{51}	Γ_{53}	Γ ₆₂	Γ ₇₀	Γ ₇₇	Γ ₉₃	Γ ₉₄	Γ_{126}	Γ_{128}

Table 7: Basis quantities correlation coefficients in percent, subtable 6.

Table 8: Basis quantities correlation coefficients in percent, subtable 7.

Γ ₈₃₁	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₈₃₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Г ₈₃₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ ₉₂₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ_{945}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Γ ₄₂	Γ44	Γ47	Γ ₄₈	Γ ₅₀	Γ_{51}	Γ_{53}	Γ ₆₂	Γ ₇₀	Γ ₇₇	Γ ₉₃	Γ ₉₄	Γ_{126}	Γ_{128}

Table 9: Basis quantities correlation coefficients in percent, subtable 8.

Г	0													
132	0													
Γ_{136}	0	0												
Γ_{151}	0	0	0											
Γ_{152}	0	0	0	0										
Γ ₁₆₇	0	0	0	0	0									
Γ ₈₀₀	0	0	0	-14	-3	0								
Γ ₈₀₂	0	0	0	-2	0	1	-1							
Γ ₈₀₃	0	0	0	-58	0	0	9	1						
Γ ₈₀₅	0	0	0	0	0	0	0	0	0					
Γ ₈₁₁	0	-1	20	0	0	0	0	0	0	0				
Γ ₈₁₂	0	-2	-8	0	0	0	0	0	0	0	-16			
Γ ₈₂₁	0	0	47	0	0	0	0	0	0	0	8	-4		
Γ ₈₂₂	0	0	-1	0	0	0	0	0	0	0	0	0	-1	
	Γ ₁₃₀	Γ_{132}	Γ_{136}	Γ_{151}	Γ_{152}	Γ_{167}	Γ ₈₀₀	Γ ₈₀₂	Γ ₈₀₃	Γ ₈₀₅	Γ ₈₁₁	Γ ₈₁₂	Γ ₈₂₁	Γ ₈₂₂

Table 10: Basis quantities correlation coefficients in percent, subtable 9.

Γ ₈₃₁	0	0	39	0	0	0	0	0	0	0	14	-4	39	-1
Γ ₈₃₂	0	0	3	0	0	0	0	0	0	0	2	0	3	0
Г ₈₃₃	0	0	-1	0	0	0	0	0	0	0	0	0	-1	0
Γ ₉₂₀	0	0	21	0	0	0	0	0	0	0	3	-2	35	-1
Γ ₉₄₅	0	-1	25	0	0	0	0	0	0	0	10	-11	10	0
	Γ ₁₃₀	Γ_{132}	Γ ₁₃₆	Γ_{151}	Γ_{152}	Γ ₁₆₇	Γ ₈₀₀	Γ ₈₀₂	Γ ₈₀₃	Γ ₈₀₅	Γ ₈₁₁	Γ ₈₁₂	Γ ₈₂₁	Γ ₈₂₂

Table 11: Basis quantities correlation coefficients in percent, subtable 10.

Γ ₈₃₂	-2				
Г ₈₃₃	-1	-1			
Γ ₉₂₀	17	1	0		
Γ ₉₄₅	17	2	0	4	
	Γ ₈₃₁	Γ ₈₃₂	Γ ₈₃₃	Γ ₉₂₀	Γ ₉₄₅

2.7 Equality constraints

We list in the following the equality constraints that relate a branching fraction to a sum of branching fractions. The constraint equations include as coefficients the values of some non-tau branching fractions, denoted *e.g.*, with the self-describing notation $\Gamma_{K_{S}\to\pi^{0}\pi^{0}}$. Some coefficients are probabilities corresponding to modulus square amplitudes describing quantum mixtures of states such as K^{0} , \overline{K}^{0} , K_{S} , K_{L} , denoted with *e.g.*, $\Gamma_{\langle K^{0}|K_{S}\rangle} = |\langle K^{0}|K_{S}\rangle|^{2}$. All non-tau quantities are taken from the PDG 2015 [9] fits (when available) or averages, and are used without accounting for their uncertainties, which are however in general small with respect to the uncertainties on the τ branching fractions.

The following list does not include the constraints listed in Table 1, where some measured ratios of branching fractions are expressed as ratios of two branching fractions.

 $\Gamma_1 = \Gamma_3 + \Gamma_5 + \Gamma_9 + \Gamma_{10} + \Gamma_{14} + \Gamma_{16}$ $+\Gamma_{20}+\Gamma_{23}+\Gamma_{27}+\Gamma_{28}+\Gamma_{30}+\Gamma_{35}$ $+\Gamma_{40}+\Gamma_{44}+\Gamma_{37}+\Gamma_{42}+\Gamma_{47}+\Gamma_{48}$ $+\Gamma_{804}+\Gamma_{50}+\Gamma_{51}+\Gamma_{806}+\Gamma_{126}\cdot\Gamma_{\eta
ightarrow neutral}$ $+ \Gamma_{128} \cdot \Gamma_{\eta \rightarrow \mathsf{neutral}} + \Gamma_{130} \cdot \Gamma_{\eta \rightarrow \mathsf{neutral}} + \Gamma_{132} \cdot \Gamma_{\eta \rightarrow \mathsf{neutral}}$ $+ \Gamma_{800} \cdot \Gamma_{\omega \to \pi} \mathbf{o}_{\gamma} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi} \mathbf{o}_{\gamma} + \Gamma_{152} \cdot \Gamma_{\omega \to \pi} \mathbf{o}_{\gamma}$ $+ \Gamma_{167} \cdot \Gamma_{\phi \to K_{S}K_{I}}$ $\Gamma_2 = \Gamma_3 + \Gamma_5 + \Gamma_9 + \Gamma_{10} + \Gamma_{14} + \Gamma_{16}$ $+ \Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + \Gamma_{35} \cdot \left(\Gamma_{<\overline{K}^{\mathbf{0}}|K_{\mathbf{S}}>} \cdot \Gamma_{K_{\mathbf{S}} \to \pi^{\mathbf{0}}\pi^{\mathbf{0}}} \right)$ $+\Gamma_{<\overline{K}^{0}|K_{\ell}>})+\Gamma_{40}\cdot(\Gamma_{<\overline{K}^{0}|K_{\mathbf{F}}>}\cdot\Gamma_{K_{\mathbf{S}}\rightarrow\pi^{0}\pi^{0}}+\Gamma_{<\overline{K}^{0}|K_{\ell}>})+\Gamma_{44}\cdot(\Gamma_{<\overline{K}^{0}|K_{\mathbf{F}}>}\cdot\Gamma_{K_{\mathbf{S}}\rightarrow\pi^{0}\pi^{0}}$ $+\Gamma_{<\overline{K}^{0}|K_{I}>})+\Gamma_{37}\cdot(\Gamma_{<\overline{K}^{0}|K_{S}>}\cdot\Gamma_{K_{S}\rightarrow\pi^{0}\pi^{0}}+\Gamma_{<\overline{K}^{0}|K_{I}>})+\Gamma_{42}\cdot(\Gamma_{<\overline{K}^{0}|K_{S}>}\cdot\Gamma_{K_{S}\rightarrow\pi^{0}\pi^{0}}$ $+ \Gamma_{<\overline{K}^{0}|K_{\cdot}>}) + \Gamma_{47} \cdot \left(\Gamma_{K_{S} \to \pi^{0}\pi^{0}} \cdot \Gamma_{K_{S} \to \pi^{0}\pi^{0}} \right) + \Gamma_{48} \cdot \Gamma_{K_{S} \to \pi^{0}\pi^{0}}$ $+ \Gamma_{804} + \Gamma_{50} \cdot \left(\Gamma_{K_{\boldsymbol{S}} \to \pi^{\boldsymbol{0}} \pi^{\boldsymbol{0}}} \cdot \Gamma_{K_{\boldsymbol{S}} \to \pi^{\boldsymbol{0}} \pi^{\boldsymbol{0}}} \right) + \Gamma_{51} \cdot \Gamma_{K_{\boldsymbol{S}} \to \pi^{\boldsymbol{0}} \pi^{\boldsymbol{0}}}$ $+ \Gamma_{806} + \Gamma_{126} \cdot \Gamma_{\eta \rightarrow \text{neutral}} + \Gamma_{128} \cdot \Gamma_{\eta \rightarrow \text{neutral}} + \Gamma_{130} \cdot \Gamma_{\eta \rightarrow \text{neutral}}$ $+ \Gamma_{132} \cdot \left(\Gamma_{\eta \rightarrow \mathsf{neutral}} \cdot \left(\Gamma_{<\overline{K}^{\mathbf{0}}|K_{\mathbf{F}}>} \cdot \Gamma_{K_{\mathbf{F}} \rightarrow \pi^{\mathbf{0}}\pi^{\mathbf{0}}} + \Gamma_{<\overline{K}^{\mathbf{0}}|K_{\mathbf{F}}>} \right) \right) + \Gamma_{800} \cdot \Gamma_{\omega \rightarrow \pi^{\mathbf{0}}\gamma}$ $+\Gamma_{151}\cdot\Gamma_{\omega\to\pi}\mathbf{o}_{\gamma}+\Gamma_{152}\cdot\Gamma_{\omega\to\pi}\mathbf{o}_{\gamma}+\Gamma_{167}\cdot\left(\Gamma_{\phi\to\mathcal{K}_{S}\mathcal{K}_{L}}\cdot\Gamma_{\mathcal{K}_{S}\to\pi}\mathbf{o}_{\pi}\mathbf{o}\right)$ $\Gamma_7 = \Gamma_{35} \cdot \Gamma_{<\overline{K}^0|K_1>} + \Gamma_9 + \Gamma_{804} + \Gamma_{37} \cdot \Gamma_{<\overline{K}^0|K_1>}$ $+\Gamma_{10}$ $\Gamma_8 = \Gamma_9 + \Gamma_{10}$ $\Gamma_{11} = \Gamma_{14} + \Gamma_{16} + \Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28}$ + $\Gamma_{30} + \Gamma_{35} \cdot (\Gamma_{<\kappa^0|\kappa_{e}>} \cdot \Gamma_{\kappa_{e}\to\pi^0\pi^0}) + \Gamma_{37} \cdot (\Gamma_{<\kappa^0|\kappa_{e}>} \cdot \Gamma_{\kappa_{e}\to\pi^0\pi^0})$ $+ \Gamma_{40} \cdot (\Gamma_{<K^{0}|K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{0}\pi^{0}}) + \Gamma_{42} \cdot (\Gamma_{<K^{0}|K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{0}\pi^{0}})$ $+ \Gamma_{47} \cdot (\Gamma_{K_{\mathfrak{s}} \to \pi^{\mathfrak{o}} \pi^{\mathfrak{o}}} \cdot \Gamma_{K_{\mathfrak{s}} \to \pi^{\mathfrak{o}} \pi^{\mathfrak{o}}}) + \Gamma_{50} \cdot (\Gamma_{K_{\mathfrak{s}} \to \pi^{\mathfrak{o}} \pi^{\mathfrak{o}}} \cdot \Gamma_{K_{\mathfrak{s}} \to \pi^{\mathfrak{o}} \pi^{\mathfrak{o}}})$ + $\Gamma_{126} \cdot \Gamma_{\eta \rightarrow \text{neutral}} + \Gamma_{128} \cdot \Gamma_{\eta \rightarrow \text{neutral}} + \Gamma_{130} \cdot \Gamma_{\eta \rightarrow \text{neutral}}$ $+ \Gamma_{132} \cdot \left(\Gamma_{<\mathcal{K}^{\mathbf{0}}|\mathcal{K}_{\mathbf{S}}>} \cdot \Gamma_{\mathcal{K}_{\mathbf{S}} \rightarrow \pi^{\mathbf{0}}\pi^{\mathbf{0}}} \cdot \Gamma_{\eta \rightarrow \text{neutral}} \right) + \Gamma_{151} \cdot \Gamma_{\omega \rightarrow \pi^{\mathbf{0}}\gamma}$ $+\Gamma_{152}\cdot\Gamma_{\omega\to\pi^0\gamma}+\Gamma_{800}\cdot\Gamma_{\omega\to\pi^0\gamma}$ $\Gamma_{12} = \Gamma_{128} \cdot \Gamma_{n \to 3\pi} \circ + \Gamma_{30} + \Gamma_{23} + \Gamma_{28} + \Gamma_{14}$ $+\Gamma_{16}+\Gamma_{20}+\Gamma_{27}+\Gamma_{126}\cdot\Gamma_{n\rightarrow3\pi^0}+\Gamma_{130}\cdot\Gamma_{n\rightarrow3\pi^0}$ $\Gamma_{13} = \Gamma_{14} + \Gamma_{16}$ $\Gamma_{17} = \Gamma_{128} \cdot \Gamma_{n \to 3\pi^0} + \Gamma_{30} + \Gamma_{23} + \Gamma_{28} + \Gamma_{35} \cdot (\Gamma_{<\kappa^0 | \kappa_{e}>} \cdot \Gamma_{\kappa_{e} \to \pi^0 \pi^0})$ $+ \Gamma_{40} \cdot \left(\Gamma_{<\mathcal{K}^{0}|\mathcal{K}_{S}>} \cdot \Gamma_{\mathcal{K}_{S} \to \pi^{0}\pi^{0}} \right) + \Gamma_{42} \cdot \left(\Gamma_{<\mathcal{K}^{0}|\mathcal{K}_{S}>} \cdot \Gamma_{\mathcal{K}_{S} \to \pi^{0}\pi^{0}} \right)$ $+\Gamma_{20}+\Gamma_{27}+\Gamma_{47}\cdot\left(\Gamma_{K_{S}\to\pi}\mathfrak{o}_{\pi}\mathfrak{o}\cdot\Gamma_{K_{S}\to\pi}\mathfrak{o}_{\pi}\mathfrak{o}\right)+\Gamma_{50}\cdot\left(\Gamma_{K_{S}\to\pi}\mathfrak{o}_{\pi}\mathfrak{o}\cdot\Gamma_{K_{S}\to\pi}\mathfrak{o}_{\pi}\mathfrak{o}\right)$ $+ \Gamma_{126} \cdot \Gamma_{n \to 3\pi^{0}} + \Gamma_{37} \cdot (\Gamma_{<\kappa^{0} | \kappa_{s}>} \cdot \Gamma_{\kappa_{s} \to \pi^{0} \pi^{0}}) + \Gamma_{130} \cdot \Gamma_{n \to 3\pi^{0}}$ $\Gamma_{18} = \Gamma_{23} + \Gamma_{35} \cdot \left(\Gamma_{<\kappa^{0}|\kappa_{s}>} \cdot \Gamma_{\kappa_{s}\to\pi^{0}\pi^{0}} \right) + \Gamma_{20} + \Gamma_{37} \cdot \left(\Gamma_{<\kappa^{0}|\kappa_{s}>} \cdot \Gamma_{\kappa_{s}\to\pi^{0}\pi^{0}} \right)$

 $\Gamma_{19}=\Gamma_{23}+\Gamma_{20}$

$\Gamma_{24} = \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + \Gamma_{40} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{\mathbf{S}}>} \cdot \Gamma_{\kappa_{\mathbf{S}}\rightarrow\pi^{0}\pi^{0}} \right)$
$+ \Gamma_{42} \cdot \left(\Gamma_{< K^{0} K_{\mathbf{S}} >} \cdot \Gamma_{K_{\mathbf{S}} \to \pi^{0} \pi^{0}} \right) + \Gamma_{47} \cdot \left(\Gamma_{K_{\mathbf{S}} \to \pi^{0} \pi^{0}} \cdot \Gamma_{K_{\mathbf{S}} \to \pi^{0} \pi^{0}} \right)$
$+ \Gamma_{50} \cdot (\Gamma_{K_{S} \to \pi^{0} \pi^{0}} \cdot \Gamma_{K_{S} \to \pi^{0} \pi^{0}}) + \Gamma_{126} \cdot \Gamma_{\eta \to 3\pi^{0}} + \Gamma_{128} \cdot \Gamma_{\eta \to 3\pi^{0}}$
$+ \Gamma_{130} \cdot \Gamma_{\eta \to 3\pi^{0}} + \Gamma_{132} \cdot (\Gamma_{< K^{0} K_{\mathbf{S}} >} \cdot \Gamma_{K_{\mathbf{S}} \to \pi^{0} \pi^{0}} \cdot \Gamma_{\eta \to 3\pi^{0}})$
$\begin{split} \Gamma_{25} &= \Gamma_{128} \cdot \Gamma_{\eta \to 3\pi^{0}} + \Gamma_{30} + \Gamma_{28} + \Gamma_{27} + \Gamma_{126} \cdot \Gamma_{\eta \to 3\pi^{0}} \\ &+ \Gamma_{130} \cdot \Gamma_{\eta \to 3\pi^{0}} \end{split}$
$ \begin{split} \Gamma_{26} &= \Gamma_{128} \cdot \Gamma_{\eta \to 3\pi^{0}} + \Gamma_{28} + \Gamma_{40} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{S}>} \cdot \Gamma_{\kappa_{S} \to \pi^{0}\pi^{0}} \right) \\ &+ \Gamma_{42} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{S}>} \cdot \Gamma_{\kappa_{S} \to \pi^{0}\pi^{0}} \right) + \Gamma_{27} \end{split} $
$\Gamma_{29} = \Gamma_{30} + \Gamma_{126} \cdot \Gamma_{\eta \to 3\pi} \mathfrak{o} + \Gamma_{130} \cdot \Gamma_{\eta \to 3\pi} \mathfrak{o}$
$ \Gamma_{31} = \Gamma_{128} \cdot \Gamma_{\eta \rightarrow neutral} + \Gamma_{23} + \Gamma_{28} + \Gamma_{42} + \Gamma_{16} + \Gamma_{37} + \Gamma_{10} + \Gamma_{167} \cdot (\Gamma_{\phi \rightarrow K_{\boldsymbol{S}} \kappa_{\boldsymbol{L}}} \cdot \Gamma_{K_{\boldsymbol{S}} \rightarrow \pi} \mathfrak{o}_{\pi} \mathfrak{o}) $
$\begin{split} \Gamma_{32} &= \Gamma_{16} + \Gamma_{23} + \Gamma_{28} + \Gamma_{37} + \Gamma_{42} + \Gamma_{128} \cdot \Gamma_{\eta \rightarrow neutral} \\ &+ \Gamma_{130} \cdot \Gamma_{\eta \rightarrow neutral} + \Gamma_{167} \cdot \left(\Gamma_{\phi \rightarrow K_{\boldsymbol{S}} K_{\boldsymbol{L}}} \cdot \Gamma_{K_{\boldsymbol{S}} \rightarrow \pi} \mathfrak{o}_{\pi} \mathfrak{o} \right) \end{split}$
$\Gamma_{33} = \Gamma_{35} \cdot \Gamma_{<\overline{K}^{0} K_{\mathfrak{S}}>} + \Gamma_{40} \cdot \Gamma_{<\overline{K}^{0} K_{\mathfrak{S}}>} + \Gamma_{42} \cdot \Gamma_{}$
$+ \Gamma_{47} + \Gamma_{48} + \Gamma_{50} + \Gamma_{51} + \Gamma_{37} \cdot \Gamma_{<\kappa^0 \kappa_{\bullet>}}$
$+ \Gamma_{132} \cdot (\Gamma_{<\overline{K}^{0} K_{\mathbf{S}}>} \cdot \Gamma_{\eta \rightarrow \text{neutral}}) + \Gamma_{44} \cdot \Gamma_{<\overline{K}^{0} K_{\mathbf{S}}>} + \Gamma_{167} \cdot \Gamma_{\phi \rightarrow K_{\mathbf{S}}K_{\mathbf{L}}}$
$\Gamma_{34} = \Gamma_{35} + \Gamma_{37}$
$\Gamma_{38} = \Gamma_{42} + \Gamma_{37}$
$\Gamma_{39} = \Gamma_{40} + \Gamma_{42}$
$\Gamma_{43} = \Gamma_{40} + \Gamma_{44}$
$\Gamma_{46} = \Gamma_{48} + \Gamma_{47} + \Gamma_{804}$
$\Gamma_{49} = \Gamma_{50} + \Gamma_{51} + \Gamma_{806}$
$\Gamma_{54} = \Gamma_{35} \cdot (\Gamma_{ } \cdot \Gamma_{K_{c} \to \pi^{+}\pi^{-}}) + \Gamma_{37} \cdot (\Gamma_{ } \cdot \Gamma_{K_{c} \to \pi^{+}\pi^{-}})$
$+ \Gamma_{40} \cdot (\Gamma_{\langle K^0 K_c \rangle} \cdot \Gamma_{K_c \to \pi^+ \pi^-}) + \Gamma_{42} \cdot (\Gamma_{\langle K^0 K_c \rangle} \cdot \Gamma_{K_c \to \pi^+ \pi^-})$
$+ \Gamma_{47} \cdot (2 \cdot \Gamma_{K_0 \rightarrow \pi^+ \pi^-} \cdot \Gamma_{K_0 \rightarrow \pi^0} \mathfrak{o}_{\pi^0}) + \Gamma_{48} \cdot \Gamma_{K_0 \rightarrow \pi^+ \pi^-}$
$+\Gamma_{50} \cdot (2 \cdot \Gamma_{K_{2} \rightarrow \pi^{+}\pi^{-}} \cdot \Gamma_{K_{2} \rightarrow \pi^{0}\pi^{0}}) + \Gamma_{51} \cdot \Gamma_{K_{2} \rightarrow \pi^{+}\pi^{-}}$
$+\Gamma_{53} \cdot \left(\Gamma_{<\overline{\nu}^{0}+\nu} \right) \cdot \Gamma_{K_{c} \rightarrow \pi^{0}\pi^{0}} + \Gamma_{<\overline{\nu}^{0}+\nu} \right) + \Gamma_{62} + \Gamma_{70}$
$+ \left[77 + \left[78 + \left[93 + \left[94 + \left[126 \cdot \left[n - \right] \right] \right] \right] \right] \right]$
+ $\Gamma_{128} \cdot \Gamma_{n \rightarrow charged} + \Gamma_{130} \cdot \Gamma_{n \rightarrow charged} + \Gamma_{132} \cdot (\Gamma_{e} \overline{\mu}_{14} \circ \mu_{e} \circ \Gamma_{n \rightarrow e} + \pi^{-} \pi^{0})$
$+ \begin{bmatrix} -\pi 0 \\ \pi 0 \end{bmatrix} (K_{L}) + \begin{bmatrix} -\pi 0 \\ \pi 0 \end{bmatrix} (K$
$+ \Gamma_{151} \cdot (\Gamma_{+} + \alpha + \Gamma_{+}) + \Gamma_{152} \cdot (\Gamma_{+} + \alpha + \Gamma_{+})$
$+ \left[167 \cdot \left(\left[-\frac{1}{\omega} \right]_{\mu} + \mu_{\mu} - + \left[-\frac{1}{\omega} \right]_{\mu} + \mu_{\mu} - \frac{1}{\omega} \right] + \left[167 \cdot \left(\left[-\frac{1}{\omega} \right]_{\mu} + \mu_{\mu} - + \left[-\frac{1}{\omega} \right]_{\mu} + \mu_{\mu} - \frac{1}{\omega} \right] + \left[-\frac{1}{\omega} + \frac{1}{\omega} + \frac{1}{\omega} \right] + \left$
$+ \Gamma_{800} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-})$
$\Gamma_{FF} = \Gamma_{128} \cdot \Gamma_{144} + \Gamma_{152} \cdot (\Gamma_{14} + \sigma_{15} + \Gamma_{15}) + \Gamma_{78}$
+ $\Gamma_{77} + \Gamma_{94} + \Gamma_{62} + \Gamma_{70} + \Gamma_{93} + \Gamma_{126} \cdot \Gamma_{n \rightarrow charged}$
$+\Gamma_{802} + \Gamma_{803} + \Gamma_{800} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{151} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0})$
$+ \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{130} \cdot \Gamma_{\eta \to \text{charged}} + \Gamma_{168}$
$\Gamma_{56} = \Gamma_{35} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{\boldsymbol{S}}>} \cdot \Gamma_{\kappa_{\boldsymbol{S}}\rightarrow\pi^{+}\pi^{-}} \right) + \Gamma_{62} + \Gamma_{93} + \Gamma_{37} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{\boldsymbol{S}}>} \cdot \Gamma_{\kappa_{\boldsymbol{S}}\rightarrow\pi^{+}\pi^{-}} \right)$
$+ \operatorname{\Gamma_{802}} + \operatorname{\Gamma_{800}} \cdot \operatorname{\Gamma_{\omega \to \pi^+ \pi^-}} + \operatorname{\Gamma_{151}} \cdot \operatorname{\Gamma_{\omega \to \pi^+ \pi^-}} + \operatorname{\Gamma_{168}}$
$\Gamma_{57} = \Gamma_{62} + \Gamma_{93} + \Gamma_{802} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^-}$ $+ \Gamma_{157} \cdot \Gamma_{\omega \to \pi^+ \pi^-}$
$\phi \rightarrow \kappa \tau \kappa^{-}$
$158 = 162 + 193 + 1802 + 1167 \cdot 1_{\phi \to K} + K^{-}$

