Previous

HFLAV-Tau 2018 Report

Next

2  Branching fraction fit

A fit of the available experimental measurements is used to determine the τ branching fractions, together with their uncertainties and correlations.

All relevant published statistical and systematic correlations among the measurements are used. In addition, for a selection of measurements, particularly the most precise and the most recent ones, the documented systematic uncertainty contributions are examined to consider systematic dependencies from external parameters. We use the standard HFLAV procedures to account for the updated values and uncertainties of the external parameters and for the correlations induced on different measurements with a systematic dependence from the same external parameter.

Both the measurements and the fitted quantities consist of either τ decay branching fractions, labelled as Bi, or ratios of two τ decay branching fractions, labelled as Bi/ Bj. Some branching fractions are sums of other branching fractions, for instance B8 = B(τ→h ντ) is the sum of B9 = B(τ→π ντ) and B10 = B(τ→K ντ). The symbol h is used to mean either a π or a K. The fit χ2 is minimized while respecting a list of constraints on the fitted quantities:

In some cases, constraints describe approximate relations that nevertheless hold within the present experimental precision. For instance, the constraint B(τ→K K K+ ντ) = B(τ→K φ ντ) × B(φ→ K+K) is justified within the current experimental evidence. Section 2.7 lists all equations relating one quantity to other quantities.

2.1  Technical implementation of the fit procedure

The fit computes the quantities qi by minimizing a χ2 while respecting a series of equality constraints on the qi. The χ2 is computed using the measurements xi and their covariance matrix Vij as

     
χ2 = (xi − Aikqk)t Vij−1 (xj − Ajlql) ,               (1)

where the model matrix Aij is used to get the vector of the predicted measurements xi from the vector of the fit parameters qj as xi= Aijqj. In this particular implementation, the measurements are grouped according to the measured quantity, and all quantities with at least one measurement correspond to a fit parameter. Therefore, the matrix Aij has one row per measurement xi and one column per fitted quantity qj, with unity coefficients for the rows and column that identify a measurement xi of the quantity qj. In summary, the χ2 given in Eq. (1) is minimized subject to the constraints

     
  fr(qs) − cr = 0 ,                (2)

where Eq. (2) corresponds to the constraint equations, written as a set of “constraint expressions” that are equated to zero. Using the method of Lagrange multipliers, a set of equations is obtained by taking the derivatives with respect to the fitted quantities qk and the Lagrange multipliers λr of the sum of the χ2 and the constraint expressions multiplied by the Lagrange multipliers λr, one for each constraint:

     
 
min 
h = (Aikqk − xi)t Vij−1 (Ajlql − xj) + 2λr(fr(qs) − cr
 
            (3)
 (∂/∂ qk, ∂/∂ λr)   h = 0 .               (4)

Equation (4) defines a set of equations for the vector of the unknowns (qk, λr), some of which may be non-linear, in case of non-linear constraints. An iterative minimization procedure approximates at each step the non-linear constraint expressions by their first order Taylor expansion around the current values of the fitted quantities, qs:

     
fr(qs) − cr ≃ fr(
q
s) + 
∂ fr(qs)
∂ qs



 



q
s
 (qs − 
q
s) − cr ,  
             (5)

which can be written as

     
Brs qs − cr ,                (6)

where cr are the resulting constant known terms, independent of qs at first order. After linearization, the differentiation by qk and λr is trivial and leads to a set of linear equations

     
 Akit Vij−1 Ajl ql + Bkrt λr =  Akit Vij−1 xj               (7)
 Brs qs = cr ,               (8)

which can be expressed as:

     
Fij uj = vi ,                (9)

where uj = (qk, λr) and vi is the vector of the known constant terms running over the index k and then r in the right terms of Eq. (7) and Eq. (8). Solving the equation set in Eq. (9) gives the fitted quantities and their covariance matrix, using the measurements and their covariance matrix. The fit procedure starts by computing the linear approximation of the non-linear constraint expressions around the quantities seed values. With an iterative procedure, the unknowns are updated at each step by solving the equations and the equations are then linearized around the updated values, until the RMS average of relative variation of the fitted unknowns is reduced below 10−12.

2.2  Fit results

Although the fit treats all quantities in the same way, for the purpose of describing the results we select a set of 47 “basis quantities” from which all remaining quantities can be calculated using the definitions listed in Section 2.7.

The fit output consists of 136 fitted quantities that correspond to either branching fractions or ratios of branching fractions. The fitted quantities values and uncertainties are listed in Table 1. The off-diagonal correlation terms between the basis quantities are listed in Section 2.6.

Furthermore we define (see Section 2.7) B110 = BXs ντ), the total branching fraction of the τ decays to final states with the strangeness quantum number equal to one, and BAll, the branching fraction of the τ into any measured final state, which should be equal to 1 within the experimental uncertainty. We define the unitarity residual as B998 = 1 − BAll.

The fit has χ2/d.o.f. = 142/129, corresponding to a confidence level CL = 20.13%. We use a total of 176 measurements to fit the above mentioned 136 quantities subjected to 89 constraints. Although the unitarity constraint is not applied, the fit is statistically consistent with unitarity, where the residual is B998 = 1 − BAll = (0.0274 ± 0.1026) · 10−2.

A scale factor of 5.44 has been applied to the published uncertainties of the two severely inconsistent measurements of B96 = τ → KKKν by BaBar and Belle. The scale factor has been determined using the PDG procedure, i.e., to the proper size in order to obtain a reduced χ2 equal to 1 when fitting just the two B96 measurements.

2.3  Changes with respect to the previous report

The following changes have been introduced with respect to the previous HFLAV report [2].

We added the BaBar 2018 result [3] for the τ branching fraction


 B37 = K K0 ντ
( 14.78 ± 0.22 ± 0.40 ) · 10 −4  ,

and the 2018 BaBar preliminary results [4] for the τ branching fractions


 B10 = K ντ
( 7.17 ± 0.031 ± 0.21 ) · 10 −3
 B16 = K π0 ντ
( 5.05 ± 0.02 ± 0.15 ) · 10 −3
 B23 = K 2π0 ντ (ex. K0)
( 6.15 ± 0.12 ± 0.34 ) · 10 −4
 B27 = π 3π0 ντ (ex. K0)
( 1.168 ± 0.006 ± 0.038 ) · 10 −2
 B28 = K 3π0 ντ (ex. K0,η)
( 1.25 ± 0.16 ± 0.24 ) · 10 −4
 B809 = π 4π0 ντ (ex.  K0, η)
( 9.02 ± 0.40 ± 0.65 ) · 10 −4  .