$\Gamma_{59} = \Gamma_{35} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{s}>} \cdot \Gamma_{\kappa_{s}\to\pi^{+}\pi^{-}} \right) + \Gamma_{62} + \Gamma_{800} \cdot \Gamma_{\omega\to\pi^{+}\pi^{-}}$
$\Gamma_{60} = \Gamma_{62} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^-}$
$\begin{split} \Gamma_{63} &= \Gamma_{40} \cdot \left(\Gamma_{} \cdot \Gamma_{K_{S} \to \pi} + \pi^{-} \right) + \Gamma_{42} \cdot \left(\Gamma_{} \cdot \Gamma_{K_{S} \to \pi} + \pi^{-} \right) \\ &+ \Gamma_{47} \cdot \left(2 \cdot \Gamma_{K_{S} \to \pi} + \pi^{-} \cdot \Gamma_{K_{S} \to \pi^{0} \pi^{0}} \right) + \Gamma_{50} \cdot \left(2 \cdot \Gamma_{K_{S} \to \pi} + \pi^{-} \cdot \Gamma_{K_{S} \to \pi^{0} \pi^{0}} \right) \\ &+ \Gamma_{70} + \Gamma_{77} + \Gamma_{78} + \Gamma_{94} + \Gamma_{126} \cdot \Gamma_{\eta \to \text{charged}} \\ &+ \Gamma_{128} \cdot \Gamma_{\eta \to \text{charged}} + \Gamma_{130} \cdot \Gamma_{\eta \to \text{charged}} + \Gamma_{132} \cdot \left(\Gamma_{<\overline{K}^{0} K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{+} \pi^{-}} \cdot \Gamma_{\eta \to \text{neutral}} \right) \\ &+ \Gamma_{<\overline{K}^{0} K_{S}>} \cdot \Gamma_{K_{S} \to \pi^{0} \pi^{0}} \cdot \Gamma_{\eta \to \text{charged}} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^{+} \pi^{-} \pi^{0}} + \Gamma_{152} \cdot \left(\Gamma_{\omega \to \pi^{+} \pi^{-} \pi^{0}} + \Gamma_{\omega \to \pi^{+} \pi^{-}} \right) + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^{+} \pi^{-} \pi^{0}} + \Gamma_{803} \end{split}$
$ \Gamma_{64} = \Gamma_{78} + \Gamma_{77} + \Gamma_{94} + \Gamma_{70} + \Gamma_{126} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{128} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{130} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{152} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{\omega \to \pi^+ \pi^-}) + \Gamma_{803} $
$ \Gamma_{65} = \Gamma_{40} \cdot \left(\Gamma_{} \cdot \Gamma_{K_{s}\rightarrow\pi^{+}\pi^{-}} \right) + \Gamma_{42} \cdot \left(\Gamma_{} \cdot \Gamma_{K_{s}\rightarrow\pi^{+}\pi^{-}} \right) $ $ + \Gamma_{70} + \Gamma_{94} + \Gamma_{128} \cdot \Gamma_{\eta\rightarrow\pi^{+}\pi^{-}\pi^{0}} + \Gamma_{151} \cdot \Gamma_{\omega\rightarrow\pi^{+}\pi^{-}\pi^{0}} $ $ + \Gamma_{152} \cdot \Gamma_{\omega\rightarrow\pi^{+}\pi^{-}} + \Gamma_{800} \cdot \Gamma_{\omega\rightarrow\pi^{+}\pi^{-}\pi^{0}} + \Gamma_{803} $
$\Gamma_{66} = \Gamma_{70} + \Gamma_{94} + \Gamma_{128} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{803}$
$\Gamma_{67} = \Gamma_{70} + \Gamma_{94} + \Gamma_{128} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{803}$
$\Gamma_{68} = \Gamma_{40} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{\mathbf{s}}>} \cdot \Gamma_{\kappa_{\mathbf{s}}\to\pi^{+}\pi^{-}} \right) + \Gamma_{70} + \Gamma_{152} \cdot \Gamma_{\omega\to\pi^{+}\pi^{-}} + \Gamma_{800} \cdot \Gamma_{\omega\to\pi^{+}\pi^{-}\pi^{0}}$
$\Gamma_{69} = \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{70} + \Gamma_{800} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0}$
$ \begin{split} \Gamma_{74} &= \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{78} + \Gamma_{77} + \Gamma_{126} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} \\ &+ \Gamma_{130} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} \end{split} $
$ \begin{split} \Gamma_{75} &= \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{47} \cdot \left(2 \cdot \Gamma_{K_{\boldsymbol{S}} \to \pi^+ \pi^-} \cdot \Gamma_{K_{\boldsymbol{S}} \to \pi^0 \pi^0} \right) \\ &+ \Gamma_{77} + \Gamma_{126} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{130} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} \end{split} $
$\Gamma_{76} = \Gamma_{152} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{77} + \Gamma_{126} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{130} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0}$
$\Gamma_{78} = \Gamma_{810} + \Gamma_{50} \cdot \left(2 \cdot \Gamma_{K_{\boldsymbol{S}} \to \pi^{+}\pi^{-}} \cdot \Gamma_{K_{\boldsymbol{S}} \to \pi^{0}\pi^{0}}\right) + \Gamma_{132} \cdot \left(\Gamma_{<\overline{K}^{0} K_{\boldsymbol{S}}>} \cdot \Gamma_{K_{\boldsymbol{S}} \to \pi^{+}\pi^{-}} \cdot \Gamma_{\eta \to 3\pi^{0}}\right)$
$ \Gamma_{79} = \Gamma_{37} \cdot \left(\Gamma_{} \cdot \Gamma_{K_{S}\rightarrow\pi} + \pi^{-} \right) + \Gamma_{42} \cdot \left(\Gamma_{} \cdot \Gamma_{K_{S}\rightarrow\pi} + \pi^{-} \right) $ $ + \Gamma_{93} + \Gamma_{94} + \Gamma_{128} \cdot \Gamma_{\eta\rightarrow\text{charged}} + \Gamma_{151} \cdot \left(\Gamma_{\omega\rightarrow\pi} + \pi^{-}\pi^{0} + \Gamma_{\omega\rightarrow\pi} + \pi^{-} \right) $ $ + \Gamma_{\omega\rightarrow\pi} + \pi^{-} \right) + \Gamma_{168} + \Gamma_{802} + \Gamma_{803} $
$\Gamma_{80} = \Gamma_{93} + \Gamma_{802} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^-}$
$\Gamma_{81} = \Gamma_{128} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{94} + \Gamma_{803} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0}$
$\begin{split} \Gamma_{82} &= \Gamma_{128} \cdot \Gamma_{\eta \rightarrow \text{charged}} + \Gamma_{42} \cdot \left(\Gamma_{<\mathcal{K}^{0} \mathcal{K}_{\mathbf{S}}>} \cdot \Gamma_{\mathcal{K}_{\mathbf{S}} \rightarrow \pi^{+}\pi^{-}}\right) + \Gamma_{802} \\ &+ \Gamma_{803} + \Gamma_{151} \cdot \left(\Gamma_{\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}} + \Gamma_{\omega \rightarrow \pi^{+}\pi^{-}}\right) + \Gamma_{37} \cdot \left(\Gamma_{<\mathcal{K}^{0} \mathcal{K}_{\mathbf{S}}>} \cdot \Gamma_{\mathcal{K}_{\mathbf{S}} \rightarrow \pi^{+}\pi^{-}}\right) \end{split}$
$ \begin{split} \Gamma_{83} &= \Gamma_{128} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{802} + \Gamma_{803} + \Gamma_{151} \cdot (\Gamma_{\omega \to \pi^+ \pi^- \pi^0} \\ &+ \Gamma_{\omega \to \pi^+ \pi^-}) \end{split} $
$\Gamma_{84} = \Gamma_{802} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^-} + \Gamma_{37} \cdot (\Gamma_{<\mathcal{K}^{0} \mathcal{K}_{\mathbf{S}}>} \cdot \Gamma_{\mathcal{K}_{\mathbf{S}} \to \pi^+ \pi^-})$
$\Gamma_{85} = \Gamma_{802} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^-}$
$\Gamma_{87} = \Gamma_{42} \cdot \left(\Gamma_{<\kappa^{0} \kappa_{s}>} \cdot \Gamma_{\kappa_{s}\to\pi^{+}\pi^{-}} \right) + \Gamma_{128} \cdot \Gamma_{\eta\to\pi^{+}\pi^{-}\pi^{0}} + \Gamma_{151} \cdot \Gamma_{\omega\to\pi^{+}\pi^{-}\pi^{0}} + \Gamma_{803}$
$\Gamma_{88} = \Gamma_{128} \cdot \Gamma_{\eta \to \pi^+ \pi^- \pi^0} + \Gamma_{803} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0}$
$\Gamma_{89} = \Gamma_{803} + \Gamma_{151} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0}$

 $\Gamma_{92} = \Gamma_{94} + \Gamma_{93}$ $\Gamma_{96} = \Gamma_{167} \cdot \Gamma_{\phi \to K^+ K^-}$ $\Gamma_{102} = \Gamma_{103} + \Gamma_{104}$ $\Gamma_{103} = \Gamma_{820} + \Gamma_{822} + \Gamma_{831} \cdot \Gamma_{\omega \to \pi^+ \pi^-}$ $\Gamma_{104} = \Gamma_{830} + \Gamma_{833}$ $\Gamma_{106} = \Gamma_{30} + \Gamma_{44} \cdot \Gamma_{<\overline{K}^{0}|K_{c}>} + \Gamma_{47} + \Gamma_{53} \cdot \Gamma_{<\overline{K}^{0}|K_{c}>}$ $+\Gamma_{77}+\Gamma_{103}+\Gamma_{126}\cdot(\Gamma_{\eta\to3\pi^{0}}+\Gamma_{\eta\to\pi^{+}\pi^{-}\pi^{0}})+\Gamma_{152}\cdot\Gamma_{\omega\to\pi^{+}\pi^{-}\pi^{0}}$ $\Gamma_{110} = \Gamma_{10} + \Gamma_{16} + \Gamma_{23} + \Gamma_{28} + \Gamma_{35} + \Gamma_{40}$ $+\Gamma_{128}+\Gamma_{802}+\Gamma_{803}+\Gamma_{151}+\Gamma_{130}+\Gamma_{132}$ $+\Gamma_{44} + \Gamma_{53} + \Gamma_{168} + \Gamma_{169} + \Gamma_{822} + \Gamma_{833}$ $\Gamma_{149} = \Gamma_{152} + \Gamma_{800} + \Gamma_{151}$ $\Gamma_{150} = \Gamma_{800} + \Gamma_{151}$ $\Gamma_{168} = \Gamma_{167} \cdot \Gamma_{\phi \to K^+ K^-}$ $\Gamma_{169} = \Gamma_{167} \cdot \Gamma_{\phi \to K_{\mathbf{S}} K_{\mathbf{I}}}$ $\Gamma_{804} = \Gamma_{47} \cdot \left(\left(\Gamma_{<\kappa^{0}|\kappa_{I}>} \cdot \Gamma_{<\overline{\kappa}^{0}|\kappa_{I}>} \right) / \left(\Gamma_{<\kappa^{0}|\kappa_{5}>} \cdot \Gamma_{<\overline{\kappa}^{0}|\kappa_{5}>} \right) \right)$ $\Gamma_{806} = \Gamma_{50} \cdot \left(\left(\Gamma_{<\kappa^{0}|\kappa_{I}>} \cdot \Gamma_{<\overline{\kappa}^{0}|\kappa_{I}>} \right) / \left(\Gamma_{<\kappa^{0}|\kappa_{S}>} \cdot \Gamma_{<\overline{\kappa}^{0}|\kappa_{S}>} \right) \right)$ $\Gamma_{810} = \Gamma_{910} + \Gamma_{911} + \Gamma_{811} \cdot \Gamma_{\omega \to \pi^+ \pi^- \pi^0} + \Gamma_{812}$ $\Gamma_{820} = \Gamma_{920} + \Gamma_{821}$ $\Gamma_{830} = \Gamma_{930} + \Gamma_{831} \cdot \Gamma_{\omega \to \pi^{+}\pi^{-}\pi^{0}} + \Gamma_{832}$ $\Gamma_{910} = \Gamma_{136} \cdot \Gamma_{n \to 3\pi^0}$ $\Gamma_{911} = \Gamma_{945} \cdot \Gamma_{n \rightarrow \pi^+ \pi^- \pi^0}$ $\Gamma_{930} = \Gamma_{136} \cdot \Gamma_{n \to \pi^+ \pi^- \pi^0}$ $\Gamma_{944} = \Gamma_{136} \cdot \Gamma_{n \to \gamma \gamma}$ $\Gamma_{A||} = \Gamma_3 + \Gamma_5 + \Gamma_9 + \Gamma_{10} + \Gamma_{14} + \Gamma_{16}$ $+\Gamma_{20}+\Gamma_{23}+\Gamma_{27}+\Gamma_{28}+\Gamma_{30}+\Gamma_{35}$ $+\Gamma_{37}+\Gamma_{40}+\Gamma_{42}+\Gamma_{47}\cdot(1+((\Gamma_{<\kappa^{0}|\kappa_{L}>}\cdot\Gamma_{<\overline{\kappa}^{0}|\kappa_{L}>})/(\Gamma_{<\kappa^{0}|\kappa_{S}>}\cdot\Gamma_{<\overline{\kappa}^{0}|\kappa_{S}>})))$ $+\Gamma_{48}+\Gamma_{62}+\Gamma_{70}+\Gamma_{77}+\Gamma_{811}+\Gamma_{812}$ $+\Gamma_{93}+\Gamma_{94}+\Gamma_{832}+\Gamma_{833}+\Gamma_{126}+\Gamma_{128}$ $+\Gamma_{802}+\Gamma_{803}+\Gamma_{800}+\Gamma_{151}+\Gamma_{130}+\Gamma_{132}$ $+\Gamma_{44}+\Gamma_{53}+\Gamma_{50}\cdot\left(1+((\Gamma_{<\kappa^{0}|\mathcal{K}_{L}>}\cdot\Gamma_{<\overline{\mathcal{K}}^{0}|\mathcal{K}_{L}>})/(\Gamma_{<\kappa^{0}|\mathcal{K}_{S}>}\cdot\Gamma_{<\overline{\mathcal{K}}^{0}|\mathcal{K}_{S}>}))\right)$ $+\Gamma_{51}+\Gamma_{167}\cdot\left(\Gamma_{\phi\to K^+K^-}+\Gamma_{\phi\to K_{\textbf{S}}K_{\textbf{L}}}\right)+\Gamma_{152}+\Gamma_{920}$ $+\Gamma_{821}+\Gamma_{822}+\Gamma_{831}+\Gamma_{136}+\Gamma_{945}+\Gamma_{805}$

3 Tests of lepton universality

Lepton universality tests probe the Standard Model prediction that the charged weak current interaction has the same coupling for all lepton generations. The precision of such tests has been significantly improved since the 2014 edition by the addition of the Belle τ lifetime measurement [68], while improvements from the τ branching fraction

fit are negligible. We compute the universality tests as in the previous report by using ratios of the partial widths of a heavier lepton λ decaying to a lighter lepton ρ [69],

$$\Gamma(\lambda \to \nu_{\lambda} \rho \overline{\nu}_{\rho}(\gamma)) = \frac{B(\lambda \to \nu_{\lambda} \rho \overline{\nu}_{\rho})}{\tau_{\lambda}} = \frac{G_{\lambda} G_{\rho} m_{\lambda}^{5}}{192 \pi^{3}} f\left(\frac{m_{\rho}^{2}}{m_{\lambda}^{2}}\right) R_{W}^{\lambda} R_{\gamma}^{\lambda} ,$$

where

$$G_{\rho} = \frac{g_{\rho}^{2}}{4\sqrt{2}M_{W}^{2}}, \qquad f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2}\ln x,$$

$$R_{W}^{\lambda} = 1 + \frac{3}{5}\frac{m_{\lambda}^{2}}{M_{W}^{2}} + \frac{9}{5}\frac{m_{\rho}^{2}}{M_{W}^{2}} [70, 71, 72], \qquad R_{\gamma}^{\lambda} = 1 + \frac{\alpha(m_{\lambda})}{2\pi} \left(\frac{25}{4} - \pi^{2}\right).$$

We use $R_{\gamma}^{\tau} = 1 - 43.2 \cdot 10^{-4}$ and $R_{\gamma}^{\mu} = 1 - 42.4 \cdot 10^{-4}$ [69] and M_W from PDG 2015 [9]. We use HFLAV Spring 2017 averages and PDG 2015 for the other quantities. Using pure leptonic processes we obtain

$$\left(\frac{g_{\tau}}{g_{\mu}}\right) = 1.0010 \pm 0.0015$$
, $\left(\frac{g_{\tau}}{g_{e}}\right) = 1.0029 \pm 0.0015$, $\left(\frac{g_{\mu}}{g_{e}}\right) = 1.0019 \pm 0.0014$

Using the expressions for the τ semi-hadronic partial widths, we obtain

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{B(\tau \to h\nu_{\tau})}{B(h \to \mu\overline{\nu}_{\mu})} \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1 + \delta R_{\tau/h})m_{\tau}^{3}\tau_{\tau}} \left(\frac{1 - m_{\mu}^{2}/m_{h}^{2}}{1 - m_{h}^{2}/m_{\tau}^{2}}\right)^{2}$$

where $h = \pi$ or K and the radiative corrections are $\delta R_{\tau/\pi} = (0.16 \pm 0.14)\%$ and $\delta R_{\tau/K} = (0.90 \pm 0.22)\%$ [73, 74, 75, 76]. We measure:

$$\left(rac{g_{ au}}{g_{\mu}}
ight)_{\pi} = 0.9961 \pm 0.0027 \; , \qquad \qquad \left(rac{g_{ au}}{g_{\mu}}
ight)_{K} = 0.9860 \pm 0.0070 \; .$$

Similar tests could be performed with decays to electrons, however they are less precise because the hadron two body decays to electrons are helicity-suppressed. Averaging the three g_{τ}/g_{μ} ratios we obtain

$$\left(rac{g_ au}{g_\mu}
ight)_{ au+\pi+K}=1.0000\pm0.0014$$
 ,

accounting for statistical correlations. Table 12 reports the statistical correlation coefficients for the fitted coupling ratios.

Table 12: Universality coupling ratios correlation coefficients (%).

$\left(\frac{g_{\tau}}{g_{e}}\right)$	53			
$\left(\frac{g_{\mu}}{g_{e}}\right)$	-49	48		
$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi}$	24	26	2	
$\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\kappa}$	11	10	-1	6
(· / K	$\left(rac{{m g}_{ au}}{{m g}_{\mu}} ight)$	$\left(rac{g_{ au}}{g_{e}} ight)$	$\left(rac{g_{\mu}}{g_{e}} ight)$	$\left(rac{{m g}_{ au}}{{m g}_{\mu}} ight)_{\pi}$

Since there is 100% correlation between g_{τ}/g_{μ} , g_{τ}/g_{e} and g_{μ}/g_{e} , the correlation matrix is expected to be positive semi-definite, with one eigenvalue equal to zero. Due to numerical inaccuracies, one eigenvalue is expected to be close to zero rather than exactly zero.

4 Universality improved $B(\tau \rightarrow e \nu \overline{\nu})$ and R_{had}

We compute two quantities that are used in this report and that have been traditionally used for further elaborations and tests involving the τ branching fractions:

- the "universality improved" experimental determination of $B_e = B(\tau \to e\nu\overline{\nu})$, which relies on the assumption that the Standard Model and lepton universality hold;
- the ratio R_{had} between the total branching fraction of the τ to hadrons and the universality improved B_e, which
 is the same as the ratio of the two respective partial widths.

Following Ref. [77], we obtain a more precise experimental determination of B_e using the τ branching fraction to $\mu\nu\overline{\nu}$, B_{μ} , and the τ lifetime. We average:

- the B_e fit value Γ_5 ,
- the B_e determination from the $B_{\mu} = B(\tau \rightarrow \mu \nu \overline{\nu})$ fit value Γ_3 assuming that $g_{\mu}/g_e = 1$, hence (see also Section 3) $B_e = B_{\mu} \cdot f(m_e^2/m_{\tau}^2)/f(m_{\mu}^2/m_{\tau}^2)$,
- the B_e determination from the τ lifetime assuming that $g_{\tau}/g_{\mu} = 1$, hence $B_e = B(\mu \to e\overline{\nu}_e\nu_{\mu}) \cdot (\tau_{\tau}/\tau_{\mu}) \cdot (m_{\tau}/m_{\mu})^5 \cdot f(m_e^2/m_{\tau}^2)/f(m_e^2/m_{\mu}^2) \cdot (\delta_{\gamma}^\tau \delta_W^{\tau})/(\delta_{\gamma}^\mu \delta_W^\mu)$ where $B(\mu \to e\overline{\nu}_e\nu_{\mu}) = 1$.

Accounting for statistical correlations, we obtain

 $B_e^{\rm uni} = (17.815 \pm 0.023)\%.$

We use B_e^{uni} to obtain the ratio

$$R_{\text{had}} = \frac{\Gamma(\tau \to \text{hadrons})}{\Gamma(\tau \to e\nu\overline{\nu})} = \frac{\Gamma_{\text{hadrons}}}{B_e^{\text{uni}}} = 3.6349 \pm 0.0082$$

where $\Gamma(\tau \rightarrow \text{hadrons})$ and $\Gamma(\tau \rightarrow e\nu\overline{\nu})$ indicate the partial widths and Γ_{hadrons} is the total branching fraction of the τ to hadrons, or the total branching fraction in any measured final state minus the leptonic branching fractions, *i.e.*, with our notation $\Gamma_{\text{hadrons}} = \Gamma_{\text{AII}} - \Gamma_3 - \Gamma_5 = (64.76 \pm 0.10)\%$ (see Section 2 and Table 1 for the definitions of Γ_{AII} , Γ_3 , Γ_5). We underline that this report's definition of Γ_{hadrons} corresponds to summing all τ hadronic decay modes, like in the previous report, rather than – as done elsewhere – subtracting the leptonic branching fractions from unity, *i.e.*, $\Gamma_{\text{hadrons}} = 1 - \Gamma_3 - \Gamma_5$.

5 $|V_{us}|$ measurement

The CKM matrix element magnitude $|V_{us}|$ is most precisely determined from kaon decays [78] (see Figure 1), and its precision is limited by the uncertainties of the lattice QCD estimates of the meson decay constants $f_{+}^{K\pi}(0)$ and f_{K}/f_{π} . Using the τ branching fractions, it is possible to determine $|V_{us}|$ in an alternative way [79, 80] that does not depend on lattice QCD and has small theory uncertainties (as discussed in Section 5.1). Moreover, $|V_{us}|$ can be determined using the τ branching fractions similarly to the kaon case, using the same meson decay constants from Lattice QCD.

5.1 $|V_{us}|$ from $B(\tau \rightarrow X_s \nu)$

The τ hadronic partial width is the sum of the τ partial widths to strange and to non-strange hadronic final states, $\Gamma_{had} = \Gamma_s + \Gamma_{VA}$. The suffix "VA" traditionally denotes the sum of the τ partial widths to non-strange final states, which proceed through either vector or axial-vector currents.

Dividing any partial width Γ_x by the electronic partial width, Γ_e , we obtain partial width ratios R_x (which are equal to the respective branching fraction ratios B_x/B_e) for which $R_{had} = R_s + R_{VA}$. In terms of such ratios, $|V_{us}|$ can be measured as [79, 80]

$$|V_{us}|_{ au s} = \sqrt{R_s / \left[rac{R_{VA}}{|V_{ud}|^2} - \delta R_{ ext{theory}}
ight]}$$
 ,

where δR_{theory} can be determined in the context of low energy QCD theory, partly relying on experimental low energy scattering data. The literature reports several calculations [81, 82, 83]. In this report we use Ref. [81], whose estimated uncertainty size is intermediate between the two other ones. We use the information in that paper and the PDG 2015 value for the *s*-quark mass $m_s = 95.00 \pm 5.00 \text{ MeV}$ [9] to calculate $\delta R_{\text{theory}} = 0.242 \pm 0.032$.

Branching fraction	HFLAV Spring 2017 fit (%)
$K^- u_ au$	0.6960 ± 0.0096
$K^-\pi^0 u_ au$	0.4327 ± 0.0149
$K^- 2\pi^0 u_ au$ (ex. K^0)	0.0640 ± 0.0220
$K^- 3\pi^0 u_{ au}$ (ex. K^0 , η)	0.0428 ± 0.0216
$\pi^-\overline{K}^0 u_ au$	0.8386 ± 0.0141
$\pi^-\overline{K}^{0}\pi^{0} u_{ au}$	0.3812 ± 0.0129
$\pi^-\overline{K}^0\pi^0\pi^0 u_ au$ (ex. K^0)	0.0234 ± 0.0231
$\overline{K}^{0}h^{-}h^{-}h^{+} u_{ au}$	0.0222 ± 0.0202
$K^-\eta u_{ au}$	0.0155 ± 0.0008
${\cal K}^-\pi^{f 0}\eta u_ au$	0.0048 ± 0.0012
$\pi^-\overline{K}^{0}\eta u_ au$	0.0094 ± 0.0015
$K^-\omega u_ au$	0.0410 ± 0.0092
$K^- \phi u_{ au} \; (\phi ightarrow K^+ K^-)$	0.0022 ± 0.0008
$K^- \phi u_{ au} \; (\phi ightarrow K^0_{ extsf{S}} K^0_{ extsf{L}})$	0.0015 ± 0.0006
${\cal K}^-\pi^-\pi^+ u_ au$ (ex. ${\cal K}^{0}$, ω)	0.2923 ± 0.0067
$K^{-}\pi^{-}\pi^{+}\pi^{0} u_{ au}$ (ex. K^{0} , ω , η)	0.0410 ± 0.0143
$K^{-}2\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001
$K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001
$X_s^- \nu_{ au}$	2.9087 ± 0.0482

Table 13: HFLAV Spring 2017 τ branching fractions to strange final states.

We proceed following the same procedure of the 2012 HFLAV report [3]. We sum the relevant τ branching fractions to compute B_{VA} and B_s and we use the universality improved B_e^{uni} (see Section 4) to compute the R_{VA} and R_s ratios. In past determinations of $|V_{us}|$, for example in the 2009 HFLAV report [1], the total hadronic branching fraction has been computed using unitarity as $B_{had}^{uni} = 1 - B_e - B_\mu$, obtaining then B_s from the sum of the strange branching fractions and B_{VA} from $B_{had}^{uni} - B_s$. We prefer to use the more direct experimental determination of B_{VA} for two reasons. First, both methods result in comparable uncertainties on $|V_{us}|$, since the better precision on $B_{had}^{uni} = 1 - B_e - B_\mu$ is vanified by increased statistical correlations in the expressions $(1 - B_e - B_\mu)/B_e^{univ}$ and $B_s/(B_{had} - B_s)$ in the $|V_{us}|$ calculation. Second, if there are unobserved τ hadronic decay modes, they would affect B_{VA} and B_s in a more asymmetric way when using unitarity.

Using the τ branching fraction fit results with their uncertainties and correlations (Section 2), we compute $B_s = (2.909 \pm 0.048)\%$ (see also Table 13) and $B_{VA} = B_{hadrons} - B_s = (61.85 \pm 0.10)\%$, where $B_{hadrons}$ is equal to $\Gamma_{hadrons}$ defined in section 4. PDG 2015 averages are used for non- τ quantities, and $|V_{ud}| = 0.97417 \pm 0.00021$ [84].

We obtain $|V_{us}|_{\tau s} = 0.2186 \pm 0.0021$, which is 3.1σ lower than the unitarity CKM prediction $|V_{us}|_{uni} = 0.22582 \pm 0.00089$, from $(|V_{us}|_{uni})^2 = 1 - |V_{ud}|^2$. The $|V_{us}|_{\tau s}$ uncertainty includes a systematic error contribution of 0.47% from the theory uncertainty on δR_{theory} . There is no significant change with respect to the previous HFLAV report.

5.2 $|V_{us}|$ from $B(\tau \rightarrow K\nu)/B(\tau \rightarrow \pi\nu)$

We compute $|V_{us}|$ from the ratio of branching fractions $B(\tau \rightarrow K^- \nu_{\tau})/B(\tau \rightarrow \pi^- \nu_{\tau}) = (6.438 \pm 0.094) \cdot 10^{-2}$ from the equation [70]:

$$\frac{B(\tau \to K^- \nu_\tau)}{B(\tau \to \pi^- \nu_\tau)} = \frac{f_K^2 |V_{us}|^2}{f_\pi^2 |V_{ud}|^2} \frac{\left(m_\tau^2 - m_K^2\right)^2}{\left(m_\tau^2 - m_\pi^2\right)^2} \frac{1 + \delta R_{\tau/K}}{1 + \delta R_{\tau/\pi}} (1 + \delta R_{K/\pi})$$

Figure 1: $|V_{us}|$ averages.

We use $f_K/f_\pi = 1.1930 \pm 0.0030$ from the FLAG 2016 Lattice averages with $N_f = 2 + 1 + 1$ [85],

 $\frac{1 + \delta R_{\tau/K}}{1 + \delta R_{\tau/\pi}} = \frac{1 + (0.90 \pm 0.22)\%}{1 + (0.16 \pm 0.14)\%} [73, 74, 75, 76],$ $1 + \delta R_{K/\pi} = 1 + (-1.13 \pm 0.23)\% [70, 86, 87].$

We compute $|V_{us}|_{\tau K/\pi} = 0.2236 \pm 0.0018$, 1.1σ below the CKM unitarity prediction.

5.3 $|V_{us}|$ from τ summary

We summarize the $|V_{us}|$ results reporting the values, the discrepancy with respect to the $|V_{us}|$ determination from CKM unitarity, and an illustration of the measurement method:

$$\begin{split} |V_{us}|_{uni} &= 0.22582 \pm 0.00089 & [\text{from } \sqrt{1 - |V_{ud}|^2} \quad (\text{CKM unitarity})] \text{,} \\ |V_{us}|_{\tau s} &= 0.2186 \pm 0.0021 & -3.1\sigma \quad [\text{from } \Gamma(\tau^- \to X_s^- \nu_\tau)] \text{,} \\ |V_{us}|_{\tau K/\pi} &= 0.2236 \pm 0.0018 & -1.1\sigma \quad [\text{from } \Gamma(\tau^- \to K^- \nu_\tau)/\Gamma(\tau^- \to \pi^- \nu_\tau)] \text{.} \end{split}$$

Averaging the two above $|V_{us}|$ determinations that rely on the τ branching fractions (taking into account all correlations due to the τ HFLAV and other mentioned inputs) we obtain, for $|V_{us}|$ and its discrepancy:

 $|V_{us}|_{\tau} = 0.2216 \pm 0.0015 - 2.4\sigma$ [average of 2 $|V_{us}|$ τ measurements].

All $|V_{us}|$ determinations based on measured τ branching fractions are lower than both the kaon and the CKM-unitarity determinations. This is correlated with the fact that the direct measurements of the three major τ branching fractions to kaons $[B(\tau \to K^- \nu_{\tau}), B(\tau \to K^- \pi^0 \nu_{\tau})]$ and $B(\tau \to \pi^- \overline{K}^0 \nu_{\tau})]$ are lower than their determinations from the kaon branching fractions into final states with leptons within the SM [70, 88, 89].

A recent determination of $|V_{us}|$ [90, 91] that relies on the τ spectral functions in addition to the inclusive $\tau \to X_s \nu$ branching fraction reports a $|V_{us}|$ value about 1σ lower than the CKM-unitarity determination. This determination uses inputs that are partially different from the ones used in this report. Specifically, the HFLAV average of $B(\tau \to K^- \nu_{\tau})$ has been replaced with the SM prediction based on the measured $B(K^- \to \mu^- \overline{\nu}_{\mu})$ and the HFLAV average of $B(\tau \to K^- \pi^0 \nu_{\tau})$ has been replaced with an in-progress *BABAR* measurement that is published in a PhD thesis. Both changes increase the resulting $\tau \to X_s \nu$ inclusive branching fraction. This study claims that the newly proposed $|V_{us}|$ calculation has a more stable and reliable theory uncertainty, which could possibly have been underestimated in former studies, which are used for the HFLAV $|V_{us}|$ average. In previous editions of the HFLAV report, we also computed $|V_{us}|$ using the branching fraction $B(\tau \rightarrow K\nu)$ and without taking the ratio with $B(\tau \rightarrow \pi\nu)$. We do not report this additional determination because it did not include the long-distance radiative corrections in addition to the short-distance contribution, and because it had a negligible effect on the overall precision of the $|V_{us}|$ calculation with τ data.

Figure 1 reports the HFLAV $|V_{us}|$ determinations that use the τ branching fractions, compared to two $|V_{us}|$ determinations based on kaon data [2] and to $|V_{us}|$ obtained from $|V_{ud}|$ and the CKM matrix unitarity [2].

6 Upper limits on τ lepton-flavour-violating branching fractions

The Standard Model predicts that the τ lepton-flavour-violating (LFV) branching fractions are too small to be measured with the available experimental precision. We report in Table 14 and Figure 2 the experimental upper limits on these branching fractions that have been published by the *B*-factories *BABAR* and Belle and later experiments. We omit previous weaker upper limits (mainly from CLEO) and all preliminary results presented several years ago. The previous HFLAV report [4] still included a few preliminary results, which have all been removed now.

Table 14: Experimental upper limits on lepton flavour violating τ decays. The modes are grouped according to the properties of their final states. Modes with baryon number violation are labelled with "BNV".

Decay mode	Category	90% CL Limit	Exp.	Ref.
$\Gamma_{156} = e^- \gamma$	$\ell\gamma$	$3.3 \cdot 10^{-8}$	BABAR	[92]
$\Gamma_{156} = e^- \gamma$		$1.2 \cdot 10^{-7}$	Belle	[93]
$\Gamma_{157} = \mu^- \gamma$		$4.4 \cdot 10^{-8}$	BABAR	[92]
$\Gamma_{157} = \mu^- \gamma$		$4.5 \cdot 10^{-8}$	Belle	[93]
$\Gamma_{158} = e^{-}\pi^{0}$	ℓP^0	$1.3 \cdot 10^{-7}$	BABAR	[94]
$\Gamma_{158} = e^- \pi^0$		$8.0 \cdot 10^{-8}$	Belle	[95]
$\Gamma_{159} = \mu^- \pi^0$		$1.1 \cdot 10^{-7}$	BABAR	[94]
$\Gamma_{159} = \mu^{-} \pi^{0}$		$1.2 \cdot 10^{-7}$	Belle	[95]
$\Gamma_{160} = e^- K_S^0$		$3.3 \cdot 10^{-8}$	BABAR	[96]
$\Gamma_{160} = e^{-} K_{S}^{0}$		$2.6 \cdot 10^{-8}$	Belle	[97]
$\Gamma_{161} = \mu^{-} K_{S}^{0}$		$4.0 \cdot 10^{-8}$	BABAR	[96]
$\Gamma_{161} = \mu^{-} K_{S}^{0}$		$2.3 \cdot 10^{-8}$	Belle	[97]
$\Gamma_{162} = e^- \eta$		$1.6 \cdot 10^{-7}$	BABAR	[94]
$\Gamma_{162} = e^- \eta$		$9.2 \cdot 10^{-8}$	Belle	[95]
$\Gamma_{163} = \mu^{-} \eta$		$1.5 \cdot 10^{-7}$	BABAR	[94]
$\Gamma_{163} = \mu^{-} \eta$		$6.5 \cdot 10^{-8}$	Belle	[95]
$\Gamma_{172} = e^{-} \eta'(958)$		$2.4 \cdot 10^{-7}$	BABAR	[94]
$\Gamma_{172} = e^{-} \eta'(958)$		$1.6 \cdot 10^{-7}$	Belle	[95]
$\Gamma_{173} = \mu^- \eta'(958)$		$1.4 \cdot 10^{-7}$	BABAR	[94]
$\Gamma_{173} = \mu^- \eta'(958)$		$1.3 \cdot 10^{-7}$	Belle	[95]
$\Gamma_{164} = e^- \rho^0$	ℓV^0	$4.6 \cdot 10^{-8}$	BABAR	[98]
$\Gamma_{164} = e^- \rho^0$		$1.8 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{165} = \mu^- \rho^0$		$2.6 \cdot 10^{-8}$	BABAR	[98]
$\Gamma_{165} = \mu^- \rho^0$		$1.2 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{166} = e^- \omega$		$1.1 \cdot 10^{-7}$	BABAR	[100]
$\Gamma_{166} = e^- \omega$		$4.8 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{167} = \mu^- \omega$		$1.0 \cdot 10^{-7}$	BABAR	[100]
$\Gamma_{167} = \mu^- \omega$		$4.7 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{168} = e^- K^* (892)^0$		$5.9 \cdot 10^{-8}$	BABAR	[98]
$\Gamma_{168} = e^{-}K^{*}(892)^{0}$		$3.2 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{169} = \mu^- K^* (892)^0$		$1.7 \cdot 10^{-7}$	BABAR	[<mark>98</mark>]
$\Gamma_{169} = \mu^- K^* (892)^0$		$7.2 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{170} = e^- \overline{K}^* (892)^0$		$4.6 \cdot 10^{-8}$	BABAR	[<mark>98</mark>]

Decay mode	Category	90% CL Limit	Exp.	Ref.
$\Gamma_{170} = e^- \overline{K}^* (892)^0$		$3.4 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{171} = \mu^{-} \overline{K}^{*} (892)^{0}$		$7.3 \cdot 10^{-8}$	BABAR	[98]
$\Gamma_{171} = \mu^{-} \overline{K}^{*} (892)^{0}$		$7.0 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{176} = e^{-}\phi$		$3.1 \cdot 10^{-8}$	BABAR	[98]
$\Gamma_{176} = e^- \phi$		$3.1 \cdot 10^{-8}$	Belle	[99]
$\Gamma_{177} = \mu^{-}\phi$		$1.9\cdot 10^{-7}$	BABAR	98]
$\Gamma_{177} = \mu^- \phi$		$8.4\cdot10^{-8}$	Belle	[99]
$\Gamma_{174} = e^{-} f_0(980)$	<i>ℓS</i> ⁰	$3.2 \cdot 10^{-8}$	Belle	[101]
$\Gamma_{175} = \mu^{-} f_0(980)$		$3.4\cdot10^{-8}$	Belle	[101]
$\Gamma_{178} = e^- e^+ e^-$	lll	$2.9\cdot10^{-8}$	BABAR	[102]
$\Gamma_{178} = e^- e^+ e^-$		$2.7 \cdot 10^{-8}$	Belle	[103]
$\Gamma_{179} = e^- \mu^+ \mu^-$		$3.2 \cdot 10^{-8}$	BABAR	[102]
$\Gamma_{179} = e^- \mu^+ \mu^-$		$2.7 \cdot 10^{-8}$	Belle	[103]
$\Gamma_{180} = \mu^- e^+ \mu^-$		$2.6 \cdot 10^{-8}$	BABAR	[102]
$\Gamma_{180} = \mu^- e^+ \mu^-$		$1.7 \cdot 10^{-8}$	Belle	[103]
$\Gamma_{181}=\mu^-e^+e^-$		$2.2 \cdot 10^{-8}$	BABAR	[102]
$\Gamma_{181} = \mu^- e^+ e^-$		$1.8 \cdot 10^{-8}$	Belle	[103]
$\Gamma_{182} = e^{-}\mu^{+}e^{-}$		$1.8 \cdot 10^{-8}$	BABAR	[102]
$\Gamma_{182} = e^{-}\mu^{+}e^{-}$		$1.5 \cdot 10^{-8}$	Belle	[103]
$\Gamma_{183} = \mu^- \mu^+ \mu^-$		$3.8 \cdot 10^{-7}$	ATLAS	[104]
$\Gamma_{183} = \mu^- \mu^+ \mu^-$		$3.3 \cdot 10^{-8}$	BABAR	[102]
$\Gamma_{183} = \mu^- \mu^+ \mu^-$		$2.1 \cdot 10^{-8}$	Belle	[103]
$\Gamma_{183} = \mu^- \mu^+ \mu^-$		$4.6 \cdot 10^{-8}$	LHCb	[105]
$\Gamma_{184} = e^- \pi^+ \pi^-$	ℓhh	$1.2\cdot10^{-7}$	BABAR	[106]
$\Gamma_{184} = e^- \pi^+ \pi^-$		$2.3 \cdot 10^{-8}$	Belle	[107]
$\Gamma_{185} = e^+ \pi^- \pi^-$		$2.7 \cdot 10^{-7}$	BABAR	[106]
$\Gamma_{185} = e^+ \pi^- \pi^-$		$2.0 \cdot 10^{-8}$	Belle	[107]
$\Gamma_{186} = \mu^- \pi^+ \pi^-$		$2.9 \cdot 10^{-7}$	BABAR	[106]
$\Gamma_{186} = \mu^- \pi^+ \pi^-$		$2.1 \cdot 10^{-8}$	Belle	[107]
$\Gamma_{187} = \mu^+ \pi^- \pi^-$		$7.0 \cdot 10^{-8}$	BABAR	[106]
$\Gamma_{187} = \mu^+ \pi^- \pi^-$		$3.9 \cdot 10^{-8}$	Belle	[107]
$\Gamma_{188} = e^- \pi^+ K^-$		$3.2 \cdot 10^{-7}$	BABAR	[106]
$\Gamma_{188} = e^- \pi^+ K^-$		$3.7 \cdot 10^{-8}$	Belle	[107]
$\Gamma_{189} = e^- K^+ \pi^-$		$1.7 \cdot 10^{-7}$	BABAR	[106]
$\Gamma_{189} = e^{-}K^{+}\pi^{-}$		$3.1 \cdot 10^{-8}$	Belle	[107]
$\Gamma_{190} = e^+ \pi^- K^-$		$1.8 \cdot 10^{-7}$	BABAR	[106]
$\Gamma_{190} = e^+ \pi^- K^-$		$3.2 \cdot 10^{-6}$	Belle	[107]
$I_{191} = e^{-}K_{S}^{0}K_{S}^{0}$		$7.1 \cdot 10^{-8}$	Belle	[97]
$I_{192} = e^{-}K^{+}K^{-}$		$1.4 \cdot 10^{-7}$	BABAR	[106]
$I_{192} = e^{-}K^{+}K^{-}$		$3.4 \cdot 10^{-8}$	Belle	[107]
$I_{193} = e^{+}K^{-}K^{-}$		$1.5 \cdot 10^{-8}$	BABAR	[106]
$I_{193} = e'K K$		$3.3 \cdot 10^{-7}$	Belle	[107]
$\Gamma_{194} = \mu \pi K$		$2.0 \cdot 10^{-8}$	BABAR	[100]
$\mu_{194} = \mu_{\pi'} \kappa_{\pi'} \kappa_{\pi'}$		$0.0 \cdot 10^{\circ}$		[106]
$\mu_{195} = \mu_{-} \kappa \cdot \pi_{-}$		J.Z · 10 ⁻⁸	DADAK	[107]
$\mu_{195} = \mu_{-} \kappa \pi_{-}$		4.0 · 10 -7	Delle RARAD	[107] [106]
$\mu_{196} - \mu_{-}\pi \kappa$		2.2·10 ·	Bella	[100] [107]
$\mu_{196} - \mu_{10} \kappa_{0}$		$+.0.10^{-8}$	Balla	[107]
$\Gamma_{197} - \mu \kappa_{\dot{S}} \kappa_{\dot{S}}$ $\Gamma_{197} - \mu - \kappa_{\dot{S}} \kappa_{\dot{S}}$		25.10-7	RARAD	[⁹⁷] [106]
$\Gamma_{100} = \mu^{-} \kappa^{+} \kappa^{-}$		Δ.Δ.10 ⁻⁸	Rella	[107]
$\Gamma_{100} = \mu^{+} \kappa^{-} \kappa^{-}$		4.8.10 ⁻⁷	RARAD	[106]
$\mu 199 - \mu \Lambda \Lambda$		-T.U · 10		

Table 14 – continued from previous page

Decay mode	Category	90% CL Limit	Exp.	Ref.
$\Gamma_{199} = \mu^+ K^- K^-$		$4.7\cdot 10^{-8}$	Belle	[107]
$\Gamma_{211} = \pi^{-} \Lambda$	BNV	$7.2 \cdot 10^{-8}$	Belle	[108]
$\Gamma_{212} = \pi^{-}\Lambda$		$1.4 \cdot 10^{-7}$	Belle	[108]
$\Gamma_{215} = p\mu^-\mu^-$		$4.4 \cdot 10^{-7}$	LHCb	[109]
$\Gamma_{216} = \overline{p}\mu^+\mu^-$		$3.3 \cdot 10^{-7}$	LHCb	[109]

Table 14 – continued from previous page

7 Combination of upper limits on τ lepton-flavour-violating branching fractions

Combining upper limits is a delicate issue, since there is no standard and generally agreed procedure. Furthermore, the τ LFV searches published limits are extracted from the data with a variety of methods, and cannot be directly combined with a uniform procedure. It is however possible to use a single and effective upper limit combination procedure for all modes by re-computing the published upper limits with just one extraction method, using the published information that documents the upper limit determination: number of observed candidates, expected background, signal efficiency and number of analyzed τ decays.

We chose to use the CL_s method [110] to re-compute the τ LFV upper limits, since it is well known and widely used (see the Statistics review of PDG 2013 [2]), and since the limits computed with the CL_s method can be combined in a straightforward way (see below). The CL_s method is based on two hypotheses: signal plus background and background only. We calculate the observed confidence levels for the two hypotheses:

$$\mathsf{CL}_{s+b} = P_{s+b}(Q \le Q_{obs}) = \int_{-\infty}^{Q_{obs}} \frac{dP_{s+b}}{dQ} dQ,$$
(10)

$$\mathsf{CL}_b = P_b(Q \le Q_{obs}) = \int_{-\infty}^{Q_{obs}} \frac{dP_b}{dQ} dQ, \tag{11}$$

where CL_{s+b} is the confidence level observed for the signal plus background hypotheses, CL_b is the confidence level observed for the background only hypothesis, $\frac{dP_{s+b}}{dQ}$ and $\frac{dP_b}{dQ}$ are the probability distribution functions (PDFs) for the two corresponding hypothesis and Q is called the test statistic. The CL_s value is defined as the ratio between the confidence level for the signal plus background hypothesis and the confidence level for the background hypothesis:

$$\mathsf{CL}_s = \frac{\mathsf{CL}_{s+b}}{\mathsf{CL}_b}.$$
(12)

When multiple results are combined, the PDFs in Eqs. (10) and (11) are the product of the individual PDFs,

$$CL_{s} = \frac{\prod_{i=1}^{N} \sum_{n=0}^{n_{i}} \frac{e^{-(s_{i}+b_{i})}(s_{i}+b_{i})^{n}}{n!}}{\prod_{i=1}^{N} \sum_{n=0}^{n_{i}} \frac{e^{-b_{i}}b_{i}^{n}}{n!}}{\frac{1}{n!}} \frac{\prod_{j=1}^{N} [s_{i}S_{i}(x_{ij}) + b_{i}B_{i}(x_{ij})]}{\prod_{j=1}^{N} B_{i}(x_{ij})},$$
(13)

where N is the number of results (or channels), and, for each channel i, n_i is the number of observed candidates, x_{ij} are the values of the discriminating variables (with index j), s_i and b_i are the number of signal and background events and S_i , B_i are the probability distribution functions of the discriminating variables. The discriminating variables x_{ij} are assumed to be uncorrelated. The expected signal s_i is related to the τ lepton branching fraction $B(\tau \rightarrow f_i)$ into the searched final state f_i by $s_i = N_i \epsilon_i B(\tau \rightarrow f_i)$, where N_i is the number of produced τ leptons and ϵ_i is the detection efficiency for observing the decay $\tau \rightarrow f_i$. For e^+e^- experiments, $N_i = 2\mathcal{L}_i \sigma_{\tau\tau}$, where \mathcal{L}_i is the integrated luminosity and $\sigma_{\tau\tau}$ is the τ pair production cross section $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ [111]. In experiments where τ leptons are produced in more complex multiple reactions, the effective N_i is typically estimated with Monte Carlo simulations calibrated with related data yields.

The extraction of the upper limits is performed using the code provided by Tom Junk [112]. The systematic uncertainties are modeled in the Monte Carlo toy experiments by convolving the S_i and B_i PDFs with Gaussian distributions corresponding to the nuisance parameters.

Table 15 reports the HFLAV combinations of the τ LFV limits. Since there is negligible gain in combining limits of very different strength, the combinations do not include the CLEO searches and do not include results where the single event sensitivity is more than a factor of 5 lower than the value for the search with the best limit.

Figure 3 reports a graphical representation of the limits in Table 15. The published information that has been used to obtain these limits is reported in Table 16.

Decay mode	Category	90% CL Limit	Refs.
$\Gamma_{156} = e^- \gamma$	$\ell\gamma$	$5.4 \cdot 10^{-8}$	[93, 92]
$I_{157} = \mu^- \gamma$		$5.0 \cdot 10^{-8}$	[93, 92]
$\Gamma_{158} = e^- \pi^0$	ℓP^0	$4.9\cdot10^{-8}$	[95, 94]
$\Gamma_{159} = \mu^- \pi^0$		$3.6 \cdot 10^{-8}$	[95, 94]
$\Gamma_{160} = e^- K_S^0$		$1.4 \cdot 10^{-8}$	[97, 96]
$\Gamma_{161} = \mu^- K_S^0$		$1.5 \cdot 10^{-8}$	[97, 96]
$\Gamma_{162} = e^- \eta$		$5.5 \cdot 10^{-8}$	[95, 94]
$\Gamma_{163} = \mu^{-} \eta$		$3.8 \cdot 10^{-8}$	[95, 94]
$\Gamma_{172} = e^{-} \eta'(958)$		$9.9 \cdot 10^{-8}$	[95, 94]
$\Gamma_{173} = \mu^- \eta'(958)$		$6.3 \cdot 10^{-8}$	[95, 94]
$\Gamma_{164} = e^- \rho^0$	ℓV^0	$1.5 \cdot 10^{-8}$	[99, 98]
$\Gamma_{165} = \mu^- \rho^0$		$1.5 \cdot 10^{-8}$	[99, 98]
$\Gamma_{166} = e^- \omega$		$3.3 \cdot 10^{-8}$	[99, 100]
$\Gamma_{167} = \mu^- \omega$		$4.0 \cdot 10^{-8}$	[99, 100]
$\Gamma_{168} = e^- K^* (892)^0$		$2.3 \cdot 10^{-8}$	[99, 98]
$\Gamma_{169} = \mu^- K^* (892)^0$		$6.0 \cdot 10^{-8}$	[99, 98]
$\Gamma_{170} = e^- \overline{K}^* (892)^0$		$2.2\cdot10^{-8}$	[99, 98]
$\Gamma_{171} = \mu^- \overline{K}^* (892)^0$		$4.2 \cdot 10^{-8}$	[99, 98]
$\Gamma_{176} = e^- \phi$		$2.0 \cdot 10^{-8}$	[99, 98]
$\Gamma_{177} = \mu^- \phi$		$6.8 \cdot 10^{-8}$	[99, 98]
$\Gamma_{178} = e^- e^+ e^-$	$\ell\ell\ell$	$1.4 \cdot 10^{-8}$	[103, 102]
$\Gamma_{179} = e^- \mu^+ \mu^-$		$1.6 \cdot 10^{-8}$	[103, 102]
$\Gamma_{180} = \mu^- e^+ \mu^-$		$9.8 \cdot 10^{-9}$	[103, 102]
$\Gamma_{181} = \mu^- e^+ e^-$		$1.1 \cdot 10^{-8}$	[103, 102]
$\Gamma_{182} = e^- \mu^+ e^-$		$8.4 \cdot 10^{-9}$	[103, 102]
$\Gamma_{183} = \mu^{-} \mu^{+} \mu^{-}$		$1.2 \cdot 10^{-8}$	[103, 102, 105]

Table 15: Combinations of upper limits on lepton flavour violating τ decay modes. The modes are grouped according to the properties of their final states. Modes with baryon number violation are labelled with "BNV".

Table 16: Published information that has been used to re-compute upper limits with the CL_s method, *i.e.* the number of τ leptons produced, the signal detection efficiency and its uncertainty, the number of expected background events and its uncertainty, and the number of observed events. The uncertainty on the efficiency includes the minor uncertainty contribution on the number of τ leptons (typically originating on the uncertainties on the integrated luminosity and on the production cross-section). The additional limit used in the combinations (from LHCb) has been originally determined with the CL_s method.