The above B16 result supersedes the previous BaBar result in Ref. [5].

The parameters used to update the measurements’ systematic biases and the parameters appearing in the constraint equations in Section 2.7 have been updated to the PDG 2018 averages [6].

2.4  Differences between the HFLAV 2018 fit and the PDG 2018 fit

As is standard for the PDG branching fraction fits, the PDG 2018 τ branching fraction fit is unitarity constrained, while the HFLAV 2018 fit is unconstrained.

The HFLAV-Tau fit uses an elaboration of the measurements reported on the main ALEPH paper on τ branching fractions [7] to obtain branching fractions to inclusive final states with “hadrons” (where a hadron is either a pion or a kaon), since this set of results is closer to the actual experimental measurements and facilitates a more appropriate and comprehensive treatment of the experimental results correlations. The PDG 2018 fit on the other hand continues to use – as in the past editions – the published ALEPH measurements of branching fractions to esclusive final states with pions [7].

As in 2016, HFLAV uses the ALEPH estimate for B805 = B(τ→a1 (→ π γ) ντ), which is not a direct measurement, and the PDG 2018 fit uses the PDG average of B(a1→πγ) as a parameter and defines B805 = B(a1→πγ)× B(τ → 3π ν). As a consequence, the PDG fit procedure does not take into account the large uncertainty on B(a1→πγ), resulting in an underestimated fit uncertainty on B805. Therefore, in this case an appropriate correction has been applied after the fit.

Finally, the HFLAV 2018 τ branching fraction fit includes measurements that appeared after the deadline for inclusion in the PDG, and preliminary measurements that are not included in the PDG.

2.5  Branching ratio fit results and experimental inputs

Table 1 reports the τ branching ratio fit results and experimental inputs.


Table 1: HFLAV 2018 branching fractions fit results.
τ lepton branching fractionExperimentReference
 
 B1 = (particles) ≥ 0  neutrals ≥ 0   K0  ντ
  
0.8521 ± 0.0011average 
 B2 = (particles) ≥ 0  neutrals ≥ 0   KL0  ντ
  
0.8455 ± 0.0010average 
 B3 = µ νµντ
  
0.17392 ± 0.00039average 
0.17319 ± 0.00070 ± 0.00032ALEPH[7]
0.17325 ± 0.00095 ± 0.00077DELPHI[8]
0.17342 ± 0.00110 ± 0.00067L3[9]
0.17340 ± 0.00090 ± 0.00060OPAL[10]
 B3
 B5
 = 
µ νµντ
e νe ντ
  
0.9761 ± 0.0028average 
0.9970 ± 0.0350 ± 0.0400ARGUS[11]
0.9796 ± 0.0016 ± 0.0036BaBar[12]
0.9777 ± 0.0063 ± 0.0087CLEO[13]
 B5 = e νe ντ
  
0.17817 ± 0.00041average 
0.17837 ± 0.00072 ± 0.00036ALEPH[7]
0.17760 ± 0.00060 ± 0.00170CLEO[13]
0.17877 ± 0.00109 ± 0.00110DELPHI[8]
0.17806 ± 0.00104 ± 0.00076L3[9]
0.17810 ± 0.00090 ± 0.00060OPAL[14]
 B7 = h ≥ 0   KL0  ντ
  
0.12019 ± 0.00053average 
0.12400 ± 0.00700 ± 0.00700DELPHI[15]
0.12470 ± 0.00260 ± 0.00430L3[16]
0.12100 ± 0.00700 ± 0.00500OPAL[17]
 B8 = h ντ
  
0.11502 ± 0.00053average 
0.11524 ± 0.00070 ± 0.00078ALEPH[7]
0.11520 ± 0.00050 ± 0.00120CLEO[13]
0.11571 ± 0.00120 ± 0.00114DELPHI[18]
0.11980 ± 0.00130 ± 0.00160OPAL[19]
 B8
 B5
 = 
h ντ
e νe ντ
  
0.6456 ± 0.0033average 
 B9 = π ντ
  
0.10804 ± 0.00052average 
 B9
 B5
 = 
π ντ
e νe ντ
  
0.6064 ± 0.0032average 
0.5945 ± 0.0014 ± 0.0061BaBar[12]
 B10 = K ντ
  
(0.6986 ± 0.0085) · 10−2average 
(0.6960 ± 0.0250 ± 0.0140) · 10−2 ALEPH[20]
(0.7170 ± 0.0031 ± 0.0210) · 10−2 BaBar[4]
(0.6600 ± 0.0700 ± 0.0900) · 10−2 CLEO[21]
(0.8500 ± 0.1800 ± 0.0000) · 10−2 DELPHI[22]
(0.6580 ± 0.0270 ± 0.0290) · 10−2 OPAL[23]
 B10
 B5
 = 
K ντ
e νe ντ
  
(3.921 ± 0.048) · 10−2average 
(3.882 ± 0.032 ± 0.057) · 10−2 BaBar[12]
 B10
 B9
 = 
K ντ
π ντ
  
(6.467 ± 0.084) · 10−2average 
 B11 = h ≥ 1   neutrals  ντ
  
0.36996 ± 0.00094average 
 B12 = h ≥ 1  π0  ντ (ex.  K0)
  
0.36495 ± 0.00094average 
 B13 = h π0 ντ
  
0.25938 ± 0.00090average 
0.25924 ± 0.00097 ± 0.00085ALEPH[7]
0.25670 ± 0.00010 ± 0.00390Belle[24]
0.25870 ± 0.00120 ± 0.00420CLEO[25]
0.25740 ± 0.00201 ± 0.00138DELPHI[18]
0.25050 ± 0.00350 ± 0.00500L3[16]
0.25890 ± 0.00170 ± 0.00290OPAL[19]
 B14 = π π0 ντ
  