D I	F D (D .($N_{ au}$	efficiency	iency	
Decay mode	Exp.	Ref.	(millions)	(%)	Nbkg	Nobs
$\Gamma_{156} = e^- \gamma$	BABAR	[92]	963	3.90 ± 0.30	1.60 ± 0.40	0
$\Gamma_{156} = e^- \gamma$	Belle	[<mark>93</mark>]	983	3.00 ± 0.10	5.14 ± 3.30	5
$\Gamma_{157} = \mu^- \gamma$	BABAR	[92]	963	6.10 ± 0.50	3.60 ± 0.70	2
$\Gamma_{157} = \mu^- \gamma$	Belle	[<mark>93</mark>]	983	5.07 ± 0.20	13.90 ± 5.00	10
$\Gamma_{158} = e^- \pi^0$	BABAR	[94]	339	2.83 ± 0.25	0.17 ± 0.04	0
$\Gamma_{158} = e^- \pi^0$	Belle	[<mark>95</mark>]	401	$\textbf{3.93} \pm \textbf{0.18}$	$\textbf{0.20}\pm\textbf{0.20}$	0
$\Gamma_{159} = \mu^- \pi^0$	BABAR	[94]	339	4.75 ± 0.37	1.33 ± 0.15	1
$\Gamma_{159} = \mu^{-} \pi^{0}$	Belle	[<mark>95</mark>]	401	4.53 ± 0.20	0.58 ± 0.34	1
$\Gamma_{160} = e^- K_S^0$	BABAR	[<mark>96</mark>]	862	9.10 ± 1.73	0.59 ± 0.25	1
$\Gamma_{160} = e^{-} K_{S}^{0}$	Belle	[<mark>97</mark>]	1274	10.20 ± 0.67	0.18 ± 0.18	0
$\Gamma_{161} = \mu^- K_{S}^0$	BABAR	[<mark>96</mark>]	862	6.14 ± 0.20	0.30 ± 0.18	1
$\Gamma_{161} = \mu^- K_S^0$	Belle	[<mark>97</mark>]	1274	10.70 ± 0.73	0.35 ± 0.21	0
$\Gamma_{162} = e^- \eta$	BABAR	[94]	339	2.12 ± 0.20	0.22 ± 0.05	0
$\Gamma_{162} = e^- \eta$	Belle	[95]	401	2.87 ± 0.20	0.78 ± 0.78	0
$\Gamma_{163} = \mu^{-}\eta$	BABAR	[94]	339	3.59 ± 0.41	0.75 ± 0.08	1
$\Gamma_{163} = \mu^{-}\eta$	Belle	[95]	401	4.08 ± 0.28	0.64 ± 0.04	0
$I_{172} = e^{-}\eta'(958)$	BABAR	[94]	339	1.53 ± 0.16	0.12 ± 0.03	0
$I_{172} = e^{-}\eta'(958)$	Belle	[95]	401	1.59 ± 0.13	0.01 ± 0.41	0
$I_{173} = \mu^{-} \eta'(958)$	BABAR	[94]	339	2.18 ± 0.26	0.49 ± 0.26	0
$I_{173} = \mu^- \eta'(958)$	Belle	[95]	401	2.47 ± 0.20	0.23 ± 0.46	0
$I_{164} = e^- \rho^0$	BABAR	[98]	829	7.31 ± 0.20	1.32 ± 0.17	1
$I_{164} = e^- \rho^0$	Belle	[99]	1554	7.58 ± 0.41	0.29 ± 0.15	0
$\Gamma_{165} = \mu^- \rho^0$	BABAR	[98]	829	4.52 ± 0.40	2.04 ± 0.19	0
$\Gamma_{165} = \mu_{\rho}^{0}$	Belle	[99]	1554	7.09 ± 0.37	1.48 ± 0.35	0
$\Gamma_{166} = e \ \omega$	BABAR	[100]	829	2.90 ± 0.13	0.35 ± 0.06	0
$\Gamma_{166} = e^{-\omega}$	Delle	[99]	1554	2.92 ± 0.18	0.30 ± 0.14	0
$\Gamma_{167} = \mu^{-} \omega$	DADAR	[00]	029	2.50 ± 0.10 2.28 \pm 0.14	0.73 ± 0.03 0.72 \pm 0.18	0
$\Gamma_{167} = \mu \omega$ $\Gamma_{167} = \rho^{-} K^{*} (802)^{0}$	BARAD	[99]	820	2.30 ± 0.14 8 00 \pm 0 20	0.72 ± 0.10 1.65 ± 0.23	2
$\Gamma_{168} = e^{-K^{*}(802)^{0}}$	Balla	[90]	1554	0.00 ± 0.20	1.03 ± 0.23 0.20 \pm 0.14	2
$\Gamma_{168} = e^{-K^*}(802)^0$		[99]	820	4.37 ± 0.24	0.29 ± 0.14 1 70 + 0 21	1
$\Gamma_{169} = \mu^{-} K^{*} (802)^{0}$	Belle	[00]	155/	4.00 ± 0.40 3 30 \pm 0 10	1.79 ± 0.21 0.53 \pm 0.20	1
$\Gamma_{109} = \mu^{-} \overline{K}^{*} (802)^{0}$	BARAD	[08]	820	7.80 ± 0.10	0.35 ± 0.20 2.76 ± 0.28	2
$\Gamma_{170} = e^{-1} \overline{K}^{*}(902)^{0}$	DADAN	[90]	1654	1.00 ± 0.20	2.70 ± 0.20	2
$\Gamma_{170} = e^{-K} (692)^{0}$	Delle	[99]	1554	4.41 ± 0.25	0.06 ± 0.06	1
$\Gamma_{171} = \mu \kappa (892)^{\circ}$	DADAR	[98]	829	4.10 ± 0.30	1.72 ± 0.17	1
$\Gamma_{171} = \mu K (892)^{\circ}$	Belle	[99]	1554	3.60 ± 0.20	0.45 ± 0.17	1
$\Gamma_{176} = e \phi$	DADAR	[98]	829 1654	0.40 ± 0.20	0.08 ± 0.12	0
$\Gamma_{176} = e^{-\phi}$	Delle RARAD	[99]	1554	4.10 ± 0.25 5.20 ± 0.30	0.47 ± 0.19 2.76 ± 0.16	0
$\Gamma_{177} = \mu^{-} \phi$	Balla	[90]	1554	3.20 ± 0.30 3.21 ± 0.10	2.70 ± 0.10 0.06 \pm 0.06	1
$\Gamma_{177} = \mu \ \phi$ $\Gamma_{177} = \rho^{-} \rho^{+} \rho^{-}$	BARAD	[99]	2534	3.21 ± 0.19 8.60 ± 0.20	0.00 ± 0.00 0.12 \pm 0.02	1
$\Gamma_{178} = e^{-}e^{+}e^{-}$	Belle	[102]	1/137	6.00 ± 0.20 6.00 ± 0.50	0.12 ± 0.02 0.21 ± 0.15	0
$\Gamma_{178} = e^{-}e^{+}e^{-}$		[103]	868	0.00 ± 0.09 6 40 ± 0 40	0.21 ± 0.13 0.54 \pm 0.14	0
$\Gamma_{170} = e^{-} \mu^{+} \mu^{-}$	Relle	[102]	1437	0.40 ± 0.40 6 10 ± 0.58	0.34 ± 0.14 0.10 + 0.04	0
$\Gamma_{190} = u^{-}e^{+}u^{-}$	BARAR	[102]	868	10.20 ± 0.00	0.10 ± 0.04 0.03 ± 0.02	0
$\Gamma_{180} = \mu^{-} e^{+} \mu^{-}$	Belle	[103]	1437	10.20 ± 0.00 10.10 ± 0.77	0.03 ± 0.02 0.02 ± 0.02	0
$\Gamma_{180} = \mu^{-} e^{+} e^{-}$	BABAR	[102]	868	880 ± 0.50	0.62 ± 0.02 0.64 + 0.19	0
$\Gamma_{181} = \mu^{-}e^{+}e^{-}$	Belle	103	1437	9.30 ± 0.73	0.04 ± 0.04	0
$\Gamma_{182} = e^{-}\mu^{+}e^{-}$	BABAR	[102]	868	12.70 ± 0.70	0.34 ± 0.12	0
$\Gamma_{182} = e^{-}\mu^{+}e^{-}$	Belle	103	1437	11.50 ± 0.89	0.01 ± 0.01	0
$\Gamma_{183} = \mu^{-}\mu^{+}\mu^{-}$	BABAR	[102]	868	6.60 ± 0.60	0.44 ± 0.17	0
$\Gamma_{183} = \mu^- \mu^+ \mu^-$	Belle	[103]	1437	7.60 ± 0.56	$\textbf{0.13}\pm\textbf{0.20}$	0

Figure 2: Tau lepton-flavor-violating branching fraction upper limits summary plot. In order to appreciate the physics reach improvement over time, the plot includes also the CLEO upper limits reported by PDG 2016 [2].

Figure 3: Tau lepton-flavour-violating branching fraction upper limits combinations summary plot. For each channel we report the HFLAV combined limit, and the experimental published limits. In some cases, the combined limit is weaker than the limit published by a single experiment. This arises since the CL_s method used in the combination can be more conservative compared to other legitimate methods, especially when the number of observed events fluctuates below the expected background.

A Branching fractions fit measurement list by reference

Table 17 reports the measurements used for the HFLAV-Tau branching fraction fit grouped by their bibliographic reference.

Reference / Branching Fraction	Value
BARATE 98 (ALEPH) [52]	
$\Gamma_{85} = K^{-} \pi^{+} \pi^{-} \nu_{\tau} $ (ex. K^{0})	0.00214 ± 0.0004701
$\Gamma_{88} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} $ (ex. K^{0})	0.00061 ± 0.0004295
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	0.00163 ± 0.0002702
$\Gamma_{94} = \pi^- K^- K^+ \pi^0 \nu_\tau$	0.00075 ± 0.0003265
BARATE 98E (ALEPH) [8]	
$\Gamma_{33} = K_S^0(\text{particles})^- u_{ au}$	0.0097 ± 0.000849
$\Gamma_{37} = K^- K^0 \nu_\tau$	0.00158 ± 0.0004531
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	0.00294 ± 0.0008184
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	0.00152 ± 0.0007885
$\Gamma_{47} = \pi^- K^0_S K^0_S \nu_\tau$	0.00026 ± 0.0001118
$\Gamma_{48} = \pi^- K^0_S K^0_L \nu_\tau$	0.00101 ± 0.0002642
$\Gamma_{51} = \pi^- \pi^0 K^0_S K^0_L \nu_\tau$	$(3.1 \pm 1.1 \pm 0.5) \cdot 10^{-4}$
$\Gamma_{53} = \overline{K}^0 h^- h^- h^+ \nu_{\tau}$	0.00023 ± 0.000202485
BARATE 99K (ALEPH) [23]	
$\Gamma_{10} = K^- \nu_{\tau}$	0.00696 ± 0.0002865
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	0.00444 ± 0.0003538
$\Gamma_{23} = K^{-} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	0.00056 ± 0.00025
$\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$	0.00037 ± 0.0002371
$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	0.00928 ± 0.000564
$\Gamma_{37} = K^- K^0 \nu_\tau$	0.00162 ± 0.0002371
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	0.00347 ± 0.0006464
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	0.00143 ± 0.0002915
BARATE 99R (ALEPH) [36]	
$\Gamma_{44} = \pi^- \overline{K}^0 \pi^0 \pi^0 u_ au$ (ex. K^0)	0.00026 ± 0.00024
BUSKULIC 96 (ALEPH) [66]	
$\frac{\Gamma_{150}}{\Gamma_{150}} = \frac{h^- \omega \nu_\tau}{1 - \omega \nu_\tau}$	0.431 ± 0.033
$\frac{\Gamma_{66} h^- h^- h^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0)}{\Gamma_{66} \mu_{\pi} = 0.25 \text{ (A) } \Gamma_{\pi} = 0.25 \text{ (b)}$	
$\frac{1}{10000000000000000000000000000000000$	0.0010 \ 0.0004470
$\Gamma_{126} = \pi^{-} \pi^{-} \eta \nu_{\tau}$	0.0018 ± 0.0004472
$\Gamma_{128} = \kappa \eta \nu_{\tau}$	$(2.9^{-1.2}_{-1.2} \pm 0.7) \cdot 10^{-10}$
$I_{150} = h \omega \nu_{\tau}$	0.0191 ± 0.000922
$I_{152} = h \pi^{-} \omega \nu_{\tau}$	0.0043 ± 0.000781
SCHAEL 05C (ALEPH) $[10]$	
$I_3 = \mu \nu_{\mu} \nu_{\tau}$	0.17319 ± 0.000769675
$I_5 = e \nu_e \nu_\tau$	0.17837 ± 0.000804984
$\mathbf{I}_{8} = n \ \nu_{\tau}$	0.11524 ± 0.00104805
$L_{13} = n \pi^{-1} \nu_{\tau}$	0.25924 ± 0.001228973
$I_{19} = h \ 2\pi^{-} \nu_{\tau} \ (\text{ex. } K^{-})$	0.09295 ± 0.00121055
$I_{26} = h_{3\pi^{-}\nu_{\tau}}$	0.01082 ± 0.000925581
$I_{30} = h 4\pi^{2} \nu_{\tau}$ (ex. K [*] , η)	0.00112 ± 0.000509313
$I_{58} = h h h' \nu_{\tau} \text{ (ex. } K^{\circ}, \omega)$	0.09469 ± 0.000957758
$I_{66} = h^{-}h^{-}h^{-}\pi^{\circ}\nu_{\tau}$ (ex. K°)	0.04734 ± 0.000766942

Table 17: By-reference measurements list.

	-	-			•	
Labi	eι		 continued 	trom	previous	nage
	~ -		continued		pretious	Pubu

Reference / Branching Fraction	Value
$\Gamma_{76} = h^- h^- h^+ 2\pi^0 \nu_\tau \text{ (ex. } K^0\text{)}$	0.00435 ± 0.000460977
$\Gamma_{103} = 3h^- 2h^+ \nu_{\tau} \text{ (ex. } K^0 \text{)}$	0.00072 ± 0.00015
$\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$(0.021\pm 0.007\pm 0.009)\cdot 10^{-2}$
$\Gamma_{805} = a_1^- (\rightarrow \pi^- \gamma) \nu_\tau$	$(4 \pm 2) \cdot 10^{-4}$
ALBRECHT 88B (ARGUS) [57]	
$\Gamma_{103} = 3h^- 2h^+ \nu_{\tau} \; (\text{ex. } K^0)$	$0.00064 \pm 0.00023 \pm 0.0001$
ALBRECHT 92D (ARGUS) [14]	
$\frac{\Gamma_3}{\Gamma_3} = \frac{\mu^- \overline{\nu}_\mu \nu_\tau}{\Gamma_\mu \nu_\tau}$	$0.997 \pm 0.035 \pm 0.04$
$\frac{\Gamma_5}{\Lambda U P E P T} e^{-\overline{\nu}_e \nu_\tau} \frac{P A P A P}{P A P} [20]$	
AUBERT UTAF (BADAK) [29] $\Gamma_{12} = K^{-} \pi^{0} \mu$	$0.00416 \pm 3.10^{-5} \pm 0.00018$
$\frac{116 - K + \nu_{\tau}}{\text{AllBERT 08 (BABAR) [44]}}$	0.00410 ± 3 × 10 ± 0.00010
$\Gamma_{c0} = \pi^{-}\pi^{+}\pi^{-}\mu$ (ev K^{0})	$0.0883 \pm 0.0001 \pm 0.0013$
$\Gamma_{00} = K^{-} \pi^{+} \pi^{-} \mu (ex K^{0})$	$0.00273 \pm 2.10^{-5} \pm 9.10^{-5}$
$\Gamma_{ab} = \pi^{-} K^{-} K^{+} \mu$	$0.001346 \pm 1.10^{-5} \pm 3.6.10^{-5}$
$\Gamma_{g_3} = K^- K^- K^+ \mu$	$1.5777 \cdot 10^{-5} + 1.3 \cdot 10^{-6} + 1.2308 \cdot 10^{-6}$
$\frac{1}{100} = 100 \text{ (} R_{\Delta}R_{\Delta}R_{\Delta}R_{\Delta}) $	1.5.1.1 10 11.5 10 11.2500 10
$\Gamma_3 \qquad \mu^- \overline{\nu}_\mu \nu_\tau$	
$\overline{\Gamma_5} = \frac{\overline{e^- \overline{\nu}_e \nu_\tau}}{e^- \overline{\nu}_e \nu_\tau}$	$0.9796 \pm 0.0016 \pm 0.0036$
$\frac{\Gamma_9}{\Gamma} = \frac{\pi^- \nu_\tau}{e^{-\pi} \nu_\tau}$	$0.5945 \pm 0.0014 \pm 0.0061$
$\Gamma_{10} = \frac{\nu_e \nu_\tau}{K^- \nu_\tau}$	0.03882 0.00022 0.00057
$\frac{\overline{\Gamma_5}}{\overline{\Gamma_5}} = \frac{\overline{e} - \overline{\nu}_e \nu_\tau}{\overline{\nu}_e \nu_\tau}$	$0.03662 \pm 0.00032 \pm 0.00037$
DEL-AMO-SANCHEZ 11E (BABAR) [62]	
$\Gamma_{128} = K^{-} \eta \nu_{\tau}$	$0.000142 \pm 1.1 \cdot 10^{-3} \pm 7 \cdot 10^{-6}$
LEES 12X (<i>BABA</i> R) [67]	(
$\Gamma_{811} = \pi^{-} 2\pi^{0} \omega \nu_{\tau} \text{ (ex. } K^{0})$	$(7.3 \pm 1.2 \pm 1.2) \cdot 10^{-5}$
$\Gamma_{812} = 2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}, \eta, \omega, t_{1})$	$(0.1 \pm 0.08 \pm 0.30) \cdot 10^{-4}$
$\Gamma_{821} = 3\pi^{-}2\pi^{+}\nu_{\tau} \text{ (ex. } K^{0}, \omega, f_{1})$	$(7.68 \pm 0.04 \pm 0.40) \cdot 10^{-4}$
$\Gamma_{822} = K^{-} 2\pi^{-} 2\pi^{+} \nu_{\tau} \text{ (ex. } K^{0}\text{)}$	$(0.6 \pm 0.5 \pm 1.1) \cdot 10^{-6}$
$\Gamma_{831} = 2\pi^- \pi^+ \omega \nu_\tau \text{ (ex. } K^0\text{)}$	$(8.4 \pm 0.4 \pm 0.6) \cdot 10^{-3}$
$\Gamma_{832} = 3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}, \eta, \omega, f_{1})$	$(0.36 \pm 0.03 \pm 0.09) \cdot 10^{-4}$
$\Gamma_{833} = K^{-} 2\pi^{-} 2\pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}\text{)}$	$(1.1 \pm 0.4 \pm 0.4) \cdot 10^{-6}$
$\Gamma_{910} = 2\pi^{-}\pi^{+}\eta\nu_{\tau} \ (\eta \to 3\pi^{0}) \ (\text{ex. } K^{0})$	$(8.27 \pm 0.88 \pm 0.81) \cdot 10^{-5}$
$\Gamma_{911} = \pi^{-} 2\pi^{0} \eta \nu_{\tau} \ (\eta \to \pi^{+} \pi^{-} \pi^{0}) \ (\text{ex. } K^{0})$	$(4.57 \pm 0.77 \pm 0.50) \cdot 10^{-5}$
$\Gamma_{920} = \pi^{-} f_1 \nu_{\tau} \ (f_1 \to 2\pi^{-} 2\pi^{+})$	$(5.20 \pm 0.31 \pm 0.37) \cdot 10^{-3}$
$\Gamma_{930} = 2\pi^{-}\pi^{+}\eta\nu_{\tau} \ (\eta \to \pi^{+}\pi^{-}\pi^{0}) \ (\text{ex. } K^{0})$	$(5.39 \pm 0.27 \pm 0.41) \cdot 10^{-5}$
$\Gamma_{944} = 2\pi^{-}\pi^{-}\eta\nu_{\tau} (\eta \to \gamma\gamma) \text{ (ex. } K^{\circ}\text{)}$	$(8.26 \pm 0.35 \pm 0.51) \cdot 10^{-3}$
LEES 12Y (BABAR) [37]	(
$\Gamma_{47} = \pi^- K_S^c K_S^c \nu_\tau$	$(2.31 \pm 0.04 \pm 0.08) \cdot 10^{-4}$
$\Gamma_{50} = \pi^- \pi^\circ K_S^\circ K_S^\circ \nu_\tau$	$(1.60 \pm 0.20 \pm 0.22) \cdot 10^{-3}$
FUJIKAWA 08 (Belle) [27]	
$\Gamma_{13} = h^- \pi^o \nu_{\tau}$	$0.2567 \pm 1 \cdot 10^{-4} \pm 0.0039$
INAMI 09 (Belle) [60]	
$\Gamma_{126} = \pi^- \pi^0 \eta \nu_\tau$	$0.00135 \pm 3 \cdot 10^{-5} \pm 7 \cdot 10^{-5}$
$\Gamma_{128} = K^- \eta \nu_{\tau}$	$0.000158 \pm 5 \cdot 10^{-6} \pm 9 \cdot 10^{-6}$
$\Gamma_{130} = \mathcal{K}^{-} \pi^{0} \eta \nu_{\tau}$	$4.6 \cdot 10^{-5} \pm 1.1 \cdot 10^{-5} \pm 4 \cdot 10^{-6}$
$\Gamma_{132} = \pi^- \mathcal{K} \eta \nu_{\tau}$	$8.8 \cdot 10^{-5} \pm 1.4 \cdot 10^{-5} \pm 6 \cdot 10^{-6}$
LEE 10 (Belle) [45]	

Table 17 – continued f	from previous page
------------------------	--------------------

Reference / Branching Fraction	Value
$\Gamma_{60} = \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} $ (ex. K^{0})	$0.0842 \pm 0^{+0.0026}_{-0.0025}$
$\Gamma_{85} = \mathcal{K}^{-} \pi^{+} \pi^{-} \nu_{\tau} \text{ (ex. } \mathcal{K}^{0}\text{)}$	$0.0033 \pm 1 \cdot 10^{-5+0.00016}_{-0.00017}$
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	$0.00155 \pm 1 \cdot 10^{-5+6 \cdot 10^{-5}}_{-5 \cdot 10^{-5}}$
$\Gamma_{96} = K^- K^- K^+ \nu_\tau$	$3.29 \cdot 10^{-5} \pm 1.7 \cdot 10^{-6+1.9 \cdot 10^{-6}}_{-2.0 \cdot 10^{-6}}$
RYU 14vpc (Belle) [7]	2.010
$\Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau}$	$8.32\cdot 10^{-3}\pm 0.3\%\pm 1.8\%$
$\Gamma_{37} = K^- K^0 \nu_\tau$	$14.8\cdot 10^{-4}\pm 0.9\%\pm 3.7\%$
$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$3.86\cdot 10^{-3}\pm 0.8\%\pm 3.5\%$
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	$14.96\cdot 10^{-4}\pm 1.3\%\pm 4.9\%$
$\Gamma_{47} = \pi^- K^0_S K^0_S \nu_\tau$	$2.33\cdot 10^{-4}\pm 1.4\%\pm 4.0\%$
$\Gamma_{50} = \pi^- \pi^0 K_S^0 K_S^0 \nu_\tau$	$2.00\cdot 10^{-5}\pm 10.8\%\pm 10.1\%$
BEHREND 89B (CELLO) [38]	
$\Gamma_{54} = h^- h^- h^+ > 0$ neutrals $> 0 K_I^0 \nu_{\tau}$	$0.15 \pm 0.004 \pm 0.003$
ANASTASSOV 01 (CLEO) [49]	
$\Gamma_{78} = h^{-}h^{-}h^{+}3\pi^{0}\nu_{\pi}$	$0.00022 + 3 \cdot 10^{-5} + 4 \cdot 10^{-5}$
$\Gamma_{104} = 3h^{-2}h^{+}\pi^{0}\nu_{\pi}$ (ex. K^{0})	$0.00017 + 2 \cdot 10^{-5} + 2 \cdot 10^{-5}$
ANASTASSOV 97 (CLEO) [16]	
$\Gamma_3 \mu^- \overline{\nu}_\mu \nu_\tau$	
$\frac{1}{\Gamma_5} = \frac{1}{e^- \overline{\nu}_e \nu_\tau}$	$0.9777 \pm 0.0063 \pm 0.0087$
$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$	$0.1776 \pm 0.0006 \pm 0.0017$
$\Gamma_8 = h^- \nu_\tau$	$0.1152 \pm 0.0005 \pm 0.0012$
ARTUSO 92 (CLEO) [61]	
$\Gamma_{126} = \pi^- \pi^0 \eta \nu_\tau$	$0.0017 \pm 0.0002 \pm 0.0002$
ARTUSO 94 (CLEO) [28]	
$\Gamma_{13} = h^- \pi^0 \nu_\tau$	$0.2587 \pm 0.0012 \pm 0.0042$
BALEST 95C (CLEO) [43]	
$\Gamma_{57} = h^- h^- h^+ u_{ au}$ (ex. K^0)	$0.0951 \pm 0.0007 \pm 0.002$
$\Gamma_{66} = h^- h^- h^+ \pi^0 u_{ au}$ (ex. K^0)	$0.0423 \pm 0.0006 \pm 0.0022$
$\frac{\Gamma_{150}}{\Gamma_{150}} = \frac{h^- \omega \nu_{\tau}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	$0.464 \pm 0.016 \pm 0.017$
$\frac{\Gamma_{66} h^- h^- \pi^0 \nu_{\tau} \text{ (ex. } K^0)}{\Gamma_{66} \mu_{\pi} = 0}$	
BARINGER 87 (CLEO) [05]	0.016 + 0.0007 + 0.0041
$\frac{\Gamma_{150} = n \ \omega \nu_{\tau}}{\rho_{ADTELT} \ oc} \ (CLEO) \ [col]$	$0.016 \pm 0.0027 \pm 0.0041$
BARTELT 96 (CLEO) [63]	
$I_{128} = K \eta \nu_{\tau}$	$(2.6 \pm 0.5 \pm 0.5) \cdot 10^{-4}$
BATTLE 94 (CLEO) [24]	
$\Gamma_{10} = K^- \nu_{\tau}$	$0.0066 \pm 0.0007 \pm 0.0009$
$\Gamma_{16} = K^- \pi^0 \nu_{\tau}$	$0.0051 \pm 0.001 \pm 0.0007$
$\Gamma_{23} = K^{-} 2\pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$0.0009 \pm 0.001 \pm 0.0003$
$\Gamma_{31} = K^- \ge 0 \pi^0 \ge 0 K^0 \ge 0 \gamma \nu_\tau$	$0.017 \pm 0.0012 \pm 0.0019$
BISHAI 99 (CLEO) [64]	
$\Gamma_{130} = \mathcal{K}^{-} \pi^{0} \eta \nu_{\tau}$	$(1.77\pm0.56\pm0.71)\cdot10^{-4}$
$\Gamma_{132} = \pi^- \overline{K}^{\circ} \eta \nu_{\tau}$	$(2.2 \pm 0.70 \pm 0.22) \cdot 10^{-4}$
BORTOLETTO 93 (CLEO) [48]	
$\frac{\Gamma_{76}}{\Gamma} = \frac{h^- h^- h^+ 2\pi^0 \nu_\tau \text{ (ex. } K^0)}{h^- h^- h^+ 2\pi^0 \nu_\tau \text{ (ex. } K^0)}$	$0.034 \pm 0.002 \pm 0.003$
$ \begin{array}{ccc} 1 & 54 & n^{-}n^{-}n^{-} \geq 0 \text{ neutrals} \geq 0 \text{ K}_{L}^{\circ} \nu_{\tau} \\ \Gamma_{152} & h^{-}\omega\pi^{0}\nu_{\tau} \end{array} $	
$\frac{101}{\Gamma_{76}} = \frac{100}{h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \text{ (ex. } K^{0})}$	$0.81 \pm 0.06 \pm 0.06$

COAN 96 (CLEO) [33]

Reference / Branching Fraction	Value
$\Gamma_{34} = h^- \overline{K}^0 \nu_\tau$	$0.00855 \pm 0.00036 \pm 0.00073$
$\Gamma_{37} = K^- K^0 \nu_\tau$	$0.00151 \pm 0.00021 \pm 0.00022$
$\Gamma_{39} = h^- \overline{K}^0 \pi^0 \nu_\tau$	$0.00562 \pm 0.0005 \pm 0.00048$
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	$0.00145 \pm 0.00036 \pm 0.0002$
$\Gamma_{47} = \pi^- K^0_S K^0_S \nu_\tau$	$0.00023 \pm 5 \cdot 10^{-5} \pm 3 \cdot 10^{-5}$
EDWARDS 00A (CLEO) [47]	
$\Gamma_{69} = \pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$0.0419 \pm 0.001 \pm 0.0021$
GIBAUT 94B (CLEO) [55]	
$\Gamma_{102} = 3h^-2h^+ \ge 0$ neutrals $ u_{ au}$ (ex. κ^0)	$0.00097 \pm 5 \cdot 10^{-5} \pm 0.00011$
$\Gamma_{103} = 3h^- 2h^+ \nu_\tau \text{ (ex. } K^0 \text{)}$	$0.00077 \pm 5 \cdot 10^{-5} \pm 9 \cdot 10^{-5}$
PROCARIO 93 (CLEO) [31]	
$\Gamma_{19} = \frac{h^{-} 2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0})}{2 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0})}$	$0.342 \pm 0.006 \pm 0.016$
$\Gamma_{13} = \frac{h^{-}\pi^{0}\nu_{\tau}}{h^{-}3\pi^{0}\nu_{\tau}}$	$0.342 \pm 0.000 \pm 0.010$
$\frac{1}{\Gamma_{12}} = \frac{\pi - 3\pi - \nu_{\tau}}{h^{-} \pi^{0} \nu_{\tau}}$	$0.044 \pm 0.003 \pm 0.005$
$\Gamma_{29} = h^{-} 4 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$0.0016 \pm 0.0005 \pm 0.0005$
RICHICHI 99 (CLEO) [50]	
$\frac{\Gamma_{80}}{\Gamma_{80}} = \frac{K^{-}\pi^{-}h^{+}\nu_{\tau} \text{ (ex. } K^{0})}{\Gamma_{1}}$	$0.0544 \pm 0.0021 \pm 0.0053$
$ \Gamma_{60} = \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (\text{ex. } K^{0}) $ $ \Gamma_{5} = K^{-}\pi^{-}b^{+}\pi^{0}u_{\tau} (\text{ex. } K^{0}) $	
$\frac{1}{\Gamma_{60}} = \frac{\pi}{\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}} (ex. K^{0}) (ex. K^{0})$	$0.0261 \pm 0.0045 \pm 0.0042$
$\frac{\Gamma_{93}}{\Gamma_{93}} = \frac{\pi^- K^- K^+ \nu_\tau}{\Gamma_{12}}$	$0.016 \pm 0.0015 \pm 0.003$
$\Gamma_{60} = \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} (\text{ex. } K^{0})$	0.010 ± 0.0013 ± 0.003
$\frac{1}{\Gamma_{60}} = \frac{\pi K K^{-} \pi^{-} \nu_{\tau}}{\pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}} (ex K^{0})$	$0.0079 \pm 0.0044 \pm 0.0016$
ARMS 05 (CLEO3) [53]	
$\Gamma_{88} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0} \text{)}$	$0.00074 \pm 8 \cdot 10^{-5} \pm 0.00011$
$\Gamma_{94} = \pi^- K^- K^+ \pi^0 \nu_\tau$	$(5.5 \pm 1.4 \pm 1.2) \cdot 10^{-5}$
$\Gamma_{151} = K^- \omega \nu_\tau$	$(4.1 \pm 0.6 \pm 0.7) \cdot 10^{-4}$
BRIERE 03 (CLEO3) [46]	
$\Gamma_{60} = \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \text{ (ex. } \kappa^{0} \text{)}$	$0.0913 \pm 0.0005 \pm 0.0046$
$\Gamma_{85} = K^{-} \pi^{+} \pi^{-} \nu_{\tau} (\text{ex. } K^{0})$	$0.00384 \pm 0.00014 \pm 0.00038$
$\Gamma_{93} = \pi^- K^- K^+ \nu_\tau$	$0.00155\pm 6\cdot 10^{-5}\pm 9\cdot 10^{-5}$
ABDALLAH 06A (DELPHI) [21]	
$\Gamma_8 = h^- u_ au$	$0.11571 \pm 0.0012 \pm 0.00114$
$\Gamma_{13} = h^- \pi^0 \nu_\tau$	$0.2574 \pm 0.00201 \pm 0.00138$
$\Gamma_{19} = h^- 2\pi^0 \nu_\tau \text{ (ex. } \mathcal{K}^0\text{)}$	$0.09498 \pm 0.0032 \pm 0.00275$
$\Gamma_{25} = h^- \geq 3 \pi^0 u_ au \; (ext{ex. } K^0)$	$0.01403 \pm 0.00214 \pm 0.00224$
$\Gamma_{57} = h^- h^- h^+ \nu_{\tau} $ (ex. K^0)	$0.09317 \pm 0.0009 \pm 0.00082$
$\Gamma_{66} = h^- h^- h^+ \pi^0 \nu_{\tau} \text{ (ex. } \mathcal{K}^0)$	$0.04545 \pm 0.00106 \pm 0.00103$
$\Gamma_{74} = h^- h^- h^+ \ge 2 \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$0.00561 \pm 0.00068 \pm 0.00095$
$\Gamma_{103} = 3h^- 2h^+ \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$0.00097 \pm 0.00015 \pm 5 \cdot 10^{-5}$
$\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$0.00016 \pm 0.00012 \pm 6\cdot 10^{-5}$
ABREU 92N (DELPHI) [18]	
$\Gamma_7=h^-\geq 0 K^0_L u_ au$	$0.124 \pm 0.007 \pm 0.007$
ABREU 94K (DELPHI) [25]	
$\Gamma_{10} = K^- \nu_{\tau}$	0.0085 ± 0.0018
$\Gamma_{31} = K^- \geq 0 \pi^{0} \geq 0 K^{0} \geq 0 \gamma \nu_{\tau}$	0.0154 ± 0.0024
ABREU 99X (DELPHI) [11]	
$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$0.17325 \pm 0.00095 \pm 0.00077$