0.25447 ± 0.00091average 
 B16 = K π0 ντ
  
(0.4904 ± 0.0092) · 10−2average 
(0.4440 ± 0.0260 ± 0.0240) · 10−2 ALEPH[20]
(0.5050 ± 0.0020 ± 0.0150) · 10−2 BaBar[4]
(0.5100 ± 0.1000 ± 0.0700) · 10−2 CLEO[21]
(0.4710 ± 0.0590 ± 0.0230) · 10−2 OPAL[26]
 B17 = h ≥ 2   π0  ντ
  
0.10793 ± 0.00091average 
0.09910 ± 0.00310 ± 0.00270OPAL[19]
 B18 = h 2π0 ντ
  
(9.421 ± 0.092) · 10−2average 
 B19 = h 2π0 ντ (ex.  K0)
  
(9.270 ± 0.092) · 10−2average 
(9.295 ± 0.084 ± 0.088) · 10−2 ALEPH[7]
(9.498 ± 0.320 ± 0.275) · 10−2 DELPHI[18]
(8.880 ± 0.370 ± 0.420) · 10−2 L3[16]
 B19
 B13
 = 
h 2π0 ντ (ex.  K0)
h π0 ντ
  
0.3574 ± 0.0042average 
0.3420 ± 0.0060 ± 0.0160CLEO[27]
 B20 = π 2π0 ντ (ex. K0)
  
(9.211 ± 0.092) · 10−2average 
 B23 = K 2π0 ντ (ex. K0)
  
(0.0585 ± 0.0027) · 10−2average 
(0.0560 ± 0.0200 ± 0.0150) · 10−2 ALEPH[20]
(0.0615 ± 0.0012 ± 0.0034) · 10−2 BaBar[4]
(0.0900 ± 0.1000 ± 0.0300) · 10−2 CLEO[21]
 B24 = h ≥ 3  π0  ντ
  
(1.372 ± 0.034) · 10−2average 
 B25 = h ≥ 3  π0  ντ (ex.  K0)
  
(1.288 ± 0.034) · 10−2average 
(1.403 ± 0.214 ± 0.224) · 10−2 DELPHI[18]
 B26 = h 3π0 ντ
  
(1.236 ± 0.030) · 10−2average 
(1.082 ± 0.071 ± 0.059) · 10−2 ALEPH[7]
(1.700 ± 0.240 ± 0.380) · 10−2 L3[16]
 B26
 B13
 = 
h 3π0 ντ
h π0 ντ
  
(4.764 ± 0.118) · 10−2average 
(4.400 ± 0.300 ± 0.500) · 10−2 CLEO[27]
 B27 = π 3π0 ντ (ex. K0)
  
(1.1381 ± 0.0292) · 10−2average 
(1.1680 ± 0.0060 ± 0.0380) · 10−2 BaBar[4]
 B28 = K 3π0 ντ (ex. K0,η)
  
(1.127 ± 0.263) · 10−4average 
(3.700 ± 2.100 ± 1.100) · 10−4 ALEPH[20]
(1.250 ± 0.160 ± 0.240) · 10−4 BaBar[4]
 B29 = h 4π0 ντ (ex.  K0)
  
(0.1333 ± 0.0071) · 10−2average 
(0.1600 ± 0.0500 ± 0.0500) · 10−2 CLEO[27]
 B30 = h 4π0 ντ (ex. K0,η)
  
(0.0864 ± 0.0067) · 10−2average 
(0.1120 ± 0.0370 ± 0.0350) · 10−2 ALEPH[7]
 B31 = K ≥ 0  π0 ≥ 0  K0 ≥ 0  γ ντ
  
(1.568 ± 0.018) · 10−2average 
(1.700 ± 0.120 ± 0.190) · 10−2 CLEO[21]
(1.540 ± 0.240 ± 0.000) · 10−2 DELPHI[22]
(1.528 ± 0.039 ± 0.040) · 10−2 OPAL[23]
 B32 = K ≥ 1  (π0 or K0 or γ) ντ
  
(0.8729 ± 0.0141) · 10−2average 
 B33 = KS0 (particles) ντ
  
(0.9366 ± 0.0292) · 10−2average 
(0.9700 ± 0.0580 ± 0.0620) · 10−2 ALEPH[28]
(0.9700 ± 0.0900 ± 0.0600) · 10−2 OPAL[29]
 B34 = h K0 ντ
  
(0.9860 ± 0.0138) · 10−2average 
(0.8550 ± 0.0360 ± 0.0730) · 10−2 CLEO[30]
 B35 = π K0 ντ
  
(0.8378 ± 0.0139) · 10−2average 
(0.9280 ± 0.0450 ± 0.0340) · 10−2 ALEPH[20]
(0.8320 ± 0.0025 ± 0.0150) · 10−2 Belle[31]
(0.9500 ± 0.1500 ± 0.0600) · 10−2 L3[32]
(0.9330 ± 0.0680 ± 0.0490) · 10−2 OPAL[33]
 B37 = K K0 ντ
  
(0.1483 ± 0.0034) · 10−2average 
(0.1580 ± 0.0420 ± 0.0170) · 10−2 ALEPH[28]
(0.1620 ± 0.0210 ± 0.0110) · 10−2 ALEPH[20]
(0.1478 ± 0.0022 ± 0.0040) · 10−2 BaBar[3]
(0.1480 ± 0.0013 ± 0.0055) · 10−2 Belle[31]
(0.1510 ± 0.0210 ± 0.0220) · 10−2 CLEO[30]
 B38 = K K0 ≥ 0   π0  ντ
  
(0.2977 ± 0.0073) · 10−2average 
(0.3300 ± 0.0550 ± 0.0390) · 10−2 OPAL[33]
 B39 = h K0 π0 ντ
  
(0.5302 ± 0.0134) · 10−2average 
(0.5620 ± 0.0500 ± 0.0480) · 10−2 CLEO[30]
 B40 = π K0 π0 ντ
  