Table 17 – continued from previous page

$ \begin{array}{ll} \hline \Gamma_{5} = e^{-} \overline{v}_{e} \nu_{r} & 0.17877 \pm 0.00109 \pm 0.0011 \\ \hline PVLSMA 87 (HRS) [56] & 0.0012 \pm 0.00029 \\ \hline \Gamma_{102} = 3h^{-} 2h^{+} \nu_{r} (ex. K^{0}) & 0.00051 \pm 0.0002 \\ \hline ACCIARRI 01F (L3) [12] & \\ \hline \Gamma_{3} = \mu^{-} \overline{\nu}_{\mu} \nu_{r} & 0.17342 \pm 0.0011 \pm 0.00067 \\ \hline \Gamma_{5} = e^{-} \overline{\nu}_{e} \nu_{r} & 0.17342 \pm 0.0014 \pm 0.00067 \\ \hline \Gamma_{5} = e^{-} \overline{\nu}_{e} \nu_{r} & 0.17342 \pm 0.0014 \pm 0.00067 \\ \hline ACCIARRI 95 (L3) [19] & \\ \hline \Gamma_{7} = h^{-} \ge 0 K_{0}^{2} \nu_{r} & 0.1247 \pm 0.0026 \pm 0.0043 \\ \hline \Gamma_{33} = h^{-} \pi^{0} \nu_{r} & 0.2505 \pm 0.0035 \pm 0.005 \\ \hline \Gamma_{39} = h^{-} 2\pi^{0} \nu_{r} (ex. K^{0}) & 0.0888 \pm 0.0037 \pm 0.0042 \\ \hline \Gamma_{20} = h^{-} 3\pi^{0} \nu_{r} & 0.017 \pm 0.0024 \pm 0.0038 \\ \hline ACCIARRI 95F (L3) [34] & \\ \hline \Gamma_{35} = \pi^{-} \overline{K}^{0} n^{0} \nu_{r} & 0.0015 \pm 0.0006 \\ \hline \Gamma_{40} = \pi^{-} \overline{K}^{0} n^{0} \nu_{r} & 0.0017 \pm 0.0015 \pm 0.00076 \\ \hline \Gamma_{102} = 3h^{-} 2h^{0} \nu_{r} & 0.0017 \pm 0.00022 \pm 0.00026 \\ \hline ADEVA 91F (L3) [39] & \\ \hline \Gamma_{55} = h^{-} h^{-} h^{-} \ge 0$ neutrals $\nu_{r} (ex. K^{0}) & 0.144 \pm 0.006 \pm 0.003 \\ \hline ABBIENDI 00C (OPAL) [35] & \\ \hline \Gamma_{32} = \pi^{-} \overline{K}^{0} \nu_{r} & 0.0033 \pm 0.00068 \pm 0.00049 \\ \hline \Gamma_{32} = \pi^{-} \overline{K}^{0} \nu_{r} & 0.00159 \pm 0.00055 \pm 0.00026 \\ \hline ABBIENDI 00L (OPAL) [54] & \\ \hline \Gamma_{102} = 5h^{-} h^{-} h^{-} \ge 0$ neutrals $\nu_{r} & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline ABBIENDI 00L (OPAL) [26] & \\ \hline \Gamma_{10} = K^{-} \nu_{r} & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline ABBIENDI 00J (OPAL) [26] & \\ \hline \Gamma_{10} = K^{-} \nu_{r} & 0.0041 \pm 0.00059 \pm 0.0002 \\ \hline ABBIENDI 00J (OPAL) [26] & \\ \hline \Gamma_{10} = K^{-} \nu_{r} & 0.0041 \pm 0.00059 \pm 0.0002 \\ \hline ABBIENDI 00J (OPAL) [26] & \\ \hline \Gamma_{10} = K^{-} \pi^{-} n^{-} \nu_{r} & 0.0074 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{13} = h^{-} \overline{n} \nu_{r} & 0.0074 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{15} = h^{-} \mu^{-} \nu_{r} & 0.074 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{15} = h^{-} n^{-} \nu_{r} & 0.074 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{15} = h^{-} n^{-} \nu_{r} & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \Gamma_{13} = h^{-} n^{-} \nu_{r} & 0.0091 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} 2 \pi^{0} \nu_{r} & 0.0091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{103} = h^{-} n^{+} \eta^{-} \nu_{r} (ex. K^{0}) & 0.00027 \pm$	Reference / Branching Fraction	Value
BYLSMA 87 (HRS) [56] Γ ₁₀₂ = 3h ⁻ 2h ⁺ ≥ 0 neutrals ν _τ (ex. K ⁰) 0.0012 ± 0.00029 Γ ₁₀₃ = 3h ⁻ 2h ⁺ ν _τ (ex. K ⁰) 0.00051 ± 0.0002 ACCIARRI 01F (L3) [12] Γ Γ ₃ = μ ⁻ ν _μ ν _τ 0.17342 ± 0.0011 ± 0.00067 Γ ₅ = e ⁻ ν _μ ν _τ 0.17366 ± 0.00104 ± 0.00076 ACCIARRI 95 (L3) [19] Γ Γ ₁₃ = h ⁻ π ⁰ ν _τ 0.2505 ± 0.0035 ± 0.005 Γ ₁₃ = h ⁻ π ⁰ ν _τ 0.2505 ± 0.0037 ± 0.0042 Γ ₂₆ = h ⁻ 3π ⁰ ν _τ 0.017 ± 0.0024 ± 0.0038 ACCIARRI 95F (L3) [34] Γ Γ ₃₅ = π ⁻ K ⁰ ν _τ 0.0095 ± 0.0015 ± 0.0006 Γ ₄₉ = π ⁻ K ⁰ ν _τ 0.017 ± 0.0022 ± 0.0003 ACHARD 01D (L3) [41] Γ Γ ₅₅ = h ⁻ h ⁻ h ⁺ ≥ 0 neutrals ν _τ (ex. K ⁰) 0.14556 ± 0.00105 ± 0.00076 Γ ₁₀₂ = 3h ⁻ 2h ⁺ ≥ 0 neutrals ν _τ (ex. K ⁰) 0.017 ± 0.0022 ± 0.00026 ADEVA 91F (L3) [39] Γ Γ ₅₅ = h ⁻ h ⁻ h ⁺ ≥ 0 neutrals ν _τ (ex. K ⁰) 0.0033 ± 0.00068 ± 0.00049 Γ ₅₃ = π ⁻ h ⁻ h ⁻ ≥ 0 π ⁰ ν _τ 0.0033 ± 0.00055 ± 0.0003 ABBIEND1 00C (OPAL) [54] Γ Γ ₃₅ = π ⁻ k ⁻ N ⁻ 0.00159 ± 0.00074 ± 0.00066	$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$	$0.17877 \pm 0.00109 \pm 0.0011$
$ \begin{array}{l} \Gamma_{102}=3h^-2h^+\nu, \ (ex. \ K^0) & 0.0012 \pm 0.00029 \\ \Gamma_{103}=3h^-2h^+\nu, \ (ex. \ K^0) & 0.00051 \pm 0.0002 \\ \hline \\ ACCIARRI 0JF (LS) [12] & \\ \Gamma_3=\mu^-\nu_\mu\nu, & 0.17342 \pm 0.0011 \pm 0.00067 \\ \Gamma_5=e^-\nu_\mu\nu, & 0.17806 \pm 0.00104 \pm 0.00076 \\ \hline \\ ACCIARRI 95 (L3) [19] & \\ \Gamma_7=h^-20 \ K_2^0 \ \nu, & 0.2505 \pm 0.0005 \\ \Gamma_{132}=h^-2\pi^0\nu, \ (ex. \ K^0) & 0.0888 \pm 0.0037 \pm 0.0042 \\ \Gamma_{26}=h^-3\pi^0\nu, & 0.017 \pm 0.0024 \pm 0.0038 \\ \hline \\ ACCIARRI 95F (L3) [34] & \\ \Gamma_{35}=\pi^-\overline{R}^0\nu, & 0.0095 \pm 0.0015 \pm 0.0006 \\ \Gamma_{40}=\pi^-\overline{R}^0^{0}\nu, & 0.0095 \pm 0.0015 \pm 0.0006 \\ \Gamma_{40}=\pi^-\overline{R}^0^{0}\nu, & 0.0041 \pm 0.0012 \pm 0.0003 \\ \hline \\ ACCIARRI 95F (L3) [34] & \\ \Gamma_{55}=h^-h^-h^+ \ge 0 \ neutrals \ \nu_{\tau} \ (ex. \ K^0) & 0.14556 \pm 0.00155 \pm 0.00076 \\ \Gamma_{102}=3h^-2h^+ \ge 0 \ neutrals \ \nu_{\tau} \ (ex. \ K^0) & 0.0017 \pm 0.00022 \pm 0.00026 \\ \hline \\ ADEVA 91F (L3) [39] & \\ \Gamma_{54}=h^-h^-h^+ \ge 0 \ neutrals \ \nu_{\tau} \ (ex. \ K^0) & 0.0033 \pm 0.0068 \pm 0.00049 \\ \Gamma_{36}=\pi^-\overline{R}^0, & 0.0033 \pm 0.00068 \pm 0.00049 \\ \Gamma_{36}=\pi^-\overline{R}^0^{0}\nu, & 0.0033 \pm 0.00055 \pm 0.0003 \\ \hline \\ ABBIENDI 00C (OPAL) [35] & \\ \Gamma_{52}=\pi^-\overline{K}^0^{0}\nu, & 0.0033 \pm 0.00055 \pm 0.0002 \\ \hline \\ ABBIEND 10D (OPAL) [54] & \\ \Gamma_{52}=\pi^-\overline{K}^-\kappa^+ \ge 0 \ neutrals \ \nu_{\tau} \ (ex. \ R^0) \ 0.0058 \pm 0.00074 \pm 0.00029 \\ \hline \\ \Gamma_{31}=K^- \ge 0\pi^0 \ge 0K^0 \ge 0.\gamma\nu, & 0.0159 \pm 0.00033 \pm 0.0002 \\ \hline \\ ABBIEND 10J (OPAL) [13] & \\ \Gamma_{3}=\mu^-\overline{\nu}\mu\nu, & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \\ ABBIEND 104 (OPAL) [13] & \\ \Gamma_{32}=\pi^-\overline{\pi}^-\pi^-\nu, & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \\ ABBIEND 104 (OPAL) [13] & \\ \Gamma_{32}=h^-\pi^-\mu, & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \\ ACKERSTAFF 98M (OPAL) [12] & \\ \Gamma_{13}=h^-\pi^0\nu, & 0.2589 \pm 0.0017 \pm 0.0029 \\ \Gamma_{13}=h^-\pi^0\nu, & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \\ \Gamma_{13}=h^-\pi^0\nu, & 0.2589 \pm 0.0013 \pm 0.00014 \\ \hline \\ ACKERSTAFF 99E (OPAL) [58] & \\ \Gamma_{133}=h^-\pi^0\nu, & 0.2589 \pm 0.0013 \pm 0.0016 \\ \hline \\ \Gamma_{13}=h^-\pi^0\nu, & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \\ \Gamma_{13}=h^-\pi^0\nu, & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \\ \Gamma_{13}=h^-\pi^0\nu, & 0.2589 \pm 0.0013 \pm 0.0016 \\ \hline \\ \Gamma_{13}=h^-\pi^0\nu, & 0.2589 \pm 0.0013 \pm 0.0027 \\ \hline \\ ACKERSTAFF 99E (OPAL) [32] & \\ \Gamma_{13}=h^-\pi^0\mu, & 0.0091 \pm$	BYLSMA 87 (HRS) [56]	
$ \begin{array}{ll} \Gamma_{103} = 3h^-2h^+\nu_\tau \; (ex. \; K^0) & 0.00051 \pm 0.0002 \\ \hline \\ ACCLARRI 01F \; (L3) \; [12] \\ \Gamma_3 = \mu^-\overline{\nu}_\mu\nu_\tau & 0.17302 \pm 0.0011 \pm 0.00067 \\ \Gamma_5 = e^-\overline{\nu}_\mu\nu_\tau & 0.17306 \pm 0.00104 \pm 0.00076 \\ \hline \\ ACCLARRI 95 \; (L3) \; [19] \\ \Gamma_7 = h^- \ge 0 \; K_L^0 \; \nu_\tau & 0.1247 \pm 0.0026 \pm 0.0043 \\ \Gamma_{13} = h^-\pi^0 \; \nu_\tau & 0.2505 \pm 0.0035 \pm 0.005 \\ \hline \\ \Gamma_{13} = h^-\pi^0 \; \nu_\tau & 0.017 \pm 0.0024 \pm 0.0038 \\ \hline \\ ACCLARRI 95F \; (L3) \; [34] \\ \Gamma_{35} = \pi^-\overline{K}^0 \; \nu_\tau & 0.0011 \pm 0.0015 \pm 0.0006 \\ \hline \\ \Gamma_{40} = \pi^-\overline{K}^0 \; \pi^0 \; \nu_\tau & 0.0017 \pm 0.0015 \pm 0.0006 \\ \hline \\ \Gamma_{40} = \pi^-\overline{K}^0 \; \pi^0 \; \nu_\tau & 0.0017 \pm 0.0015 \pm 0.00076 \\ \hline \\ \Gamma_{102} = 3h^-2h^+ \ge 0 \; neutrals \; \nu_\tau \; (ex. \; K^0) & 0.14556 \pm 0.0015 \pm 0.00076 \\ \hline \\ \Gamma_{102} = 3h^-2h^+ \ge 0 \; neutrals \; \nu_\tau \; (ex. \; K^0) & 0.017 \pm 0.00022 \pm 0.00026 \\ \hline \\ ADEVA 9 \; IF \; (L3) \; [39] \\ \hline \\ \Gamma_{53} = \pi^-\overline{K}^0 \; \nu_\tau & 0.0033 \pm 0.00068 \pm 0.00049 \\ \hline \\ \Gamma_{36} = \pi^-\overline{K}^0 \; \ge 0 \; \pi^0 \; \nu_\tau & 0.0033 \pm 0.00068 \pm 0.00049 \\ \hline \\ \Gamma_{36} = \pi^-\overline{K}^0 \; \ge 0 \; \pi^0 \; \nu_\tau & 0.0033 \pm 0.00055 \pm 0.00039 \\ \hline \\ \Gamma_{43} = \pi^-\overline{K}^0 \; \ge 0 \; \pi^0 \; \nu_\tau & 0.00159 \pm 0.00074 \pm 0.00066 \\ \hline \\ ABBIENDI 00D \; (OPAL) \; [51] \\ \Gamma_{10} = K^-\nu_\tau & 0.0053 \pm 0.00027 \\ \hline \\ \Gamma_{10} = K^-\nu_\tau & 0.00558 \pm 0.00027 \pm 0.00029 \\ \hline \\ \Gamma_{13} = K^-\pi^0\nu_\tau & 0.01528 \pm 0.00027 \pm 0.00029 \\ \hline \\ \Gamma_{13} = \mu^-\overline{\nu}\mu\nu_\tau & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \\ ABBIENDI 03 \; (OPAL) \; [13] \\ \hline \\ \Gamma_{52} = e^-\overline{\nu}\mu\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{16} = K^-\pi^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \hline \\ R_{15} = h^-\overline{n}^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{16} = K^-\pi^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{15} = h^-\overline{n}^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{15} = h^-\overline{n}^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{15} = h^-\overline{n}^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{15} = h^-\overline{n}^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00016 \\ \hline \\ \Gamma_{15} = h^-\overline{n}^0\nu_\tau & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{15} = h^-\overline{n}^0\nu_\tau & 0.00021 \\ \hline \\ \Gamma_{15} = h^-\overline{n}^0\nu$	${\sf \Gamma}_{102}=3h^-2h^+\geq 0$ neutrals $ u_ au$ (ex. ${\cal K}^0)$	0.00102 ± 0.00029
ACCIARRI 01F (L3) [12] 0.17342 ± 0.0011 ± 0.00067 $\Gamma_3 = \mu^- \overline{\nu}_{\mu} \nu_{\tau}$ 0.173806 ± 0.00104 ± 0.00076 ACCIARRI 95 (L3) [19] $\Gamma_7 = h^- \ge 0 k_L^0 \nu_{\tau}$ $\Gamma_7 = h^- \ge 0 k_L^0 \nu_{\tau}$ 0.1247 ± 0.0026 ± 0.0043 $\Gamma_{13} = h^- \pi^0 \nu_{\tau}$ 0.2505 ± 0.0035 ± 0.005 $\Gamma_{19} = h^- 2\pi^0 \nu_{\tau}$ (ex. K^0) 0.0888 ± 0.0037 ± 0.0042 $\Gamma_{20} = -h^- 3\pi^0 \nu_{\tau}$ 0.017 ± 0.0024 ± 0.0038 ACCIARRI 95F (L3) [34] $\Gamma_{35} = \pi^- \overline{K}^0 n^0 \nu_{\tau}$ $\Gamma_{40} = \pi^- \overline{K}^0 n^0 \nu_{\tau}$ 0.0041 ± 0.0015 ± 0.0006 $\Gamma_{40} = \pi^- \overline{K}^0 n^0 \nu_{\tau}$ 0.0041 ± 0.0012 ± 0.0003 ACHARD 01D (L3) [41] $\Gamma_{55} = h^- h^- h^+ \ge 0$ neutrals ν_{τ} (ex. K^0) 0.144 ± 0.006 ± 0.003 ABEIND 100C (OPAL) [35] $\Gamma_{54} = n^+ \overline{K}^0 \nu_{\tau}$ 0.0033 ± 0.00068 ± 0.00049 $\Gamma_{32} = \pi^- \overline{K}^0 \nu_{\tau}$ 0.00333 ± 0.00055 ± 0.00039 $\Gamma_{43} = \pi^- \overline{K}^0 \ge 1 \pi^0 \nu_{\tau}$ $\Gamma_{30} = K^- K^+ \ge 0$ neutrals ν_{τ} 0.00159 ± 0.00053 ± 0.0002 ABBIEND1 000 (OPAL) [54] $\Gamma_{92} = \pi^- K^- K^+ \ge 0$ neutrals ν_{τ} 0.00159 ± 0.00053 ± 0.0002 ABBIEND1 01 (OPAL) [26] $\Gamma_{10} = K^- \nu_{\tau}$ 0.1734 ± 0.0009 ± 0.0006 $\Gamma_{32} = h^- \overline{n} n^{-} \mu_{\tau}$ 0.1734 ± 0.0009 ± 0.0006 ABBIEND1 03 (OPAL) [$\Gamma_{103} = 3h^- 2h^+ u_{ au}$ (ex. K^0)	0.00051 ± 0.0002
$ \begin{array}{ll} \Gamma_{3} = \mu^{-} \overline{\nu}_{\mu} \nu_{\tau} & 0.17342 \pm 0.0011 \pm 0.00067 \\ \overline{\Gamma_{5}} = e^{-} \overline{\nu}_{z} \nu_{\tau} & 0.17806 \pm 0.00104 \pm 0.00076 \\ \hline \\ $	ACCIARRI 01F (L3) [12]	
$ \begin{array}{ll} \Gamma_5 = e^- \overline{\nu}_e \nu_\tau & 0.17806 \pm 0.00104 \pm 0.00076 \\ \hline ACCIARRI 95 (L3) [19] \\ \Gamma_7 = h^- \ge 0 K_r^0 \nu_\tau & 0.2505 \pm 0.0035 \pm 0.005 \\ \Gamma_{13} = h^- \pi^0 \nu_\tau & 0.2505 \pm 0.0035 \pm 0.005 \\ \Gamma_{19} = h^- 2\pi^0 \nu_\tau & 0.0088 \pm 0.0037 \pm 0.0042 \\ \Gamma_{20} = h^- 3\pi^0 \nu_\tau & 0.017 \pm 0.0024 \pm 0.0038 \\ \hline ACCIARRI 95F (L3) [34] \\ \Gamma_{35} = \pi^- \overline{K}^0 \pi^0 \nu_\tau & 0.0095 \pm 0.0015 \pm 0.0006 \\ \Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau & 0.0041 \pm 0.0012 \pm 0.0003 \\ \hline ACHARD 01D (L3) [41] \\ \Gamma_{55} = h^- h^+ \ge 0 neutrals \nu_\tau (ex. K^0) & 0.14556 \pm 0.00105 \pm 0.00076 \\ \hline \Gamma_{102} = 3h^- 2h^+ \ge 0 neutrals \nu_\tau (ex. K^0) & 0.0017 \pm 0.00022 \pm 0.00026 \\ \hline ADEVA 91F (L3) [39] \\ \Gamma_{54} = h^- h^- h^+ \ge 0 neutrals \ge 0 K_L^0 \nu_\tau & 0.144 \pm 0.006 \pm 0.003 \\ \hline ABBIENDI 00C (OPAL) [35] \\ \Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau & 0.0033 \pm 0.00058 \pm 0.00049 \\ \Gamma_{38} = K^- K^0 \ge 0 \pi^0 \nu_\tau & 0.0033 \pm 0.00058 \pm 0.00039 \\ \hline ABBIENDI 00D (OPAL) [54] \\ \Gamma_{92} = \pi^- K^- K^+ \ge 0 neutrals \nu_\tau & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline ABBIENDI 01 (OPAL) [26] \\ \Gamma_{10} = K^- \nu_\tau & 0.0058 \pm 0.00027 \pm 0.00026 \\ \hline ABBIENDI 03 (OPAL) [26] \\ \Gamma_{15} = K^- \pi^0 \nu_\tau & 0.1734 \pm 0.0009 \pm 0.0004 \\ \hline ABBIENDI 04 (OPAL) [30] \\ \Gamma_{16} = K^- \pi^0 \nu_\tau & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline ABBIENDI 04 (OPAL) [17] \\ \Gamma_5 = e^- \overline{\nu}_e \nu_\tau & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline ACKERSTAFF 98M (OPAL) [22] \\ \Gamma_{10} = h^- \pi^0 \nu_\tau & 0.2589 \pm 0.0017 \pm 0.0029 \\ \Gamma_{17} = h^- \ge 2\pi^0 \nu_\tau & 0.0258 \pm 0.0003 \pm 0.0004 \\ \hline ABBIENDI 041 (OPAL) [58] \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (\nu_\tau (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 (ex. K^0) & 0.00091 $	$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$0.17342 \pm 0.0011 \pm 0.00067$
ACCIARRI 95 (L3) [19] 0.1247 ± 0.0026 ± 0.0043 $\Gamma_{13} = h^{-1} n^{0} \nu_{\tau}$ 0.2505 ± 0.0035 ± 0.005 $\Gamma_{19} = h^{-2} n^{0} \nu_{\tau}$ 0.017 ± 0.0024 ± 0.0042 $\Gamma_{26} = h^{-3} n^{0} \nu_{\tau}$ 0.017 ± 0.0024 ± 0.0038 ACCIARRI 95F (L3) [34] $\Gamma_{35} = \pi^{-1} \overline{K}^{0} \nu_{\tau}$ 0.0095 ± 0.0015 ± 0.0006 $\Gamma_{40} = \pi^{-1} \overline{K}^{0} n^{0} \nu_{\tau}$ 0.0041 ± 0.0012 ± 0.0003 ACCIARRI 05F (L3) [41] $\Gamma_{55} = h^{-1} h^{+1} \ge 0$ neutrals ν_{τ} (ex. K^{0}) 0.14556 ± 0.00105 ± 0.00076 $\Gamma_{102} = 3h^{-2} h^{+2} \ge 0$ neutrals ν_{τ} (ex. K^{0}) ADEVA 91F (L3) [39] $\Gamma_{54} = h^{-1} h^{-1} \ge 0$ neutrals ν_{τ} (ex. K^{0}) 0.0017 ± 0.00022 ± 0.00026 ADEVA 91F (L3) [39] $\Gamma_{54} = h^{-1} h^{-1} \ge 0$ neutrals $20 K_{\mu}^{0} \nu_{\tau}$ 0.144 ± 0.006 ± 0.003 ABBIENDI 00C (OPAL) [35] $\Gamma_{52} = \pi^{-1} \overline{K}^{0} \nu_{\tau}$ 0.0033 ± 0.00068 ± 0.00049 $\Gamma_{38} = \pi^{-1} \overline{K}^{0} \nu_{\tau}$ 0.0033 ± 0.00068 ± 0.00039 $\Gamma_{43} = \pi^{-1} \overline{K}^{0} \nu_{\tau}$ 0.00324 ± 0.00074 ± 0.00066 ABBIENDI 00D (OPAL) [54] $\Gamma_{92} = \pi^{-1} \overline{K}^{-1} \nu_{\tau}$ 0.00558 ± 0.00027 ± 0.00029 $\Gamma_{31} = K^{-2} 0 n^{0} \nu_{\tau}$ 0.01528 ± 0.00039 ± 0.0004 ABBIENDI 03 (OPAL) [26] $\Gamma_{10} = K^{-1} \mu_{\tau}$ $\Gamma_{10} = K^{-1} \mu_{\tau}$ $\Gamma_{10} = K^{-1} \mu_{\tau}$ $\Gamma_{10} = K^{-1} \mu_{\tau} \mu_{\tau}$	$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$	$0.17806 \pm 0.00104 \pm 0.00076$
$ \begin{array}{ll} \Gamma_{7}=h^{-}\geq 0\ K_{1}^{0}\ \nu_{\tau} & 0.1247\pm 0.0026\pm 0.0043 \\ \Gamma_{13}=h^{-}\pi^{0}\nu_{\tau} & 0.2505\pm 0.0035\pm 0.005 \\ \Gamma_{19}=h^{-}2\pi^{0}\nu_{\tau} & 0.017\pm 0.0024\pm 0.0038 \\ \hline \\ \Gamma_{26}=h^{-}3\pi^{0}\nu_{\tau} & 0.017\pm 0.0024\pm 0.0038 \\ \hline \\ ACCIARRI 95F (L3) [34] & \\ \Gamma_{35}=\pi^{-}\overline{K}^{0}\nu_{\tau} & 0.0095\pm 0.0015\pm 0.0006 \\ \Gamma_{40}=\pi^{-}\overline{K}^{0}\pi^{0}\nu_{\tau} & 0.0095\pm 0.0015\pm 0.0006 \\ \hline \\ \Gamma_{40}=\pi^{-}\overline{K}^{0}\pi^{0}\nu_{\tau} & 0.0015\pm 0.00105\pm 0.00076 \\ \hline \\ \Gamma_{40}=\pi^{-}\overline{K}^{0}\pi^{0}\nu_{\tau} & 0.014\pm 0.0012\pm 0.0002 \\ \hline \\ ACHARD 01D (L3) [41] & \\ \Gamma_{55}=h^{-}h^{-}h^{+}\geq 0\ neutrals\ \nu_{\tau} (ex.\ K^{0}) & 0.14556\pm 0.00105\pm 0.00076 \\ \hline \\ \Gamma_{102}=3h^{-}2h^{+}\geq 0\ neutrals\ \nu_{\tau} (ex.\ K^{0}) & 0.0017\pm 0.00022\pm 0.00026 \\ \hline \\ ADEVA 91F (L3) [39] & \\ \Gamma_{54}=h^{-}h^{+}b^{+}\geq 0\ neutrals\ \geq 0\ K_{L}^{0}\nu_{\tau} & 0.144\pm 0.006\pm 0.003 \\ \hline \\ ABBIEND 00C (OPAL) [35] & \\ \Gamma_{38}=\pi^{-}\overline{K}^{0}\nu_{\tau} & 0.0033\pm 0.00055\pm 0.00039 \\ \hline \\ \Gamma_{43}=\pi^{-}\overline{K}^{0}\nu_{\tau} & 0.0032\pm 0.00074\pm 0.00066 \\ \hline \\ ABBIEND 100D (OPAL) [54] & \\ \Gamma_{92}=\pi^{-}K^{-}K^{+}\geq 0\ neutrals\ \nu_{\tau} & 0.00159\pm 0.00053\pm 0.0002 \\ \hline \\ ABBIEND 103 (OPAL) [26] & \\ \Gamma_{10}=K^{-}\nu_{\tau} & 0.1734\pm 0.0009\pm 0.0006 \\ \hline \\ ABBIEND 103 (OPAL) [13] & \\ \Gamma_{3}=\mu^{-}\overline{\nu}_{\mu}\nu_{\tau} & 0.1781\pm 0.00059\pm 0.00023 \\ \hline \\ \Gamma_{16}=K^{-}\pi^{0}\nu_{\tau} & 0.1781\pm 0.0009\pm 0.0006 \\ \hline \\ ABBIEND 104J (OPAL) [17] & \\ \Gamma_{5}=e^{-}\overline{\nu}e\nu_{\tau} & 0.1781\pm 0.0009\pm 0.0006 \\ \hline \\ ACKERSTAFF 98M (OPAL) [22] & \\ \Gamma_{8}=h^{-}\nu_{\tau} & 0.1198\pm 0.0013\pm 0.0016 \\ \Gamma_{13}=h^{-}\pi^{0}\nu_{\tau} & 0.2589\pm 0.0017\pm 0.0029 \\ \hline \\ \Gamma_{13}=h^{-}\pi^{0}\nu_{\tau} & 0.2589\pm 0.0017\pm 0.0029 \\ \hline \\ \Gamma_{13}=h^{-}\pi^{0}\nu_{\tau} (ex.\ K^{0}) & 0.00091\pm 0.00014\pm 6\cdot 10^{-5} \\ \hline \\ \Gamma_{104}=3h^{-}2h^{+}\pi^{0}\nu_{\tau} (ex.\ K^{0}) & 0.00027\pm 0.00018\pm 9\cdot 10^{-5} \\ \hline \\ AKERS 746 (OPAL) [32] & \\ \Gamma_{33}=K_{2}^{0}(parchc) [32] & \\ \Gamma_{33}=K_{2}^{0}(parchc$	ACCIARRI 95 (L3) [19]	
$ \begin{array}{ll} \Gamma_{13}=h^{-}\pi^{0}\nu_{\tau} & 0.2505\pm 0.0035\pm 0.005 \\ \Gamma_{19}=h^{-}2\pi^{0}\nu_{\tau} \ (ex. \ K^{0}) & 0.0888\pm 0.0037\pm 0.0042 \\ \Gamma_{26}=h^{-}3\pi^{0}\nu_{\tau} & 0.017\pm 0.0024\pm 0.0038 \\ \hline \end{array} \\ \hline \begin{array}{ll} \Lambda \\ \Lambda $	$\Gamma_7=h^-\geq 0 {\cal K}^0_L u_ au$	$0.1247 \pm 0.0026 \pm 0.0043$
$ \begin{array}{ll} \Gamma_{19}=h^-2\pi^0\nu_\tau \;(\text{ex. }K^0) & 0.0888\pm 0.0037\pm 0.0042 \\ \Gamma_{26}=h^-3\pi^0\nu_\tau & 0.017\pm 0.0024\pm 0.0038 \\ \hline \\ \hline \\ \hline \\ \Lambda CLARRI 95F \;(L3)\;[34] \\ \hline \\ \hline \\ \Gamma_{35}=\pi^-\overline{K}^0\nu_\tau & 0.0095\pm 0.0015\pm 0.0006 \\ \hline \\ \hline \\ \hline \\ \Gamma_{40}=\pi^-\overline{K}^0\pi^0\nu_\tau & 0.004\pm 0.0012\pm 0.0003 \\ \hline \\ \hline \\ \Lambda CHARD 01D \;(L3)\;[41] \\ \hline \\ \hline \\ \hline \\ \Gamma_{55}=h^-h^-h^+ \ge 0\; neutrals \nu_\tau \;(ex. \ K^0) & 0.14556\pm 0.00105\pm 0.00076 \\ \hline \\ \Lambda DEVA 91F \;(L3)\;[39] \\ \hline \\ $	$\Gamma_{13} = h^- \pi^0 \nu_\tau$	$0.2505 \pm 0.0035 \pm 0.005$
$ \begin{array}{ll} \hline \Gamma_{26} = h^{-} 3\pi^{0} \nu_{\tau} & 0.017 \pm 0.0024 \pm 0.0038 \\ \hline ACCIARR 95F (L3) [34] \\ \hline \Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau} & 0.0095 \pm 0.0015 \pm 0.0006 \\ \hline \Gamma_{a0} = \pi^{-} \overline{K}^{0} \pi^{0} \nu_{\tau} & 0.0041 \pm 0.0012 \pm 0.0003 \\ \hline ACHARD 01D (L3) [41] \\ \hline \Gamma_{55} = h^{-} h^{+} \geq 0 \text{ neutrals } \nu_{\tau} (ex. K^{0}) & 0.14556 \pm 0.00105 \pm 0.00076 \\ \hline \Gamma_{102} = 3h^{-} 2h^{+} \geq 0 \text{ neutrals } \nu_{\tau} (ex. K^{0}) & 0.0017 \pm 0.00022 \pm 0.00026 \\ \hline ADEVA 91F (L3) [39] \\ \hline \Gamma_{54} = h^{-} h^{-} h^{+} \geq 0 \text{ neutrals } \geq 0 K_{L}^{0} \nu_{\tau} & 0.144 \pm 0.006 \pm 0.003 \\ \hline ABBIENDI 00C (OPAL) [35] \\ \hline \Gamma_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau} & 0.0033 \pm 0.00068 \pm 0.00049 \\ \hline \Gamma_{38} = K^{-} K^{0} \geq 0 \pi^{0} \nu_{\tau} & 0.0032 \pm 0.00074 \pm 0.00066 \\ \hline ABBIENDI 00D (OPAL) [54] \\ \hline \Gamma_{92} = \pi^{-} K^{-} K^{+} \geq 0 \text{ neutrals } \nu_{\tau} & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline ABBIENDI 01J (OPAL) [26] \\ \hline \Gamma_{10} = K^{-} \nu_{\tau} & 0.00658 \pm 0.00027 \pm 0.00029 \\ \hline \Gamma_{31} = K^{-} \geq 0 \pi^{0} \geq 0 K^{0} \geq 0 \gamma \nu_{\tau} & 0.01528 \pm 0.00039 \pm 0.0004 \\ \hline ABBIENDI 03 (OPAL) [13] \\ \hline \Gamma_{3} = \mu^{-} \overline{\nu}_{\mu} \nu_{\tau} & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline ABBIENDI 04J (OPAL) [13] \\ \hline \Gamma_{16} = K^{-} \pi^{0} \nu_{\tau} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline ACKERSTAFF 98M (OPAL) [12] \\ \hline \Gamma_{6} = h^{-} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} \geq 2 \pi^{0} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} \geq 2 \pi^{0} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} \phi^{-} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} \phi^{-} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} \psi^{-} \mu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} \phi^{-} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{10} = 3h^{-} 2h^{+} \nu_{\tau} (ex. K^{0}) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{104} = 3h^{-} 2h^{+} \nu_{\tau} (ex. K^{0}) & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline AKERS 94G (OPAL) [32] \\ \hline \Gamma_{33} = K_{9}^{0} (\text{prace}) \Gamma_{07} & 0.0099 \pm 0.0006 \\ \hline \end{array}$	$\Gamma_{19} = h^- 2\pi^0 \nu_\tau \; (\text{ex. } \mathcal{K}^0)$	$0.0888 \pm 0.0037 \pm 0.0042$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\Gamma_{26} = h^- 3\pi^0 \nu_\tau$	$0.017 \pm 0.0024 \pm 0.0038$
$ \begin{array}{ll} \Gamma_{35}=\pi^{-}\overline{K}^{0}\nu_{\tau} & 0.0095\pm 0.0015\pm 0.0006 \\ \hline \Gamma_{40}=\pi^{-}\overline{K}^{0}\pi^{0}\nu_{\tau} & 0.0041\pm 0.0012\pm 0.0003 \\ \hline \\ \hline \\ ACHARD 01D (L3) [41] \\ \hline \\ \Gamma_{55}=h^{-}h^{-}h^{+}\geq 0 \mbox{ neutrals }\nu_{\tau} \mbox{ (ex. }K^{0}) & 0.14556\pm 0.00105\pm 0.00076 \\ \hline \\ \hline \\ \hline \\ \Gamma_{102}=3h^{-}2h^{+}\geq 0 \mbox{ neutrals }\nu_{\tau} \mbox{ (ex. }K^{0}) & 0.0017\pm 0.00022\pm 0.00026 \\ \hline \\ \hline \\ ADEVA 91F (L3) [39] \\ \hline \\ \hline \\ \Gamma_{54}=h^{-}h^{-}h^{+}\geq 0 \mbox{ neutrals }\geq 0 K_{L}^{0}\nu_{\tau} & 0.144\pm 0.006\pm 0.003 \\ \hline \\ $	ACCIARRI 95F (L3) [34]	
$ \begin{array}{ll} \hline \Gamma_{40} = \pi^{-} \overline{K}^{0} \pi^{0} \nu_{\tau} & 0.0041 \pm 0.0012 \pm 0.0003 \\ \hline \mbox{ACHARD 01D (L3) [41]} \\ \hline \mbox{F}_{55} = h^{-} h^{+} h^{+} \ge 0 \mbox{neutrals} \nu_{\tau} \ (ex. \ K^{0}) & 0.14556 \pm 0.00105 \pm 0.00076 \\ \hline \mbox{F}_{102} = 3h^{-} 2h^{+} \ge 0 \mbox{neutrals} \nu_{\tau} \ (ex. \ K^{0}) & 0.0017 \pm 0.00022 \pm 0.00026 \\ \hline \mbox{ADEVA 91F (L3) [39]} \\ \hline \mbox{F}_{54} = h^{-} h^{+} h^{+} \ge 0 \mbox{neutrals} \ge 0 \ K_{L}^{0} \nu_{\tau} & 0.144 \pm 0.006 \pm 0.003 \\ \hline \mbox{ABBIENDI 00C (OPAL) [35]} \\ \hline \mbox{F}_{35} = \pi^{-} \overline{K}^{0} \nu_{\tau} & 0.0033 \pm 0.00068 \pm 0.00049 \\ \hline \mbox{F}_{36} = K^{-} \overline{K}^{0} \ge 0 \ \pi^{0} \nu_{\tau} & 0.0033 \pm 0.00055 \pm 0.00039 \\ \hline \mbox{F}_{43} = \pi^{-} \overline{K}^{0} \ge 1 \ \pi^{0} \nu_{\tau} & 0.00159 \pm 0.00074 \pm 0.00066 \\ \hline \mbox{ABBIENDI 00D (OPAL) [54]} \\ \hline \mbox{F}_{92} = \pi^{-} \overline{K}^{-} \overline{K}^{+} \ge 0 \ neutrals \nu_{\tau} & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline \mbox{ABBIENDI 01J (OPAL) [26]} \\ \hline \mbox{F}_{10} = \overline{K}^{-} \nu_{\tau} & 0.0058 \pm 0.00027 \pm 0.00029 \\ \hline \mbox{F}_{31} = \overline{K}^{-} \ge 0 \ \pi^{0} \ge 0 \ K^{0} \ge 0 \ \gamma \nu_{\tau} & 0.01528 \pm 0.00039 \pm 0.0006 \\ \hline \mbox{ABBIENDI 03 (OPAL) [13]} \\ \hline \mbox{F}_{15} = e^{-} \overline{\nu} \mu \nu_{\tau} & 0.1734 \pm 0.00059 \pm 0.00023 \\ \hline \mbox{F}_{85} = \overline{K}^{-} \ \pi^{+} \ \pi^{-} \nu_{\tau} \ (ex. \ K^{0}) & 0.00471 \pm 0.00059 \pm 0.0006 \\ \hline \mbox{ABBIENDI 99H (OPAL) [17]} \\ \hline \mbox{F}_{5} = e^{-} \overline{\nu} \nu_{\tau} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \mbox{ACKERSTAFF 99M (OPAL) [22]} \\ \hline \mbox{F}_{8} = h^{-} \nu_{\tau} & 0.1781 \pm 0.0013 \pm 0.0016 \\ \hline \mbox{F}_{13} = h^{-} \ \pi^{0} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \mbox{F}_{17} = h^{-} \ge 2 \ \pi^{0} \nu_{\tau} & 0.0091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \mbox{F}_{104} = 3h^{-} 2h^{+} \nu_{\tau} \ (ex. \ K^{0}) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \mbox{F}_{104} = 3h^{-} 2h^{+} \nu_{\tau} \ (ex. \ K^{0}) & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \mbox{AKERS 74F 94G (OPAL) [52] \\ \hline \mbox{F}_{104} = 3h^{-} 2h^{+} \nu_{\tau} \ (ex. \ K^{0}) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \mbox{F}_{104} = 3h^{-} 2h^{+} \nu_{\tau} \ (ex. \ K^{0}) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \mbox{F}_{104} = 3h^{-} 2h^{+} \nu_{\tau} \ (ex. \ K^{0$	$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	$0.0095 \pm 0.0015 \pm 0.0006$
ACHARD 01D (L3) [41] $\Gamma_{55} = h^- h^- h^+ \ge 0$ neutrals ν_{τ} (ex. K^0) 0.14556 ± 0.00105 ± 0.00076 $\Gamma_{102} = 3h^-2h^+ \ge 0$ neutrals ν_{τ} (ex. K^0) 0.0017 ± 0.00022 ± 0.00026 ADEVA 91F (L3) [39] $\Gamma_{54} = h^- h^- h^+ \ge 0$ neutrals $\ge 0 K_L^0 \nu_{\tau}$ 0.144 ± 0.006 ± 0.003 ABBIENDI 00C (OPAL) [35] $\Gamma_{35} = \pi^- \overline{K}^0 \nu_{\tau}$ 0.00933 ± 0.00068 ± 0.00049 $\Gamma_{35} = \pi^- \overline{K}^0 \nu_{\tau}$ 0.0033 ± 0.00055 ± 0.00039 $\Gamma_{35} = \pi^- \overline{K}^0 \ge 0 \pi^0 \nu_{\tau}$ 0.0033 ± 0.00055 ± 0.00039 $\Gamma_{35} = \pi^- \overline{K}^0 \nu_{\tau}$ 0.0033 ± 0.00055 ± 0.00039 $\Gamma_{43} = \pi^- \overline{K}^0 \ge 1 \pi^0 \nu_{\tau}$ 0.00159 ± 0.00053 ± 0.0002 ABBIENDI 0D1 (OPAL) [54] $\Gamma_{92} = \pi^- K^- K^+ \ge 0$ neutrals ν_{τ} 0.00159 ± 0.00023 ± 0.0002 $\Gamma_{10} = K^- \nu_{\tau}$ 0.0040 $\Gamma_{10} = K^- \nu_{\tau}$ 0.1734 ± 0.0009 ± 0.0006 $\Lambda_{33} = \mu^- \overline{\nu}_{\mu} \nu_{\tau}$ 0.1734 ± 0.0009 ± 0.0006 $\Lambda_{33} = K^- \pi^0 \nu_{\tau}$ 0.1734 ± 0.0009 ± 0.0006 $\Lambda_{35} = K^- \pi^+ \pi^- \nu_{\tau}$ (ex. K^0) 0.00415 ± 0.0013 ± 0.0004 $\Lambda_{35} = K^- \pi^+ \pi^- \nu_{\tau}$ (ex. K^0) 0.00415 ± 0.0013 ± 0.0016 $\Gamma_{15} = E^- \overline{\nu}_e \nu_{\tau}$ 0.1198 ± 0.0013 ± 0.0016	$\Gamma_{40} = \pi^- \overline{K}^0 \pi^0 \nu_\tau$	$0.0041 \pm 0.0012 \pm 0.0003$