(0.3807 ± 0.0129) · 10−2average 
(0.2940 ± 0.0730 ± 0.0370) · 10−2 ALEPH[28]
(0.3470 ± 0.0530 ± 0.0370) · 10−2 ALEPH[20]
(0.3860 ± 0.0031 ± 0.0135) · 10−2 Belle[31]
(0.4100 ± 0.1200 ± 0.0300) · 10−2 L3[32]
 B42 = K π0 K0 ντ
  
(0.1494 ± 0.0070) · 10−2average 
(0.1520 ± 0.0760 ± 0.0210) · 10−2 ALEPH[28]
(0.1430 ± 0.0250 ± 0.0150) · 10−2 ALEPH[20]
(0.1496 ± 0.0019 ± 0.0073) · 10−2 Belle[31]
(0.1450 ± 0.0360 ± 0.0200) · 10−2 CLEO[30]
 B43 = π K0 ≥ 1   π0  ντ
  
(0.4042 ± 0.0260) · 10−2average 
(0.3240 ± 0.0740 ± 0.0660) · 10−2 OPAL[33]
 B44 = π K0 2π0 ντ (ex. K0)
  
(2.346 ± 2.306) · 10−4average 
(2.600 ± 2.400 ± 0.000) · 10−4 ALEPH[34]
 B46 = π K0 K0 ντ
  
(0.1516 ± 0.0247) · 10−2average 
 B47 = π KS0 KS0 ντ
  
(2.342 ± 0.065) · 10−4average 
(2.600 ± 1.000 ± 0.500) · 10−4 ALEPH[28]
(2.310 ± 0.040 ± 0.080) · 10−4 BaBar[35]
(2.330 ± 0.033 ± 0.093) · 10−4 Belle[31]
(2.300 ± 0.500 ± 0.300) · 10−4 CLEO[30]
 B48 = π KS0 KL0 ντ
  
(0.1048 ± 0.0247) · 10−2average 
(0.1010 ± 0.0230 ± 0.0130) · 10−2 ALEPH[28]
 B49 = π K0 K0 π0 ντ
  
(3.543 ± 1.193) · 10−4average 
 B50 = π π0 KS0 KS0 ντ
  
(1.816 ± 0.207) · 10−5average 
(1.600 ± 0.200 ± 0.220) · 10−5 BaBar[35]
(2.000 ± 0.216 ± 0.202) · 10−5 Belle[31]
 B51 = π π0 KS0 KL0 ντ
  
(3.179 ± 1.192) · 10−4average 
(3.100 ± 1.100 ± 0.500) · 10−4 ALEPH[28]
 B53 = K0 h h h+ ντ
  
(2.220 ± 2.024) · 10−4average 
(2.300 ± 1.900 ± 0.700) · 10−4 ALEPH[28]
 B54 = h h h+ ≥ 0  neutrals ≥ 0   KL0  ντ
  
0.15206 ± 0.00061average 
0.15000 ± 0.00400 ± 0.00300CELLO[36]
0.14400 ± 0.00600 ± 0.00300L3[37]
0.15100 ± 0.00800 ± 0.00600TPC[38]
 B55 = h h h+ ≥ 0   neutrals  ντ (ex.  K0)
  
0.14558 ± 0.00056average 
0.14556 ± 0.00105 ± 0.00076L3[39]
0.14960 ± 0.00090 ± 0.00220OPAL[40]
 B56 = h h h+ ντ
  
(9.769 ± 0.053) · 10−2average 
 B57 = h h h+ ντ (ex.  K0)
  
(9.428 ± 0.053) · 10−2average 
(9.510 ± 0.070 ± 0.200) · 10−2 CLEO[41]
(9.317 ± 0.090 ± 0.082) · 10−2 DELPHI[18]
 B57
 B55
 = 
h h h+ ντ (ex.  K0)
h h h+ ≥ 0   neutrals  ντ (ex.  K0)
  
0.6476 ± 0.0029average 
0.6600 ± 0.0040 ± 0.0140OPAL[40]
 B58 = h h h+ ντ (ex.  K0, ω)
  
(9.397 ± 0.053) · 10−2average 
(9.469 ± 0.062 ± 0.073) · 10−2 ALEPH[7]
 B59 = π π+ π ντ
  
(9.279 ± 0.051) · 10−2average 
 B60 = π π+ π ντ (ex.  K0)
  
(8.990 ± 0.051) · 10−2average 
(8.830 ± 0.010 ± 0.130) · 10−2 BaBar[42]
(8.420 ± 0.000 −0.250+0.260) · 10−2 Belle[43]
(9.130 ± 0.050 ± 0.460) · 10−2 CLEO3[44]
 B62 = π π π+ ντ (ex. K0,ω)
  
(8.960 ± 0.051) · 10−2average 
 B63 = h h h+ ≥ 1   neutrals  ντ
  
(5.327 ± 0.049) · 10−2average 
 B64 = h h h+ ≥ 1   π0  ντ (ex.  K0)
  
(5.122 ± 0.049) · 10−2average 
 B65 = h h h+ π0 ντ
  
(4.791 ± 0.052) · 10−2average 
 B66 = h h h+ π0 ντ (ex.  K0)
  
(4.607 ± 0.051) · 10−2average 
(4.734 ± 0.059 ± 0.049) · 10−2 ALEPH[7]
(4.230 ± 0.060 ± 0.220) · 10−2 CLEO[41]
(4.545 ± 0.106 ± 0.103) · 10−2 DELPHI[18]
 B67 = h h h+ π0 ντ (ex.  K0, ω)
  
(2.821 ± 0.070) · 10−2average 
 B68 = π π+ π π0 ντ
  
(4.652 ± 0.053) · 10−2average 
 B69 = π π+ π π0 ντ (ex.  K0)
  
(4.520 ± 0.052) · 10−2average 
(4.190 ± 0.100 ± 0.210) · 10−2 CLEO[45]
 B70 = π π π+ π0 ντ (ex. K0,ω)
  
(2.770 ± 0.071) · 10−2average 
 B74 = h h h+ ≥ 2  π0  ντ (ex.  K0)
  
(0.5148 ± 0.0311) · 10−2average 
(0.5610 ± 0.0680 ± 0.0950) · 10−2 DELPHI[18]
 B75 = h h h+ 2π0 ντ
  
(0.5037 ± 0.0309) · 10−2average 
 B76 = h h h+ 2π0 ντ (ex.  K0)
  
(0.4937 ± 0.0309) · 10−2average 
(0.4350 ± 0.0300 ± 0.0350) · 10−2 ALEPH[7]
 B76
 B54
 = 
h h h+ 2π0 ντ (ex.  K0)
h h h+ ≥ 0  neutrals ≥ 0   KL0  ντ
  
(3.247 ± 0.202) · 10−2average 
(3.400 ± 0.200 ± 0.300) · 10−2 CLEO[46]
 B77 = h h h+ 2π0 ντ (ex. K0,ω,η)
  
(9.812 ± 3.555) · 10−4average 
 B78 = h h h+ 3π0 ντ
  
(2.114 ± 0.299) · 10−4average 
(2.200 ± 0.300 ± 0.400) · 10−4 CLEO[47]
 B79 = K h h+ ≥ 0   neutrals  ντ
  
(0.6293 ± 0.0140) · 10−2average 
 B80 = K π h+ ντ (ex.  K0)
  
(0.4361 ± 0.0072) · 10−2average 
 B80
 B60
 = 
K π h+ ντ (ex.  K0)
π π+ π ντ (ex.  K0)
  
(4.851 ± 0.080) · 10−2average 
(5.440 ± 0.210 ± 0.530) · 10−2 CLEO[48]
 B81 = K π h+ π0 ντ (ex.  K0)
  
(8.727 ± 1.177) · 10−4average 
 B81
 B69
 = 
K π h+ π0 ντ (ex.  K0)
π π+ π π0 ντ (ex.  K0)
  
(1.931 ± 0.266) · 10−2average 
(2.610 ± 0.450 ± 0.420) · 10−2 CLEO[48]
 B82 = K π π+ ≥ 0   neutrals  ντ
  
(0.4779 ± 0.0137) · 10−2average 
(0.5800 −0.1300+0.1500 ± 0.1200) · 10−2 TPC[49]
 B83 = K π π+ ≥ 0   π0  ντ (ex.  K0)
  
(0.3741 ± 0.0135) · 10−2average 
 B84 = K π π+ ντ
  
(0.3442 ± 0.0068) · 10−2average 
 B85 = K π+ π ντ (ex.  K0)
  
(0.2929 ± 0.0067) · 10−2average 
(0.2140 ± 0.0370 ± 0.0290) · 10−2 ALEPH[50]
(0.2730 ± 0.0020 ± 0.0090) · 10−2 BaBar[42]
(0.3300 ± 0.0010 −0.0170+0.0160) · 10−2 Belle[43]
(0.3840 ± 0.0140 ± 0.0380) · 10−2 CLEO3[44]
(0.4150 ± 0.0530 ± 0.0400) · 10−2 OPAL[26]
 B85
 B60
 = 
K π+ π ντ (ex. K0)
π π+ π ντ (ex. K0)
  
(3.258 ± 0.074) · 10−2average 
 B87 = K π π+ π0 ντ
  
(0.1329 ± 0.0119) · 10−2average 
 B88 = K π π+ π0 ντ (ex.  K0)
  
(8.116 ± 1.168) · 10−4average 
(6.100 ± 3.900 ± 1.800) · 10−4 ALEPH[50]
(7.400 ± 0.800 ± 1.100) · 10−4 CLEO3[51]
 B89 = K π π+ π0 ντ (ex.  K0, η)
  
(7.762 ± 1.168) · 10−4average 
 B92 = π K K+ ≥ 0   neutrals  ντ
  
(0.1493 ± 0.0033) · 10−2average 
(0.1590 ± 0.0530 ± 0.0200) · 10−2 OPAL[52]
(0.1500 −0.0700+0.0900 ± 0.0300) · 10−2 TPC[49]
 B93 = π K K+ ντ
  
(0.1431 ± 0.0027) · 10−2average 
(0.1630 ± 0.0210 ± 0.0170) · 10−2 ALEPH[50]
(0.1346 ± 0.0010 ± 0.0036) · 10−2 BaBar[42]
(0.1550 ± 0.0010 −0.0050+0.0060) · 10−2 Belle[43]
(0.1550 ± 0.0060 ± 0.0090) · 10−2 CLEO3[44]
 B93
 B60
 = 
π K K+ ντ
π π+ π ντ (ex.  K0)
  
(1.592 ± 0.030) · 10−2average 
(1.600 ± 0.150 ± 0.300) · 10−2 CLEO[48]
 B94 = π K K+ π0 ντ
  
(0.611 ± 0.183) · 10−4average 
(7.500 ± 2.900 ± 1.500) · 10−4 ALEPH[50]
(0.550 ± 0.140 ± 0.120) · 10−4 CLEO3[51]
 B94
 B69
 = 
π K K+ π0 ντ
π π+ π π0 ντ (ex.  K0)
  
(0.1353 ± 0.0405) · 10−2average 
(0.7900 ± 0.4400 ± 0.1600) · 10−2 CLEO[48]
 B96 = K K K+ ντ
  
(2.169 ± 0.800) · 10−5average 
(1.578 ± 0.130 ± 0.123) · 10−5 BaBar[42]
(3.290 ± 0.170 −0.200+0.190) · 10−5 Belle[43]
 B102 = 3h 2h+ ≥ 0   neutrals  ντ (ex.  K0)
  
(0.0990 ± 0.0037) · 10−2average 
(0.0970 ± 0.0050 ± 0.0110) · 10−2 CLEO[53]
(0.1020 ± 0.0290 ± 0.0000) · 10−2 HRS[54]
(0.1700 ± 0.0220 ± 0.0260) · 10−2 L3[39]
 B103 = 3h 2h+ ντ (ex. K0)
  
(8.260 ± 0.314) · 10−4average 
(7.200 ± 0.900 ± 1.200) · 10−4 ALEPH[7]
(6.400 ± 2.300 ± 1.000) · 10−4 ARGUS[55]
(7.700 ± 0.500 ± 0.900) · 10−4 CLEO[53]
(9.700 ± 1.500 ± 0.500) · 10−4 DELPHI[18]
(5.100 ± 2.000 ± 0.000) · 10−4 HRS[54]
(9.100 ± 1.400 ± 0.600) · 10−4 OPAL[56]
 B104 = 3h 2h+ π0 ντ (ex. K0)
  