$ \begin{array}{ll} \Gamma_{55}=h^-h^+h^+\geq 0 \mbox{ neutrals } \nu_{\tau} \mbox{ (ex. K^0)} & 0.14556\pm 0.00105\pm 0.00076\\ \hline \Gamma_{102}=3h^-2h^+\geq 0 \mbox{ neutrals } \nu_{\tau} \mbox{ (ex. K^0)} & 0.0017\pm 0.0002\pm 0.00026\\ \hline \\ \hline$	ACHARD 01D (L3) [41]	
$ \begin{array}{l} \hline \Gamma_{102} = 3h^-2h^+ \ge 0 \ \text{neutrals} \ \nu_{\tau} \ (\text{ex. } K^0) & 0.0017 \pm 0.00022 \pm 0.00026 \\ \hline \text{ADEVA 91F (L3) [39]} \\ \hline \Gamma_{54} = h^-h^-h^+ \ge 0 \ \text{neutrals} \ge 0 \ K_L^0 \ \nu_{\tau} & 0.144 \pm 0.006 \pm 0.003 \\ \hline \text{ABBIENDI 00C (OPAL) [35]} \\ \hline \Gamma_{35} = \pi^-\overline{K}^0 \ \nu_{\tau} & 0.0033 \pm 0.00055 \pm 0.00039 \\ \hline \Gamma_{38} = K^-K^0 \ge 0 \ \pi^0 \ \nu_{\tau} & 0.0032 \pm 0.00074 \pm 0.00066 \\ \hline \text{ABBIENDI 00D (OPAL) [54]} \\ \hline \Gamma_{92} = \pi^-\overline{K}^-K^+ \ge 0 \ \text{neutrals} \ \nu_{\tau} & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline \text{ABBIENDI 01J (OPAL) [26]} \\ \hline \Gamma_{10} = K^- \ \nu_{\tau} & 0.00658 \pm 0.00027 \pm 0.00029 \\ \hline \Gamma_{31} = K^- \ge 0 \ \pi^0 \ge 0 \ K^0 \ge 0 \ \gamma \ \nu_{\tau} & 0.01528 \pm 0.00039 \pm 0.0004 \\ \hline \text{ABBIENDI 03 (OPAL) [13]} \\ \hline \Gamma_{3} = \mu^- \overline{\nu} \ \mu \ \nu_{\tau} & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \text{ABBIENDI 04J (OPAL) [30]} \\ \hline \Gamma_{16} = K^- \ \pi^0 \ \nu_{\tau} & 0.00415 \pm 0.00053 \pm 0.0002 \\ \hline \text{ABBIENDI 99H (OPAL) [17]} \\ \hline \Gamma_{5} = e^- \overline{\nu} \ e^{\nu_{\tau}} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \text{ACKERSTAFF 98M (OPAL) [22]} \\ \hline \Gamma_{8} = h^- \ \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{13} = h^- \ \pi^0 \ \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{13} = h^- \ \pi^0 \ \nu_{\tau} & 0.0091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{104} = 3h^- 2h^+ \ \pi^0 \ \nu_{\tau} & (ex. \ K^0) & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \text{AKERS 94G (OPAL) [32]} \\ \hline \Gamma_{33} = K_0^{\frac{1}{2}} (\text{particles})^- \ \nu_{\tau} & 0.0097 \pm 0.0009 \pm 0.0006 \\ \hline \end{array}$	${\sf \Gamma}_{55}=h^-h^-h^+\geq 0$ neutrals $ u_ au$ (ex. ${\cal K}^0)$	$0.14556 \pm 0.00105 \pm 0.00076$
ADEVA 91F (L3) [39] $\Gamma_{54} = h^- h^- h^+ \ge 0$ neutrals $\ge 0 K_L^0 \nu_\tau$ $0.144 \pm 0.006 \pm 0.003$ ABBIENDI 00C (OPAL) [35] $\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$ $0.00933 \pm 0.00068 \pm 0.00049$ $\Gamma_{38} = K^- K^0 \ge 0 \pi^0 \nu_\tau$ $0.0033 \pm 0.00055 \pm 0.00039$ $\Gamma_{43} = \pi^- \overline{K}^0 \ge 1 \pi^0 \nu_\tau$ $0.00324 \pm 0.00074 \pm 0.00066$ ABBIENDI 00D (OPAL) [54] $\Gamma_{92} = \pi^- K^- K^+ \ge 0$ neutrals ν_τ $0.00159 \pm 0.00053 \pm 0.0002$ ABBIENDI 01J (OPAL) [26] $\Gamma_{10} = K^- \nu_\tau$ $0.00658 \pm 0.00027 \pm 0.00029$ $\Gamma_{31} = K^- \ge 0 \pi^0 \ge 0 K^0 \ge 0 \gamma \nu_\tau$ $0.01528 \pm 0.00039 \pm 0.0004$ ABBIENDI 03 (OPAL) [13] $\Gamma_{3} = \mu^- \overline{\nu} \mu \nu_\tau$ $0.1734 \pm 0.0009 \pm 0.0006$ ABBIENDI 04J (OPAL) [30] $\Gamma_{16} = K^- \pi^0 \nu_\tau$ $0.00471 \pm 0.00059 \pm 0.00023$ $\Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau$ (ex. K^0) $0.00415 \pm 0.00053 \pm 0.0004$ ABBIENDI 99H (OPAL) [17] $\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$ $0.1781 \pm 0.0005 \pm 0.0006$ ACKERSTAFF 98M (OPAL) [22] $\Gamma_8 = h^- \nu_\tau$ $0.2589 \pm 0.0017 \pm 0.0029$ $\Gamma_{17} = h^- \ge 2\pi^0 \nu_\tau$ $\Gamma_{13} = h^- \pi^0 \nu_\tau$ $0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5}$ $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau$ (ex. K^0) $0.00027 \pm 0.00014 \pm 6 \cdot 10^{-5}$ $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau$ (ex. K^0) $0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5}$ AKERS 94G (OPAL) [32] Γ	${\sf \Gamma}_{102}=3h^-2h^+\geq 0$ neutrals $ u_ au$ (ex. ${\cal K}^0)$	$0.0017 \pm 0.00022 \pm 0.00026$
$ \begin{array}{ll} \hline \Gamma_{54} = h^- h^+ \ge 0 \ \text{neutrals} \ge 0 \ K_{\mu}^0 \ \nu_{\tau} & 0.144 \pm 0.006 \pm 0.003 \\ \hline \\ $	ADEVA 91F (L3) [39]	
ABBIENDI 00C (OPAL) [35]	${\sf \Gamma}_{\sf 54}=h^-h^-h^+\geq 0$ neutrals ≥ 0 ${\cal K}^{\sf 0}_L$ $ u_ au$	$0.144 \pm 0.006 \pm 0.003$
$ \begin{array}{ll} \Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau & 0.00933 \pm 0.00068 \pm 0.00049 \\ \Gamma_{38} = K^- K^0 \geq 0 \pi^0 \nu_\tau & 0.0033 \pm 0.00055 \pm 0.00039 \\ \overline{\Gamma_{43}} = \pi^- \overline{K}^0 \geq 1 \pi^0 \nu_\tau & 0.00324 \pm 0.00074 \pm 0.00066 \\ \hline \\ \hline \\ ABBIENDI 00D (OPAL) [54] & \\ \hline \\ \Gamma_{92} = \pi^- K^- K^+ \geq 0 neutrals \nu_\tau & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline \\ ABBIENDI 01J (OPAL) [26] & \\ \hline \\ \Gamma_{10} = K^- \nu_\tau & 0.00658 \pm 0.00027 \pm 0.00029 \\ \hline \\ \Gamma_{31} = K^- \geq 0 \pi^0 \geq 0 K^0 \geq 0 \gamma \nu_\tau & 0.01528 \pm 0.00039 \pm 0.0004 \\ \hline \\ ABBIENDI 03 (OPAL) [13] & \\ \hline \\ \Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \\ ABBIENDI 04J (OPAL) [30] & \\ \hline \\ \Gamma_{16} = K^- \pi^0 \nu_\tau & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \\ \Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau (ex. K^0) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \\ ABBIENDI 99H (OPAL) [17] & \\ \hline \\ \Gamma_5 = e^- \overline{\nu}_e \nu_\tau & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \\ ACKERSTAFF 98M (OPAL) [22] & \\ \hline \\ \Gamma_{8} = h^- \nu_\tau & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \\ \Gamma_{103} = 3h^- 2h^+ \nu_\tau (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \\ \Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau (ex. K^0) & 0.0007 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \\ AKERS 94G (OPAL) [32] & \\ \hline \\ \Gamma_{33} = K_3^0 (particles)^- \nu_\tau & 0.0097 \pm 0.0009 \pm 0.0006 \\ \hline \end{array}$	ABBIENDI 00C (OPAL) [35]	
$ \begin{array}{ll} \Gamma_{38} = K^- K^0 \geq 0 \pi^0 \nu_\tau & 0.0033 \pm 0.00055 \pm 0.00039 \\ \Gamma_{43} = \pi^- \overline{K}^0 \geq 1 \pi^0 \nu_\tau & 0.00324 \pm 0.00074 \pm 0.00066 \\ \hline \\$	$\Gamma_{35} = \pi^- \overline{K}^0 \nu_\tau$	$0.00933 \pm 0.00068 \pm 0.00049$
$ \begin{array}{ll} \Gamma_{43} = \pi^- \overline{K}^0 \geq 1 \pi^0 \nu_\tau & 0.00324 \pm 0.00074 \pm 0.00066 \\ \hline \mbox{ABBIENDI 00D (OPAL) [54]} \\ \hline \mbox{$\Gamma_{92} = \pi^- K^- K^+ \geq 0$ neutrals ν_τ} & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline \mbox{ABBIENDI 01 (OPAL) [26]} \\ \hline \mbox{$\Gamma_{10} = K^- \nu_\tau$} & 0.00658 \pm 0.00027 \pm 0.00029 \\ \hline \mbox{$\Gamma_{31} = K^- \geq 0 \pi^0 \geq 0 K^0 \geq 0 \gamma \nu_\tau$} & 0.01528 \pm 0.00039 \pm 0.0004 \\ \hline \mbox{ABBIENDI 03 (OPAL) [13]} \\ \hline \mbox{$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$} & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \mbox{ABBIENDI 04J (OPAL) [30]} \\ \hline \mbox{$\Gamma_{16} = K^- \pi^0 \nu_\tau$} & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \mbox{$\Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau$} (ex. K^0) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \mbox{ABBIENDI 99H (OPAL) [17]} \\ \hline \mbox{$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \mbox{$ACKERSTAFF 98M (OPAL) [22]} \\ \hline \mbox{$\Gamma_8 = h^- \nu_\tau$} & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \mbox{$\Gamma_{13} = h^- \pi^0 \nu_\tau$} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \mbox{$\Gamma_{17} = h^- \geq 2 \pi^0 \nu_\tau$} & 0.0091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \mbox{$\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau$} (ex. K^0) & 0.00027 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \mbox{$\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau$} (ex. K^0) & 0.00027 \pm 0.00014 \pm 9 \cdot 10^{-5} \\ \hline \mbox{$AKERS 94G (OPAL) [32]} \\ \hline \mbox{$\Gamma_{33} = K_0^0$} (particles)^- \nu_\tau$} & 0.0097 \pm 0.0009 \pm 0.0006 \\ \hline \end{tabular}$	$\Gamma_{38} = K^- K^0 \ge 0 \pi^0 \nu_\tau$	$0.0033 \pm 0.00055 \pm 0.00039$
ABBIENDI 00D (OPAL) [54] $\Gamma_{92} = \pi^- K^- K^+ \ge 0$ neutrals ν_{τ} $0.00159 \pm 0.00053 \pm 0.0002$ ABBIENDI 01J (OPAL) [26] $\Gamma_{10} = K^- \nu_{\tau}$ $0.00658 \pm 0.00027 \pm 0.00029$ $\Gamma_{31} = K^- \ge 0 \pi^0 \ge 0 K^0 \ge 0 \gamma \nu_{\tau}$ $0.01528 \pm 0.00039 \pm 0.0004$ ABBIENDI 03 (OPAL) [13] $\Gamma_3 = \mu^- \overline{\nu}_{\mu} \nu_{\tau}$ $0.1734 \pm 0.0009 \pm 0.0006$ ABBIENDI 04J (OPAL) [30] $\Gamma_{16} = K^- \pi^0 \nu_{\tau}$ $0.00471 \pm 0.00059 \pm 0.00023$ $\Gamma_{85} = K^- \pi^+ \pi^- \nu_{\tau}$ (ex. K^0) $0.00415 \pm 0.00053 \pm 0.0004$ ABBIENDI 99H (OPAL) [17] $\Gamma_5 = e^- \overline{\nu}_e \nu_{\tau}$ $\Gamma_5 = e^- \overline{\nu}_e \nu_{\tau}$ $0.1781 \pm 0.0009 \pm 0.0006$ ACKERSTAFF 98M (OPAL) [22] $\Gamma_8 = h^- \nu_{\tau}$ $\Gamma_8 = h^- \nu_{\tau}$ $0.1198 \pm 0.0013 \pm 0.0016$ $\Gamma_{13} = h^- \pi^0 \nu_{\tau}$ $0.2589 \pm 0.0017 \pm 0.0029$ $\Gamma_{17} = h^- \ge 2 \pi^0 \nu_{\tau}$ $0.0091 \pm 0.0031 \pm 0.0027$ ACKERSTAFF 99E (OPAL) [58] $\Gamma_{104} = 3h^- 2h^+ \nu_{\tau}$ (ex. K^0) $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau}$ (ex. K^0) $0.00027 \pm 0.00014 \pm 6 \cdot 10^{-5}$ $\Lambda_{45} = 8^0$ (OPAL) [32] $\Gamma_{33} = K_{9}^{0}$ (particles)^- ν_{τ}	$\Gamma_{43} = \pi^- \overline{K}^0 \ge 1 \pi^0 \nu_\tau$	$0.00324 \pm 0.00074 \pm 0.00066$
$\begin{array}{ll} \hline \Gamma_{92} = \pi^- K^- K^+ \ge 0 \text{ neutrals } \nu_{\tau} & 0.00159 \pm 0.00053 \pm 0.0002 \\ \hline \text{ABBIENDI 01J (OPAL) [26]} \\ \hline \Gamma_{10} = K^- \nu_{\tau} & 0.00658 \pm 0.00027 \pm 0.00029 \\ \hline \Gamma_{31} = K^- \ge 0 \pi^0 \ge 0 \ K^0 \ge 0 \ \gamma \nu_{\tau} & 0.01528 \pm 0.00039 \pm 0.0004 \\ \hline \text{ABBIENDI 03 (OPAL) [13]} \\ \hline \Gamma_3 = \mu^- \overline{\nu}_{\mu} \nu_{\tau} & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \text{ABBIENDI 04J (OPAL) [30]} \\ \hline \Gamma_{16} = K^- \pi^0 \nu_{\tau} & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{85} = K^- \pi^+ \pi^- \nu_{\tau} (\text{ex. } K^0) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \text{ABBIENDI 99H (OPAL) [17]} \\ \hline \Gamma_5 = e^- \overline{\nu}_e \nu_{\tau} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \text{ACKERSTAFF 98M (OPAL) [22]} \\ \hline \Gamma_8 = h^- \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^- \ge 2 \pi^0 \nu_{\tau} & 0.0991 \pm 0.0031 \pm 0.0027 \\ \hline \text{ACKERSTAFF 99E (OPAL) [58]} \\ \hline \Gamma_{103} = 3h^- 2h^+ \nu_{\tau} (\text{ex. } K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau} (\text{ex. } K^0) & 0.0007 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \text{AKERS 94G (OPAL) [32]} \\ \hline \Gamma_{33} = K_S^0 (\text{particles})^- \nu_{\tau} & 0.0097 \pm 0.0009 \pm 0.0006 \\ \hline \end{array}$	ABBIENDI 00D (OPAL) [54]	
ABBIENDI 01J (OPAL) [26] 0.00658 ± 0.00027 ± 0.00029 $\Gamma_{10} = K^- \nu_{\tau}$ 0.01528 ± 0.00039 ± 0.0004 ABBIENDI 03 (OPAL) [13] 0.1734 ± 0.0009 ± 0.0006 $\Gamma_3 = \mu^- \overline{\nu}_{\mu} \nu_{\tau}$ 0.1734 ± 0.00059 ± 0.00023 $\Lambda_{BBIENDI 04J (OPAL) [30]$ 0.00471 ± 0.00059 ± 0.00023 $\Gamma_{16} = K^- \pi^0 \nu_{\tau}$ 0.00471 ± 0.00059 ± 0.00023 $\Gamma_{85} = K^- \pi^+ \pi^- \nu_{\tau}$ (ex. K^0) 0.00415 ± 0.00053 ± 0.0004 ABBIENDI 99H (OPAL) [17] $\Gamma_5 = e^- \overline{\nu}_e \nu_{\tau}$ $\Gamma_5 = e^- \overline{\nu}_e \nu_{\tau}$ 0.1781 ± 0.0009 ± 0.0006 ACKERSTAFF 98M (OPAL) [22] $\Gamma_8 = h^- \nu_{\tau}$ $\Gamma_{13} = h^- \pi^0 \nu_{\tau}$ 0.2589 ± 0.0017 ± 0.0029 $\Gamma_{17} = h^- \ge 2 \pi^0 \nu_{\tau}$ 0.0091 ± 0.00014 ± 6 \cdot 10^{-5} $\Gamma_{104} = 3h^- 2h^+ \nu_{\tau}$ (ex. K^0) 0.00027 ± 0.00018 ± 9 \cdot 10^{-5} AKERS 94G (OPAL) [32] $\Gamma_{33} = K_5^0$ (particles) $^- \nu_{\tau}$	${\sf \Gamma}_{{\sf 92}}=\pi^-{\cal K}^-{\cal K}^+\geq 0$ neutrals $ u_ au$	$0.00159 \pm 0.00053 \pm 0.0002$
$ \begin{array}{ll} \Gamma_{10} = K^- \nu_\tau & 0.00658 \pm 0.00027 \pm 0.00029 \\ \Gamma_{31} = K^- \ge 0 \pi^0 \ge 0 K^0 \ge 0 \gamma \nu_\tau & 0.01528 \pm 0.00039 \pm 0.0004 \\ \hline \\ \hline \\ ABBIENDI 03 (OPAL) [13] & \\ \hline \\ \Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \\ ABBIENDI 04J (OPAL) [30] & \\ \hline \\ \\ \Gamma_{16} = K^- \pi^0 \nu_\tau & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \\ \hline \\ \Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau (ex. K^0) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \\ ABBIENDI 99H (OPAL) [17] & \\ \hline \\ \\ \Gamma_5 = e^- \overline{\nu}_e \nu_\tau & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \\ ACKERSTAFF 98M (OPAL) [22] & \\ \hline \\ \\ \Gamma_8 = h^- \nu_\tau & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \\ \\ \hline \\ \Gamma_{13} = h^- \pi^0 \nu_\tau & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \\ \\ \hline \\ \Gamma_{17} = h^- \ge 2 \pi^0 \nu_\tau & 0.0991 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \\ \\ \hline \\ \\ \hline \\ \Gamma_{104} = 3h^- 2h^+ \nu_\tau (ex. K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \\ \hline \\ \hline \\ \hline \\ AKERS 94G (OPAL) [32] & \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	ABBIENDI 01J (OPAL) [26]	
$\begin{array}{ll} \hline \Gamma_{31} = \mathcal{K}^{-} \geq 0 \ \pi^{0} \geq 0 \ \gamma \nu_{\tau} & 0.01528 \pm 0.00039 \pm 0.0004 \\ \hline \text{ABBIENDI 03 (OPAL) [13]} & \\ \hline \Gamma_{3} = \mu^{-} \overline{\nu}_{\mu} \nu_{\tau} & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \text{ABBIENDI 04J (OPAL) [30]} & \\ \hline \Gamma_{16} = \mathcal{K}^{-} \pi^{0} \nu_{\tau} & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{85} = \mathcal{K}^{-} \pi^{+} \pi^{-} \nu_{\tau} (\text{ex. } \mathcal{K}^{0}) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \text{ABBIENDI 99H (OPAL) [17]} & \\ \hline \Gamma_{5} = e^{-} \overline{\nu}_{e} \nu_{\tau} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \text{ACKERSTAFF 98M (OPAL) [22]} & \\ \hline \Gamma_{8} = h^{-} \nu_{\tau} & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \Gamma_{13} = h^{-} \pi^{0} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^{-} \geq 2 \pi^{0} \nu_{\tau} & 0.0091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{104} = 3h^{-} 2h^{+} \nu_{\tau} (\text{ex. } \mathcal{K}^{0}) & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \text{AKERS 94G (OPAL) [32]} & \\ \hline \Gamma_{33} = \mathcal{K}_{5}^{0} (\text{particles})^{-} \nu_{\tau} & 0.0097 \pm 0.0009 \pm 0.0006 \\ \hline \end{array}$	$\Gamma_{10} = K^- \nu_\tau$	$0.00658 \pm 0.00027 \pm 0.00029$
ABBIENDI 03 (OPAL) [13] 0.1734 ± 0.0009 ± 0.0006 $\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$ 0.1734 ± 0.0009 ± 0.0006 ABBIENDI 04J (OPAL) [30] 0.00471 ± 0.00059 ± 0.00023 $\Gamma_{16} = K^- \pi^0 \nu_\tau$ 0.00471 ± 0.00059 ± 0.00023 $\Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau$ (ex. K^0) 0.00415 ± 0.00053 ± 0.0004 ABBIENDI 99H (OPAL) [17] $\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$ $\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$ 0.1781 ± 0.0009 ± 0.0006 ACKERSTAFF 98M (OPAL) [22] $\Gamma_8 = h^- \nu_\tau$ $\Gamma_{8} = h^- \nu_\tau$ 0.1198 ± 0.0013 ± 0.0016 $\Gamma_{13} = h^- \pi^0 \nu_\tau$ 0.2589 ± 0.0017 ± 0.0029 $\Gamma_{17} = h^- \ge 2 \pi^0 \nu_\tau$ 0.0991 ± 0.0031 ± 0.0027 ACKERSTAFF 99E (OPAL) [58] $\Gamma_{104} = 3h^- 2h^+ \nu_\tau$ (ex. K^0) $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau$ (ex. K^0) 0.00027 ± 0.00018 ± 9 \cdot 10^{-5} AKERS 94G (OPAL) [32] $\Gamma_{33} = K_5^0$ (particles)^- ν_τ	$\Gamma_{31} = K^- \ge 0 \pi^0 \ge 0 K^0 \ge 0 \gamma u_{ au}$	$0.01528 \pm 0.00039 \pm 0.0004$
$\begin{array}{c c} \hline \Gamma_{3} = \mu^{-} \overline{\nu}_{\mu} \nu_{\tau} & 0.1734 \pm 0.0009 \pm 0.0006 \\ \hline \mbox{ABBIENDI 04J (OPAL) [30]} \\ \hline \Gamma_{16} = K^{-} \pi^{0} \nu_{\tau} & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{85} = K^{-} \pi^{+} \pi^{-} \nu_{\tau} (ex. \ K^{0}) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \mbox{ABBIENDI 99H (OPAL) [17]} \\ \hline \Gamma_{5} = e^{-} \overline{\nu}_{e} \nu_{\tau} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \mbox{ACKERSTAFF 98M (OPAL) [22]} \\ \hline \Gamma_{8} = h^{-} \nu_{\tau} & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \Gamma_{13} = h^{-} \pi^{0} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \mbox{\Gamma}_{17} = h^{-} \ge 2 \pi^{0} \nu_{\tau} & 0.0991 \pm 0.0031 \pm 0.0027 \\ \hline \mbox{ACKERSTAFF 99E (OPAL) [58]} \\ \hline \Gamma_{103} = 3h^{-} 2h^{+} \nu_{\tau} (ex. \ K^{0}) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \mbox{\Gamma}_{104} = 3h^{-} 2h^{+} \pi^{0} \nu_{\tau} (ex. \ K^{0}) & 0.0007 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \mbox{AKERS 94G (OPAL) [32]} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ABBIENDI 03 (OPAL) [13]	
ABBIENDI 04J (OPAL) [30] 0.00471 ± 0.00059 ± 0.00023 $\Gamma_{16} = K^- \pi^0 \nu_\tau$ 0.00471 ± 0.00059 ± 0.00023 $\Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau$ (ex. K^0) 0.00415 ± 0.00053 ± 0.0004 ABBIENDI 99H (OPAL) [17] $\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$ $\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$ 0.1781 ± 0.0009 ± 0.0006 ACKERSTAFF 98M (OPAL) [22] $\Gamma_8 = h^- \nu_\tau$ $\Gamma_8 = h^- \nu_\tau$ 0.1198 ± 0.0013 ± 0.0016 $\Gamma_{13} = h^- \pi^0 \nu_\tau$ 0.2589 ± 0.0017 ± 0.0029 $\Gamma_{17} = h^- \ge 2 \pi^0 \nu_\tau$ 0.0991 ± 0.0031 ± 0.0027 ACKERSTAFF 99E (OPAL) [58] $\Gamma_{104} = 3h^- 2h^+ \nu_\tau$ (ex. K^0) $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau$ (ex. K^0) 0.00027 ± 0.00014 ± 6 · 10^{-5} Λ_{4} AKERS 94G (OPAL) [32] $\Gamma_{33} = K_9^0$ (particles) $^- \nu_\tau$	$\Gamma_3 = \mu^- \overline{\nu}_\mu \nu_\tau$	$0.1734 \pm 0.0009 \pm 0.0006$
$ \begin{array}{ll} \Gamma_{16} = K^{-} \pi^{0} \nu_{\tau} & 0.00471 \pm 0.00059 \pm 0.00023 \\ \hline \Gamma_{85} = K^{-} \pi^{+} \pi^{-} \nu_{\tau} (\text{ex. } K^{0}) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \\ \hline \\ \text{ABBIENDI 99H (OPAL) [17]} \\ \hline \Gamma_{5} = e^{-} \overline{\nu}_{e} \nu_{\tau} & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \\ \hline \\ \text{ACKERSTAFF 98M (OPAL) [22]} \\ \hline \\ \Gamma_{8} = h^{-} \nu_{\tau} & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \\ \\ \Gamma_{13} = h^{-} \pi^{0} \nu_{\tau} & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \\ \\ \Gamma_{17} = h^{-} \geq 2 \pi^{0} \nu_{\tau} & 0.0991 \pm 0.0031 \pm 0.0027 \\ \hline \\ \hline \\ \\ \text{ACKERSTAFF 99E (OPAL) [58]} \\ \hline \\ \\ \hline \\ \\ \Gamma_{104} = 3h^{-} 2h^{+} \nu_{\tau} (\text{ex. } K^{0}) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \text{AKERS 94G (OPAL) [32]} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$	ABBIENDI 04J (OPAL) [30]	
$ \begin{array}{ll} \hline \Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau \ (\text{ex. } K^0) & 0.00415 \pm 0.00053 \pm 0.0004 \\ \hline \text{ABBIENDI 99H (OPAL) [17]} \\ \hline \Gamma_5 = e^- \overline{\nu}_e \nu_\tau & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \text{ACKERSTAFF 98M (OPAL) [22]} \\ \hline \Gamma_8 = h^- \nu_\tau & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \Gamma_{13} = h^- \pi^0 \nu_\tau & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^- \geq 2 \pi^0 \nu_\tau & 0.0991 \pm 0.0031 \pm 0.0027 \\ \hline \text{ACKERSTAFF 99E (OPAL) [58]} \\ \hline \Gamma_{103} = 3h^- 2h^+ \nu_\tau \ (\text{ex. } K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau \ (\text{ex. } K^0) & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \text{AKERS 94G (OPAL) [32]} \\ \hline \Gamma_{33} = K_S^0 (\text{particles})^- \nu_\tau & 0.0097 \pm 0.0009 \pm 0.0006 \\ \hline \end{array} $	$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$0.00471 \pm 0.00059 \pm 0.00023$
ABBIENDI 99H (OPAL) [17] $\Gamma_5 = e^- \overline{\nu}_e \nu_{\tau}$ $0.1781 \pm 0.0009 \pm 0.0006$ ACKERSTAFF 98M (OPAL) [22] $\Gamma_8 = h^- \nu_{\tau}$ $0.1198 \pm 0.0013 \pm 0.0016$ $\Gamma_{13} = h^- \pi^0 \nu_{\tau}$ $0.2589 \pm 0.0017 \pm 0.0029$ $\Gamma_{17} = h^- \ge 2\pi^0 \nu_{\tau}$ $0.0991 \pm 0.0031 \pm 0.0027$ ACKERSTAFF 99E (OPAL) [58] $\Gamma_{103} = 3h^- 2h^+ \nu_{\tau}$ (ex. K^0) $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau}$ (ex. K^0) $0.00027 \pm 0.00014 \pm 6 \cdot 10^{-5}$ Λ KERS 94G (OPAL) [32] $\Gamma_{33} = K_S^0$ (particles) $^- \nu_{\tau}$	$\Gamma_{85} = K^- \pi^+ \pi^- \nu_\tau \text{ (ex. } K^0\text{)}$	$0.00415 \pm 0.00053 \pm 0.0004$
$ \begin{array}{ll} \hline \Gamma_5 = e^- \overline{\nu}_e \nu_\tau & 0.1781 \pm 0.0009 \pm 0.0006 \\ \hline \text{ACKERSTAFF 98M (OPAL) [22]} \\ \hline \Gamma_8 = h^- \nu_\tau & 0.1198 \pm 0.0013 \pm 0.0016 \\ \hline \Gamma_{13} = h^- \pi^0 \nu_\tau & 0.2589 \pm 0.0017 \pm 0.0029 \\ \hline \Gamma_{17} = h^- \geq 2 \pi^0 \nu_\tau & 0.0991 \pm 0.0031 \pm 0.0027 \\ \hline \text{ACKERSTAFF 99E (OPAL) [58]} \\ \hline \Gamma_{103} = 3h^- 2h^+ \nu_\tau \ (\text{ex. } \mathcal{K}^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_\tau \ (\text{ex. } \mathcal{K}^0) & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \text{AKERS 94G (OPAL) [32]} \\ \hline \Gamma_{33} = \mathcal{K}_S^0 (\text{particles})^- \nu_\tau & 0.0097 \pm 0.0009 \pm 0.0006 \\ \hline \end{array} $	ABBIENDI 99H (OPAL) [17]	
ACKERSTAFF 98M (OPAL) [22] $\Gamma_8 = h^- \nu_{\tau}$ 0.1198 ± 0.0013 ± 0.0016 $\Gamma_{13} = h^- \pi^0 \nu_{\tau}$ 0.2589 ± 0.0017 ± 0.0029 $\Gamma_{17} = h^- \ge 2 \pi^0 \nu_{\tau}$ 0.0991 ± 0.0031 ± 0.0027 ACKERSTAFF 99E (OPAL) [58] $\Gamma_{103} = 3h^- 2h^+ \nu_{\tau}$ (ex. K^0) $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau}$ (ex. K^0) 0.00091 ± 0.00014 ± 6 · 10^{-5} $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau}$ (ex. K^0) 0.00027 ± 0.00018 ± 9 · 10^{-5} AKERS 94G (OPAL) [32] $\Gamma_{33} = K_S^0$ (particles) $^- \nu_{\tau}$	$\Gamma_5 = e^- \overline{\nu}_e \nu_\tau$	$0.1781 \pm 0.0009 \pm 0.0006$
$ \begin{array}{ll} \Gamma_8 = h^- \nu_\tau & 0.1198 \pm 0.0013 \pm 0.0016 \\ \Gamma_{13} = h^- \pi^0 \nu_\tau & 0.2589 \pm 0.0017 \pm 0.0029 \\ \Gamma_{17} = h^- \geq 2 \pi^0 \nu_\tau & 0.0991 \pm 0.0031 \pm 0.0027 \\ \hline \mbox{ACKERSTAFF 99E (OPAL) [58]} \\ \Gamma_{103} = 3h^- 2h^+ \nu_\tau \ (ex. \ K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ACKERSTAFF 98M (OPAL) [22]	
$ \begin{array}{ll} \Gamma_{13}=h^{-}\pi^{0}\nu_{\tau} & 0.2589\pm0.0017\pm0.0029 \\ \Gamma_{17}=h^{-}\geq2\pi^{0}\nu_{\tau} & 0.0991\pm0.0031\pm0.0027 \\ \hline \\ \text{ACKERSTAFF 99E (OPAL) [58]} & \\ \Gamma_{103}=3h^{-}2h^{+}\nu_{\tau} \; (\text{ex. } K^{0}) & 0.00091\pm0.00014\pm6\cdot10^{-5} \\ \hline \\ \Gamma_{104}=3h^{-}2h^{+}\pi^{0}\nu_{\tau} \; (\text{ex. } K^{0}) & 0.00027\pm0.00018\pm9\cdot10^{-5} \\ \hline \\ \text{AKERS 94G (OPAL) [32]} & \\ \Gamma_{33}=K_{S}^{0}(\text{particles})^{-}\nu_{\tau} & 0.0097\pm0.0009\pm0.0006 \\ \end{array} $	$\Gamma_8 = h^- u_ au$	$0.1198 \pm 0.0013 \pm 0.0016$
$ \begin{array}{ll} \hline \Gamma_{17} = h^- \geq 2 \pi^0 \nu_\tau & 0.0991 \pm 0.0031 \pm 0.0027 \\ \hline \text{ACKERSTAFF 99E (OPAL) [58]} & \\ \hline \Gamma_{103} = 3 h^- 2 h^+ \nu_\tau (\text{ex. } K^0) & 0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5} \\ \hline \Gamma_{104} = 3 h^- 2 h^+ \pi^0 \nu_\tau (\text{ex. } K^0) & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ \hline \text{AKERS 94G (OPAL) [32]} & \\ \hline \Gamma_{33} = K_S^0 (\text{particles})^- \nu_\tau & 0.0097 \pm 0.0009 \pm 0.0006 \\ \end{array} $	$\Gamma_{13} = h^- \pi^0 \nu_\tau$	$0.2589 \pm 0.0017 \pm 0.0029$
ACKERSTAFF 99E (OPAL) [58] $\Gamma_{103} = 3h^-2h^+\nu_{\tau}$ (ex. K^0) $0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5}$ $\Gamma_{104} = 3h^-2h^+\pi^0\nu_{\tau}$ (ex. K^0) $0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5}$ AKERS 94G (OPAL) [32] $\Gamma_{33} = K_S^0$ (particles) $^-\nu_{\tau}$ $0.0097 \pm 0.0009 \pm 0.0006$	$\Gamma_{17}=h^-\geq 2\pi^0 u_ au$	$0.0991 \pm 0.0031 \pm 0.0027$
$\Gamma_{103} = 3h^- 2h^+ \nu_{\tau} \text{ (ex. } K^0 \text{)}$ $0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5}$ $\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$ $0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5}$ AKERS 94G (OPAL) [32] $\Gamma_{33} = K_S^0 (\text{particles})^- \nu_{\tau}$ $0.0097 \pm 0.0009 \pm 0.0006$	ACKERSTAFF 99E (OPAL) [58]	
$\begin{aligned} &\Gamma_{104} = 3h^{-}2h^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0} \text{)} & 0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\Gamma_{103} = 3h^- 2h^+ u_ au$ (ex. K^0)	$0.00091 \pm 0.00014 \pm 6 \cdot 10^{-5}$
AKERS 94G (OPAL) [32] $\Gamma_{33} = K_S^0 (\text{particles})^- \nu_{\tau}$ $0.0097 \pm 0.0009 \pm 0.0006$	$\Gamma_{104} = 3h^- 2h^+ \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$0.00027 \pm 0.00018 \pm 9 \cdot 10^{-5}$
$\Gamma_{33} = K_S^0(\text{particles})^- \nu_{\tau}$ $0.0097 \pm 0.0009 \pm 0.0006$	AKERS 94G (OPAL) [32]	
	$\Gamma_{33} = K_S^0(\text{particles})^- \nu_{\tau}$	$0.0097 \pm 0.0009 \pm 0.0006$
AKERS 95Y (OPAL) [42]	AKERS 95Y (OPAL) [42]	