(1.641 ± 0.114) · 10−4average 
(2.100 ± 0.700 ± 0.900) · 10−4 ALEPH[7]
(1.700 ± 0.200 ± 0.200) · 10−4 CLEO[47]
(1.600 ± 1.200 ± 0.600) · 10−4 DELPHI[18]
(2.700 ± 1.800 ± 0.900) · 10−4 OPAL[56]
 B106 = (5π) ντ
  
(0.7532 ± 0.0356) · 10−2average 
 B110 = Xs ντ
  
(2.931 ± 0.041) · 10−2average 
 B126 = π π0 η ντ
  
(0.1386 ± 0.0072) · 10−2average 
(0.1800 ± 0.0400 ± 0.0200) · 10−2 ALEPH[57]
(0.1350 ± 0.0030 ± 0.0070) · 10−2 Belle[58]
(0.1700 ± 0.0200 ± 0.0200) · 10−2 CLEO[59]
 B128 = K η ντ
  
(1.543 ± 0.080) · 10−4average 
(2.900 −1.200+1.300 ± 0.700) · 10−4 ALEPH[57]
(1.420 ± 0.110 ± 0.070) · 10−4 BaBar[60]
(1.580 ± 0.050 ± 0.090) · 10−4 Belle[58]
(2.600 ± 0.500 ± 0.500) · 10−4 CLEO[61]
 B130 = K π0 η ντ
  
(0.483 ± 0.116) · 10−4average 
(0.460 ± 0.110 ± 0.040) · 10−4 Belle[58]
(1.770 ± 0.560 ± 0.710) · 10−4 CLEO[62]
 B132 = π K0 η ντ
  
(0.936 ± 0.149) · 10−4average 
(0.880 ± 0.140 ± 0.060) · 10−4 Belle[58]
(2.200 ± 0.700 ± 0.220) · 10−4 CLEO[62]
 B136 = π π+ π η ντ (ex.  K0)
  
(2.196 ± 0.129) · 10−4average 
 B149 = h ω ≥ 0   neutrals  ντ
  
(2.402 ± 0.075) · 10−2average 
 B150 = h ω ντ
  
(1.996 ± 0.064) · 10−2average 
(1.910 ± 0.070 ± 0.060) · 10−2 ALEPH[57]
(1.600 ± 0.270 ± 0.410) · 10−2 CLEO[63]
 B150
 B66
 = 
h ω ντ
h h h+ π0 ντ (ex.  K0)
  
0.4331 ± 0.0139average 
0.4310 ± 0.0330 ± 0.0000ALEPH[64]
0.4640 ± 0.0160 ± 0.0170CLEO[41]
 B151 = K ω ντ
  
(4.100 ± 0.922) · 10−4average 
(4.100 ± 0.600 ± 0.700) · 10−4 CLEO3[51]
 B152 = h π0 ω ντ
  
(0.4066 ± 0.0419) · 10−2average 
(0.4300 ± 0.0600 ± 0.0500) · 10−2 ALEPH[57]
 B152
 B54
 = 
h ω π0 ντ
h h h+ ≥ 0  neutrals ≥ 0   KL0  ντ
  
(2.674 ± 0.275) · 10−2average 
 B152
 B76
 = 
h ω π0 ντ
h h h+ 2π0 ντ (ex.  K0)
  
0.8236 ± 0.0757average 
0.8100 ± 0.0600 ± 0.0600CLEO[46]
 B167 = K φ ντ
  
(4.409 ± 1.626) · 10−5average 
 B168 = K φ ντ (φ → K+ K)
  
(2.169 ± 0.800) · 10−5average 
 B169 = K φ ντ (φ → KS0 KL0)
  
(1.499 ± 0.553) · 10−5average 
 B800 = π ω ντ
  
(1.955 ± 0.065) · 10−2average 
 B802 = K π π+ ντ (ex. K0,ω)
  
(0.2923 ± 0.0067) · 10−2average 
 B803 = K π π+ π0 ντ (ex. K0,ω,η)
  
(4.105 ± 1.429) · 10−4average 
 B804 = π KL0 KL0 ντ
  
(2.342 ± 0.065) · 10−4average 
 B805 = a1 (→ π γ) ντ
  
(4.000 ± 2.000) · 10−4average 
(4.000 ± 2.000 ± 0.000) · 10−4 ALEPH[7]
 B806 = π π0 KL0 KL0 ντ
  
(1.816 ± 0.207) · 10−5average 
 B809 = π 4π0 ντ (ex.  K0, η)
  
(8.640 ± 0.670) · 10−4average 
(9.020 ± 0.400 ± 0.650) · 10−4 BaBar[4]
 B810 = 2π π+ 3π0 ντ (ex. K0)
  
(1.931 ± 0.298) · 10−4average 
 B811 = π 2π0 ω ντ (ex. K0)
  
(7.139 ± 1.586) · 10−5average 
(7.300 ± 1.200 ± 1.200) · 10−5 BaBar[65]
 B812 = 2π π+ 3π0 ντ (ex. K0, η, ω, f1)
  
(1.325 ± 2.682) · 10−5average 
(1.000 ± 0.800 ± 3.000) · 10−5 BaBar[65]
 B820 = 3π 2π+ ντ (ex. K0, ω)
  
(8.242 ± 0.313) · 10−4average 
 B821 = 3π 2π+ ντ (ex. K0, ω, f1)
  
(7.719 ± 0.295) · 10−4average 
(7.680 ± 0.040 ± 0.400) · 10−4 BaBar[65]
 B822 = K 2π 2π+ ντ (ex. K0)
  
(0.594 ± 1.208) · 10−6average 
(0.600 ± 0.500 ± 1.100) · 10−6 BaBar[65]
 B830 = 3π 2π+ π0 ντ (ex. K0)
  
(1.630 ± 0.113) · 10−4average 
 B831 = 2π π+ ω ντ (ex. K0)
  
(8.400 ± 0.624) · 10−5average 
(8.400 ± 0.400 ± 0.600) · 10−5 BaBar[65]
 B832 = 3π 2π+ π0 ντ (ex. K0, η, ω, f1)
  