Table 17 – continued from previous page

Table 17 – Continued from previous page		
Reference / Branching Fraction	Value	
$\Gamma_{55}=h^-h^-h^+\geq 0$ neutrals $ u_ au$ (ex. \mathcal{K}^0)	$0.1496 \pm 0.0009 \pm 0.0022$	
$\frac{\Gamma_{57}}{\Gamma_{55}} = \frac{h^- h^- h^+ \nu_{\tau} \text{ (ex. } K^0)}{h^- h^- h^+ \ge 0 \text{ neutrals } \nu_{\tau} \text{ (ex. } K^0)}$	$0.66 \pm 0.004 \pm 0.014$	
ALEXANDER 91D (OPAL) [20]		
$\Gamma_7=h^-\geq 0 {\cal K}^0_L u_ au$	$0.121 \pm 0.007 \pm 0.005$	
AIHARA 87B (TPC) [40]		
$\Gamma_{54}=h^-h^-h^+\geq 0$ neutrals $\geq 0~{\cal K}^0_L~ u_ au$	$0.151 \pm 0.008 \pm 0.006$	
BAUER 94 (TPC) [51]		
$\Gamma_{82} = K^- \pi^- \pi^+ \geq 0$ neutrals $ u_ au$	$0.0058^{+0.0015}_{-0.0013}\pm0.0012$	
$\Gamma_{92}=\pi^{-}K^{-}K^{+}\geq 0$ neutrals $ u_{ au}$	$0.0015^{+0.0009}_{-0.0007}\pm 0.0003$	

Table 17 – continued from previous page

References

- Heavy Flavor Averaging Group, D. Asner *et al.*, "Averages of *b*-hadron, *c*-hadron, and *τ*-lepton properties," 2010.
- [2] Particle Data Group, C. Patrignani et al., "Review of particle physics," Chin. Phys. C40 (2016) 100001.
- [3] Heavy Flavor Averaging Group, Y. Amhis et al., "Averages of b-hadron, c-hadron, and τ-lepton properties as of early 2012," 2012.
- [4] Heavy Flavor Averaging Group, Y. Amhis *et al.*, "Averages of *b*-hadron, *c*-hadron, and τ -lepton properties as of summer 2014," 2014.
- [5] BABAR Collaboration, B. Aubert *et al.*, "Measurement of $B(\tau^- \to \overline{K^0}\pi^-\nu_{\tau})$ using the BABAR detector," Nucl. Phys. Proc. Suppl. 189 (2009) 193, arXiv:0808.1121 [hep-ex].
- [6] BABAR Collaboration, S. Paramesvaran, "Selected topics in tau physics from BABAR," 2009.
- [7] Belle Collaboration, S. Ryu et al., "Measurements of Branching Fractions of τ Lepton Decays with one or more K⁰_S," Phys. Rev. D89 (2014) 072009, arXiv:1402.5213 [hep-ex].
- [8] ALEPH Collaboration, R. Barate et al., "K0(S) production in tau decays," Eur. Phys. J. C4 (1998) 29. http://cdsweb.cern.ch/record/346304.
- [9] Particle Data Group, K. Olive et al., "Review of particle physics," Chin. Phys. C38 (2014) 090001.
- [10] ALEPH Collaboration, S. Schael *et al.*, "Branching ratios and spectral functions of tau decays: Final ALEPH measurements and physics implications," *Phys. Rept.* 421 (2005) 191, arXiv:hep-ex/0506072 [hep-ex]. HFLAV-tau uses measurements of $\tau \to hX$ and $\tau \to KX$ and obtains $\tau \to \pi X$ by difference; the measurement of $\mathcal{B} (\tau^- \to 3h^-2h^+\pi^0\nu_{\tau} (ex.K^0))$ has been read as $(2.1 \pm 0.7 \pm 0.6) \times 10^{-4}$ whereas PDG11 uses $(2.1 \pm 0.7 \pm 0.9) \times 10^{-4}$.
- [11] DELPHI Collaboration, P. Abreu et al., "Measurements of the leptonic branching fractions of the tau," Eur. Phys. J. C10 (1999) 201.
- [12] L3 Collaboration, M. Acciarri *et al.*, "Measurement of the τ branching fractions into leptons," *Phys. Lett.* B507 (2001) 47, arXiv:hep-ex/0102023 [hep-ex].
- [13] OPAL Collaboration, G. Abbiendi et al., "A Measurement of the tau- -> mu- anti-nu(mu) nu(tau) branching ratios," Phys. Lett. B551 (2003) 35, arXiv:hep-ex/0211066 [hep-ex].
- [14] ARGUS Collaboration, H. Albrecht *et al.*, "Measurement of exclusive one prong and inclusive three prong branching ratios of the tau lepton," Z. Phys. C53 (1992) 367.
- [15] BABAR Collaboration, B. Aubert et al., "Measurements of Charged Current Lepton Universality and |V(us)| using Tau Lepton Decays to e- nu(e)-bar nu(tau), mu-bar nu(mu)-bar nu(tau), pi- nu(tau) and K- nu(tau)," Phys. Rev. Lett. 105 (2010) 051602, arXiv:0912.0242 [hep-ex].
- [16] CLEO Collaboration, A. Anastassov *et al.*, "Experimental test of lepton universality in tau decay," *Phys. Rev.* D55 (1997) 2559. Erratum ibid. D58, 119903, (1998).
- [17] OPAL Collaboration, G. Abbiendi et al., "A Measurement of the tau- -> e- anti-neutrino(e) neutrino(tau) branching ratio," Phys. Lett. B447 (1999) 134, arXiv:hep-ex/9812017 [hep-ex].
- [18] DELPHI Collaboration, P. Abreu et al., "A Study of the decays of tau leptons produced on the Z resonance at LEP," Z. Phys. C55 (1992) 555.
- [19] L3 Collaboration, M. Acciarri et al., "Measurement of exclusive branching fractions of hadronic one space prong tau decays," *Phys. Lett.* B345 (1995) 93.
- [20] OPAL Collaboration, G. Alexander *et al.*, "Measurement of branching ratios and tau polarization from tau -> e neutrino anti-neutrino, tau -> mu neutrino anti-neutrino, and tau -> pi (K) neutrino decays at LEP," *Phys. Lett.* B266 (1991) 201.
- [21] DELPHI Collaboration, J. Abdallah et al., "A Measurement of the tau hadronic branching ratios," Eur. Phys. J. C46 (2006) 1, arXiv:hep-ex/0603044 [hep-ex].

- [22] OPAL Collaboration, K. Ackerstaff *et al.*, "Measurement of the one prong hadronic tau branching ratios at LEP," *Eur. Phys. J.* C4 (1998) 193, arXiv:hep-ex/9801029 [hep-ex].
- [23] ALEPH Collaboration, R. Barate et al., "One prong tau decays with kaons," Eur. Phys. J. C10 (1999) 1, arXiv:hep-ex/9903014 [hep-ex].
- [24] CLEO Collaboration, M. Battle et al., "Measurement of Cabibbo suppressed decays of the tau lepton," Phys. Rev. Lett. 73 (1994) 1079, arXiv:hep-ph/9403329 [hep-ph].
- [25] DELPHI Collaboration, P. Abreu et al., "Charged kaon production in tau decays at LEP," Phys. Lett. B334 (1994) 435.
- [26] OPAL Collaboration, G. Abbiendi et al., "A Study of one prong tau decays with a charged kaon," Eur. Phys. J. C19 (2001) 653, arXiv:hep-ex/0009017 [hep-ex].
- [27] Belle Collaboration, M. Fujikawa et al., "High-Statistics Study of the tau- -> pi- pi0 nu(tau) Decay," Phys. Rev. D78 (2008) 072006, arXiv:0805.3773 [hep-ex].
- [28] CLEO Collaboration, M. Artuso et al., "A Measurement of the branching fraction Beta (tau+- -> h+- pi0 tau-neutrino)," Phys. Rev. Lett. 72 (1994) 3762, arXiv:hep-ph/9404310 [hep-ph].
- [29] BABAR Collaboration, B. Aubert *et al.*, "Measurement of the $\tau^- \rightarrow K^- \pi^0 \nu_{\tau}$ branching fraction," *Phys. Rev.* D76 (2007) 051104, arXiv:0707.2922 [hep-ex].
- [30] OPAL Collaboration, G. Abbiendi et al., "Measurement of the strange spectral function in hadronic tau decays," Eur. Phys. J. C35 (2004) 437, arXiv:hep-ex/0406007 [hep-ex].
- [31] CLEO Collaboration, M. Procario *et al.*, "Tau decays with one charged particle plus multiple pi0s," *Phys. Rev. Lett.* 70 (1993) 1207.
- [32] OPAL Collaboration, R. Akers et al., "Measurements of the inclusive branching ratios of tau leptons to K0(s) and charged K* (892)," *Phys. Lett.* B339 (1994) 278.
- [33] CLEO Collaboration, T. Coan *et al.*, "Decays of tau leptons to final states containing K(s)0 mesons," *Phys. Rev.* D53 (1996) 6037.
- [34] L3 Collaboration, M. Acciarri et al., "One prong tau decays with neutral kaons," Phys. Lett. B352 (1995) 487.
- [35] OPAL Collaboration, G. Abbiendi et al., "Tau decays with neutral kaons," Eur. Phys. J. C13 (2000) 213, arXiv:hep-ex/9911029 [hep-ex].
- [36] ALEPH Collaboration, R. Barate et al., "Study of tau decays involving kaons, spectral functions and determination of the strange quark mass," Eur. Phys. J. C11 (1999) 599, arXiv:hep-ex/9903015 [hep-ex].
- [37] BABAR Collaboration, J. P. Lees *et al.*, "The branching fraction of $\tau^- \rightarrow \pi^- K_S^0 K_S^0(\pi^0) \nu_{\tau}$ decays," *Phys. Rev.* D86 (2012) 092013, arXiv:1208.0376 [hep-ex].
- [38] CELLO Collaboration, H. Behrend *et al.*, "Tau production and decay with the CELLO detector at PETRA," *Phys. Lett.* B222 (1989) 163.
- [39] L3 Collaboration, B. Adeva et al., "Decay properties of tau leptons measured at the Z0 resonance," Phys. Lett. B265 (1991) 451.
- [40] TPC/Two Gamma Collaboration, H. Aihara *et al.*, "Measurement of τ branching ratios," *Phys. Rev.* D35 (1987) 1553.
- [41] L3 Collaboration, P. Achard *et al.*, "Measurement of the topological branching fractions of the τ lepton at LEP," *Phys. Lett.* B519 (2001) 189, arXiv:hep-ex/0107055 [hep-ex].
- [42] OPAL Collaboration, R. Akers *et al.*, "Measurement of the tau- -> h- h+ h- tau-neutrino and tau- -> h- h+ h- >= 1 pi0 tau-neutrino branching ratios," *Z. Phys.* C68 (1995) 555.
- [43] CLEO Collaboration, R. Balest *et al.*, "Measurements of the decays tau- -> h- h+ h- tau-neutrino and tau--> h- h+ h- pi0 tau-neutrino," *Phys. Rev. Lett.* 75 (1995) 3809.
- [44] BABAR Collaboration, B. Aubert et al., "Exclusive branching fraction measurements of semileptonic tau decays into three charged hadrons, tau- -> phi pi- nu(tau) and tau- -> phi K- nu(tau)," Phys. Rev. Lett. 100 (2008) 011801, arXiv:0707.2981 [hep-ex].

- [45] Belle Collaboration, M. Lee *et al.*, "Measurement of the branching fractions and the invariant mass distributions for $\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$ decays," *Phys. Rev.* D81 (2010) 113007, arXiv:1001.0083 [hep-ex].
- [46] CLEO Collaboration, R. A. Briere et al., "Branching fractions of tau leptons decays to three charged hadrons," Phys. Rev. Lett. 90 (2003) 181802, arXiv:hep-ex/0302028 [hep-ex].
- [47] CLEO Collaboration, K. Edwards et al., "Resonant structure of tau -> three pi pi0 neutrino(tau) and tau -> omega pi neutrino(tau) decays," Phys. Rev. D61 (2000) 072003, arXiv:hep-ex/9908024 [hep-ex].
- [48] CLEO Collaboration, D. Bortoletto et al., "Measurement of the decay tau- -> pi- pi+ pi- 2 pi0 tau-neutrino," Phys. Rev. Lett. 71 (1993) 1791.
- [49] CLEO Collaboration, A. Anastassov et al., "Study of tau decays to six pions and neutrino," Phys. Rev. Lett. 86 (2001) 4467, arXiv:hep-ex/0010025 [hep-ex].
- [50] CLEO Collaboration, S. Richichi et al., "Study of three prong hadronic tau decays with charged kaons," Phys. Rev. D60 (1999) 112002, arXiv:hep-ex/9810026 [hep-ex].
- [51] TPC/Two Gamma Collaboration, D. A. Bauer *et al.*, "Measurement of the kaon content of three prong tau decays," *Phys. Rev.* D50 (1994) 13.
- [52] ALEPH Collaboration, R. Barate *et al.*, "Three prong tau decays with charged kaons," *Eur. Phys. J.* C1 (1998) 65.
- [53] CLEO Collaboration, K. E. Arms et al., "Study of tau decays to four-hadron final states with kaons," Phys. Rev. Lett. 94 (2005) 241802, arXiv:hep-ex/0501042 [hep-ex].
- [54] OPAL Collaboration, G. Abbiendi et al., "A Study of three prong tau decays with charged kaons," Eur. Phys. J. C13 (2000) 197, arXiv:hep-ex/9908013 [hep-ex].
- [55] CLEO Collaboration, D. Gibaut et al., "Study of the five charged pion decay of the tau lepton," Phys. Rev. Lett. 73 (1994) 934.
- [56] B. Bylsma et al., "Limit on tau decay to seven charged particles," Phys. Rev. D35 (1987) 2269.
- [57] ARGUS Collaboration, H. Albrecht *et al.*, "An Improved Upper Limit on the tau-neutrino Mass from the Decay tau- -> pi- pi- pi+ pi+ tau-neutrino," *Phys. Lett.* B202 (1988) 149.
- [58] OPAL Collaboration, K. Ackerstaff et al., "Measurement of tau branching ratios to five charged hadrons," Eur. Phys. J. C8 (1999) 183, arXiv:hep-ex/9808011 [hep-ex].
- [59] ALEPH Collaboration, D. Buskulic et al., "A Study of tau decays involving eta and omega mesons," Z. Phys. C74 (1997) 263.
- [60] Belle Collaboration, K. Inami et al., "Precise measurement of hadronic tau-decays with an eta meson," Phys. Lett. B672 (2009) 209, arXiv:0811.0088 [hep-ex].
- [61] CLEO Collaboration, M. Artuso *et al.*, "Measurement of tau decays involving eta mesons," *Phys. Rev. Lett.* 69 (1992) 3278.
- [62] BABAR Collaboration, P. del Amo Sanchez et al., "Studies of tau- -> eta K-nu and tau- -> eta pi- nu(tau) at BaBar and a search for a second-class current," Phys. Rev. D83 (2011) 032002, arXiv:1011.3917 [hep-ex].
- [63] CLEO Collaboration, J. E. Bartelt *et al.*, "First observation of the decay tau- -> K- eta tau-neutrino," *Phys. Rev. Lett.* 76 (1996) 4119.
- [64] CLEO Collaboration, M. Bishai et al., "First observation of the decay tau- -> K*- eta tau-neutrino," Phys. Rev. Lett. 82 (1999) 281, arXiv:hep-ex/9809012 [hep-ex].
- [65] CLEO Collaboration, P. S. Baringer *et al.*, "Production of eta and omega mesons in tau decay and a search for second class currents," *Phys. Rev. Lett.* 59 (1987) 1993.
- [66] ALEPH Collaboration, D. Buskulic et al., "Tau hadronic branching ratios," Z. Phys. C70 (1996) 579.
- [67] BABAR Collaboration, J. P. Lees et al., "Study of high-multiplicity 3-prong and 5-prong tau decays at BABAR," Phys. Rev. D86 (2012) 092010, arXiv:1209.2734 [hep-ex].
- [68] Belle Collaboration, K. Belous et al., "Measurement of the τ-lepton lifetime at Belle," Phys. Rev. Lett. 112 (2014) 031801, arXiv:1310.8503 [hep-ex].

- [69] W. Marciano and A. Sirlin, "Electroweak Radiative Corrections to tau Decay," Phys. Rev. Lett. 61 (1988) 1815.
- [70] A. Pich, "Precision Tau Physics," Prog. Part. Nucl. Phys. 75 (2014) 41, arXiv:1310.7922 [hep-ph].
- [71] A. Ferroglia, C. Greub, A. Sirlin, and Z. Zhang, "Contributions of the W-boson propagator to μ and τ leptonic decay rates," *Phys. Rev.* D88 (2013) 033012, arXiv:1307.6900 [hep-ph].
- [72] M. Fael, L. Mercolli, and M. Passera, "W-propagator corrections to μ and τ leptonic decays," *Phys. Rev.* D88 (2013) 093011, arXiv:1310.1081 [hep-ph].
- [73] W. J. Marciano and A. Sirlin, "Radiative corrections to $\pi_{\ell 2}$ decays," *Phys. Rev. Lett.* 71 (1993) 3629.
- [74] R. Decker and M. Finkemeier, "Radiative corrections to the decay $\tau \to \pi(K)\nu_{\tau}$," *Phys. Lett.* B334 (1994) 199.
- [75] R. Decker and M. Finkemeier, "Short and long distance effects in the decay $\tau \to \pi \nu_{\tau}(\gamma)$," *Nucl. Phys.* B438 (1995) 17, arXiv:hep-ph/9403385.
- [76] R. Decker and M. Finkemeier, "Radiative corrections to the decay $\tau \to \pi \nu_{\tau}$," *Nucl. Phys. Proc. Suppl.* 40 (1995) 453, arXiv:hep-ph/9411316 [hep-ph].
- [77] M. Davier, A. Hocker, and Z. Zhang, "The Physics of hadronic tau decays," *Rev. Mod. Phys.* 78 (2006) 1043, arXiv:hep-ph/0507078 [hep-ph].
- [78] FlaviaNet working group on kaon decays, M. Antonelli *et al.*, "An Evaluation of |V_{us}| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays," *Eur. Phys. J.* C69 (2010) 399, arXiv:1005.2323 [hep-ph].
- [79] E. Gamiz, M. Jamin, A. Pich, J. Prades, and F. Schwab, "Determination of m(s) and |V(us)| from hadronic tau decays," JHEP 01 (2003) 060, arXiv:hep-ph/0212230 [hep-ph].
- [80] E. Gamiz, M. Jamin, A. Pich, J. Prades, and F. Schwab, "V(us) and m(s) from hadronic tau decays," *Phys. Rev. Lett.* 94 (2005) 011803, arXiv:hep-ph/0408044 [hep-ph].
- [81] E. Gamiz, M. Jamin, A. Pich, J. Prades, and F. Schwab, "|V(us)| and m(s) from hadronic tau decays," Nucl. Phys. Proc. Suppl. 169 (2007) 85, arXiv:hep-ph/0612154.
- [82] E. Gamiz, M. Jamin, A. Pich, J. Prades, and F. Schwab, "Theoretical progress on the Vus determination from tau decays," PoS KAON (2008) 008, arXiv:0709.0282 [hep-ph].
- [83] K. Maltman, "A Critical look at V_{us} determinations from hadronic τ decay data," Nucl. Phys. Proc. Suppl. 218 (2011) 146, arXiv:1011.6391 [hep-ph].
- [84] J. C. Hardy and I. S. Towner, "Superallowed $0^+ \rightarrow 0^+$ nuclear β decays: 2014 critical survey, with precise results for V_{ud} and CKM unitarity," *Phys. Rev.* C91 (2015) 025501, arXiv:1411.5987 [nucl-ex].
- [85] FLAG working group, S. Aoki et al., "Review of lattice results concerning low-energy particle physics," Eur. Phys. J. C77 (2017) 112, arXiv:1607.00299 [hep-lat]. see also http://itpwiki.unibe.ch/flag/.
- [86] V. Cirigliano and H. Neufeld, "A note on isospin violation in Pl2(gamma) decays," *Phys. Lett.* B700 (2011) 7, arXiv:1102.0563 [hep-ph].
- [87] W. J. Marciano, "Precise determination of |V(us)| from lattice calculations of pseudoscalar decay constants," *Phys. Rev. Lett.* 93 (2004) 231803, arXiv:hep-ph/0402299.
- [88] M. Jamin, A. Pich, and J. Portoles, "What can be learned from the Belle spectrum for the decay $\tau^- \rightarrow \nu_\tau K_S \pi^-$," *Phys. Lett.* B664 (2008) 78, arXiv:0803.1786 [hep-ph].
- [89] M. Antonelli, V. Cirigliano, A. Lusiani, and E. Passemar, "Predicting the τ strange branching ratios and implications for V_{us}," JHEP 10 (2013) 070, arXiv:1304.8134 [hep-ph].
- [90] K. Maltman, R. J. Hudspith, R. Lewis, C. E. Wolfe, and J. Zanotti, "A resolution of the inclusive flavor-breaking sum rule τV_{us} puzzle," arXiv:1510.06954 [hep-ph].
- [91] R. J. Hudspith, R. Lewis, K. Maltman, and J. Zanotti, "A resolution of the inclusive flavor-breaking $\tau |V_{us}|$ puzzle," arXiv:1702.01767 [hep-ph].
- [92] BABAR Collaboration, B. Aubert et al., "Searches for Lepton Flavor Violation in the Decays tau+- -> e+gamma and tau+- -> mu+- gamma," Phys. Rev. Lett. 104 (2010) 021802, arXiv:0908.2381 [hep-ex].

- [93] Belle Collaboration, K. Hayasaka et al., "New search for tau -> mu gamma and tau -> e gamma decays at Belle," Phys. Lett. B666 (2008) 16, arXiv:0705.0650 [hep-ex].
- [94] BABAR Collaboration, B. Aubert *et al.*, "Search for Lepton Flavor Violating Decays $\tau^{\pm} \rightarrow \ell^{\pm}\pi^{0}$, $\ell^{\pm}\eta$, $\ell^{\pm}\eta'$," *Phys. Rev. Lett.* 98 (2007) 061803, arXiv:hep-ex/0610067 [hep-ex].
- [95] Belle Collaboration, Y. Miyazaki et al., "Search for lepton flavor violating tau- decays into l- eta, l- eta-prime and l- pi0," Phys. Lett. B648 (2007) 341, arXiv:hep-ex/0703009 [hep-ex].
- [96] BABAR Collaboration, B. Aubert et al., "Search for Lepton Flavor Violating Decays tau -> I- K0(s) with the BABAR Experiment," Phys. Rev. D79 (2009) 012004, arXiv:0812.3804 [hep-ex].
- [97] Belle Collaboration, Y. Miyazaki et al., "Search for Lepton Flavor Violating tau- Decays into l-K0s and l-K0sK0s," Phys. Lett. B692 (2010) 4, arXiv:1003.1183 [hep-ex].
- [98] BABAR Collaboration, B. Aubert et al., "Improved limits on lepton flavor violating tau decays to I phi, I rho, I K* and I anti-K*," Phys. Rev. Lett. 103 (2009) 021801, arXiv:0904.0339 [hep-ex].
- [99] Belle Collaboration, Y. Miyazaki, "Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson," *Phys. Lett.* B699 (2011) 251, arXiv:1101.0755 [hep-ex].
- [100] BABAR Collaboration, B. Aubert et al., "Search for lepton flavor violating decays tau+- -> l+- omega (l = e, mu)," Phys. Rev. Lett. 100 (2008) 071802, arXiv:0711.0980 [hep-ex].
- [101] Belle Collaboration, Y. Miyazaki et al., "Search for Lepton-Flavor-Violating tau Decays into Lepton and f0(980) Meson," Phys. Lett. B672 (2009) 317, arXiv:0810.3519 [hep-ex].
- [102] BABAR Collaboration, J. P. Lees et al., "Limits on tau Lepton-Flavor Violating Decays in three charged leptons," Phys. Rev. D81 (2010) 111101, arXiv:1002.4550 [hep-ex].
- [103] Belle Collaboration, K. Hayasaka et al., "Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs," Phys. Lett. B687 (2010) 139, arXiv:1001.3221 [hep-ex].
- [104] ATLAS Collaboration, G. Aad *et al.*, "Probing lepton flavour violation via neutrinoless $\tau \rightarrow 3\mu$ decays with the ATLAS detector," *Eur. Phys. J.* C76 (2016) 232, arXiv:1601.03567 [hep-ex].
- [105] LHCb Collaboration, R. Aaij *et al.*, "Search for the lepton flavour violating decay $\tau^- \rightarrow \mu^- \mu^+ \mu^-$," *JHEP* 02 (2015) 121, arXiv:1409.8548 [hep-ex].
- [106] BABAR Collaboration, B. Aubert *et al.*, "Search for lepton-flavor and lepton-number violation in the decay $\tau^- \rightarrow \ell^{\mp} h^{\pm} h'^-$," *Phys. Rev. Lett.* 95 (2005) 191801, arXiv:hep-ex/0506066 [hep-ex].
- [107] Belle Collaboration, Y. Miyazaki *et al.*, "Search for Lepton-Flavor-Violating and Lepton-Number-Violating $\tau \rightarrow \ell h h'$ Decay Modes," *Phys. Lett.* B719 (2013) 346, arXiv:1206.5595 [hep-ex].
- [108] Belle Collaboration, Y. Miyazaki *et al.*, "Search for lepton and baryon number violating tau- decays into anti-Lambda pi- and Lambda pi-," *Phys. Lett.* B632 (2006) 51, arXiv:hep-ex/0508044 [hep-ex].
- [109] LHCb Collaboration, R. Aaij et al., "Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb," *Phys. Lett.* B724 (2013) 36, arXiv:1304.4518 [hep-ex].
- [110] A. L. Read, "Presentation of search results: The CL(s) technique," J. Phys. G28 (2002) 2693.
- [111] S. Banerjee, B. Pietrzyk, J. M. Roney, and Z. Was, "Tau and muon pair production cross-sections in electronpositron annihilations at \sqrt{s} = 10.58 GeV," Phys. Rev. D77 (2008) 054012, arXiv:0706.3235 [hep-ph].
- [112] CDF Collaboration, T. Junk, "Sensitivity, Exclusion and Discovery with Small Signals, Large Backgrounds, and Large Systematic Uncertainties." CDF note 8128, 2007.