(3.775 ± 0.874) · 10−5average 
(3.600 ± 0.300 ± 0.900) · 10−5 BaBar[65]
 B833 = K 2π 2π+ π0 ντ (ex. K0)
  
(1.108 ± 0.566) · 10−6average 
(1.100 ± 0.400 ± 0.400) · 10−6 BaBar[65]
 B910 = 2π π+ η ντ (η → 3π0)  (ex. K0)
  
(7.176 ± 0.422) · 10−5average 
(8.270 ± 0.880 ± 0.810) · 10−5 BaBar[65]
 B911 = π 2π0 η ντ (η → π+ π π0)  (ex. K0)
  
(4.444 ± 0.867) · 10−5average 
(4.570 ± 0.770 ± 0.500) · 10−5 BaBar[65]
 B920 = π f1 ντ (f1 → 2π 2π+)
  
(5.225 ± 0.444) · 10−5average 
(5.200 ± 0.310 ± 0.370) · 10−5 BaBar[65]
 B930 = 2π π+ η ντ (η → π+ππ0)  (ex. K0)
  
(5.033 ± 0.296) · 10−5average 
(5.390 ± 0.270 ± 0.410) · 10−5 BaBar[65]
 B944 = 2π π+ η ντ (η → γγ)  (ex. K0)
  
(8.654 ± 0.509) · 10−5average 
(8.260 ± 0.350 ± 0.510) · 10−5 BaBar[65]
 B945 = π 2π0 η ντ
  
(1.939 ± 0.378) · 10−4average 
 B998 = 1 −  BAll
  
(0.0274 ± 0.1026) · 10−2average 
 

2.6  Correlation terms between basis branching fractions uncertainties

The following tables report the correlation coefficients between basis quantities that were obtained from the τ branching fractions fit, in percent.


Table 2: Basis quantities correlation coefficients in percent, subtable 1.
B5 22             
B9 64            
B10 242           
B14 -13-14-13-7          
B16 -2-1-335-13         
B20 -7-7-12-4-42-16        
B23 -3-2-514-966-18       
B27 -4-4-73-961-2372      
B28 -2-1-32-432-102837     
B30 -3-3-6-1-634-14415223    
B35 00000000000   
B37 0-11000000-10-15  
B40 00000000-100-122 
  B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40


Table 3: Basis quantities correlation coefficients in percent, subtable 2.
B42 000-21-51-4-4-2-2-1-15-20
B44 00000000000-10-4
B47 0-121-12-11100-12-4
B48 00000000000-30-2
B50 00000000000150
B51 00000000000-10-1
B53 00000000000000
B62 -4-562-41-11-1-2-2-3-130
B70 -5-6-7-2-8-1-1-1-1000-10
B77 00-20-2101211000
B93 -1-121-11-20000010
B94 00000000000000
B126 000000-10000000
B128 00100000000010
  B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40


Table 4: Basis quantities correlation coefficients in percent, subtable 3.
B130 00000000000000
B132 00000000000000
B136 001101-10000010
B151 00000000000000
B152 00-30-2101212000
B167 00000000000000
B800 -1-1-20-3000000000
B802 -1-100-1-1-3-1-2-1-1000
B803 00000000000000
B805 00000000000000
B811 00000000000000
B812 11000000000000
B821 002101-20000010
B822 00000000000000
  B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40


Table 5: Basis quantities correlation coefficients in percent, subtable 4.
B831 001000-10000010
B832 00000000000000
B833 00000000000000
B920 001000-10000000
B945 00000000000000
  B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40


Table 6: Basis quantities correlation coefficients in percent, subtable 5.
B44 0             
B47 10            
B48 -1-60           
B50 60-70          
B51 0-30-60         
B53 000000        
B62 -1050100       
B70 00-10000-19      
B77 0000000-1-7     
B93 002000014-40    
B94 00000000-200   
B126 000000000-500  
B128 0010000200104 
  B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128


Table 7: Basis quantities correlation coefficients in percent, subtable 6.
B130 000000000-10011
B132 00000000000021
B136 00100002-101000
B151 000000001200000
B152 0000000-1-11-640000
B167 0000000-1001000
B800 0000000-8-69-2-1000
B802 000000016-600000
B803 0000000-1-1900-20-1
B805 00000000000000
B811 00000000-100000
B812 0000-100-1-100000
B821 00200003-101001
B822 00000000000000
  B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128


Table 8: Basis quantities correlation coefficients in percent, subtable 7.
B831 00100001-101000
B832 00000000000000
B833 00000000000000
B920 00100001-101000
B945 00000000000000
  B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128


Table 9: Basis quantities correlation coefficients in percent, subtable 8.
B132 0             
B136 00            
B151 000           
B152 0000          
B167 00000         
B800 000-14-30        
B802 000-201-1       
B803 000-580091      
B805 000000000     
B811 0-1200000000    
B812 0-2-80000000-16   
B821 004600000008-4  
B822 00-1000000000-1 
  B130 B132 B136 B151 B152 B167 B800 B802 B803 B805 B811 B812 B821 B822


Table 10: Basis quantities correlation coefficients in percent, subtable 9.
B831 0038000000014-439-1
B832 00300000002030
B833 00-1000000000-10
B920 002000000003-234-1
B945 0-125000000010-11100
  B130 B132 B136 B151 B152 B167 B800 B802 B803 B805 B811 B812 B821 B822


Table 11: Basis quantities correlation coefficients in percent, subtable 10.
B832 -2    
B833 -1-1   
B920 1710  
B945 17204 
  B831 B832 B833 B920 B945

2.7  Equality constraints

The constraints on the τ branching fractions fitted quantities are listed in the following. The constraint equations include as coefficients the values of some non-tau branching fractions, denoted e.g., with the self-describing notation BKS → π0π0. Some coefficients are probabilities corresponding to the modulus square of amplitudes describing quantum mixtures of states such as K0, K0, KS, KL, denoted with e.g., B<K0|KS> = |<K0|KS>|2. All non-tau quantities are taken from the PDG 2018 [6] averages. The fit procedure does not account for their uncertainties, which are generally small with respect to the uncertainties on the τ branching fractions. Please note that, in the following table, when a quantity like B3/ B5 appears on the left side of the equation, it represents a fitted quantity, and when it appears on the right side it represents the ratio of two separate fitted quantities.

     
 B1 =  B3 +  B5 +  B9 +  B10 +  B14 +  B16           
   +  B20 +  B23 +  B27 +  B28 +  B30 +  B35           
   +  B40 +  B44 +  B37 +  B42 +  B47 +  B48           
   +  B804 +  B50 +  B51 +  B806 +  B126· Bη→neutral           
   +  B128· Bη→neutral +  B130· Bη→neutral +  B132· Bη→neutral           
   +  B800· Bω→π0γ +  B151· Bω→π0γ +  B152· Bω→π0γ           
   +  B167· Bφ→ KS KL          
     
 B2 =  B3 +  B5 +  B9 +  B10 +  B14 +  B16           
   +  B20 +  B23 +  B27 +  B28 +  B30 +  B35·( B<K0|KS>· BKS→π0π0          
   + B<K0|KL>) +  B40·( B<K0|KS>· BKS→π0π0+ B<K0|KL>) +  B44·( B<K0|KS>· BKS→π0π0          
   + B<K0|KL>) +  B37·( B<K0|KS>· BKS→π0π0+ B<K0|KL>) +  B42·( B<K0|KS>· BKS→π0π0          
   + B<K0|KL>) +  B47·( BKS→π0π0· BKS→π0π0) +  B48· BKS→π0π0           
   +  B804 +  B50·( BKS→π0π0· BKS→π0π0) +  B51· BKS→π0π0           
   +  B806 +  B126· Bη→neutral +  B128· Bη→neutral +  B130· Bη→neutral           
   +  B132·( Bη→neutral·( B<K0|KS>· BKS→π0π0+ B<K0|KL>)) +  B800· Bω→π0γ           
   +  B151· Bω→π0γ +  B152· Bω→π0γ +  B167·( Bφ→ KS KL· BKS→π0π0)          
     
 B3
 B5
 =
 
 B3
 B5
         
     
 B7 =  B35· B<K0|KL> +  B9 +  B804 +  B37· B<K0|KL>           
   +  B10          
     
 B8 =  B9 +  B10          
     
 B8
 B5
 =
 
 B8
 B5
         
     
 B9
 B5
 =
 
 B9
 B5
         
     
 B10
 B5
 =
 
 B10
 B5
         
     
 B10
 B9
 =
 
 B10
 B9
         
     
 B11 =  B14 +  B16 +  B20 +  B23 +  B27 +  B28           
   +  B30 +  B35·( B<K0|KS>· BKS→π0π0) +  B37·( B<K0|KS>· BKS→π0π0)           
   +  B40·( B<K0|KS>· BKS→π0π0) +  B42·( B<K0|KS>· BKS→π0π0)           
   +  B47·( BKS→π0π0· BKS→π0π0) +  B50·( BKS→π0π0· BKS→π0π0)           
   +  B126· Bη→neutral +  B128· Bη→neutral +  B130· Bη→neutral           
   +  B132·( B<K0|KS>· BKS→π0π0· Bη→neutral) +  B151· Bω→π0γ           
   +  B152· Bω→π0γ +  B800· Bω→π0γ          
     
 B12 =  B128· Bη→3π0 +  B30 +  B23 +  B28 +  B14           
   +  B16 +  B20 +  B27 +  B126· Bη→3π0 +  B130· Bη→3π0          
     
 B13 =  B14 +  B16          
     
 B17 =  B128· Bη→3π0 +  B30 +  B23 +  B28 +  B35·( B<K0|KS>· BKS→π0π0)           
   +  B40·( B<K0|KS>· BKS→π0π0) +  B42·( B<K0|KS>· BKS→π0π0)           
   +  B20 +  B27 +  B47·( BKS→π0π0· BKS→π0π0) +  B50·( BKS→π0π0· BKS→π0π0)           
   +  B126· Bη→3π0 +  B37·( B<K0|KS>· BKS→π0π0) +  B130· Bη→3π0          
     
 B18 =  B23 +  B35·( B<K0|KS>· BKS→π0π0) +  B20 +  B37·( B<K0|KS>· BKS→π0π0)          
     
 B19 =  B23 +  B20          
     
 B19
 B13
 =
 
 B19
 B13
         
     
 B24 =  B27 +  B28 +  B30 +  B40·( B<K0|KS>· BKS→π0π0)           
   +  B42·( B<K0|KS>· BKS→π0π0) +  B47·( BKS→π0π0· BKS→π0π0)           
   +  B50·( BKS→π0π0· BKS→π0π0) +  B126· Bη→3π0 +  B128· Bη→3π0           
   +  B130· Bη→3π0 +  B132·( B<K0|KS>· BKS→π0π0· Bη→3π0)          
     
 B25 =  B128· Bη→3π0 +  B30 +  B28 +  B27 +  B126· Bη→3π0           
   +  B130· Bη→3π0          
     
 B26 =  B128· Bη→3π0 +  B28 +  B40·( B<K0|KS>· BKS→π0π0)           
   +  B42·( B<K0|KS>· BKS→π0π0) +  B27          
     
 B26
 B13
 =
 
 B26
 B13
         
     
 B29 =  B30 +  B126· Bη→3π0 +  B130· Bη→3π0          
     
 B31 =  B128· Bη→neutral +  B23 +  B28 +  B42 +  B16           
   +  B37 +  B10 +  B167·( Bφ→ KS KL· BKS→π0π0)          
     
 B32 =  B16 +  B23 +  B28 +  B37 +  B42 +  B128· Bη→neutral           
   +  B130· Bη→neutral +  B167·( Bφ→ KS KL· BKS→π0π0)          
     
 B33 =  B35· B<K0|KS> +  B40· B<K0|KS> +  B42· B<K0|KS>           
   +  B47 +  B48 +  B50 +  B51 +  B37· B<K0|KS>           
   +  B132·( B<K0|KS>· Bη→neutral) +  B44· B<K0|KS> +  B167· Bφ→ KS KL          
     
 B34 =  B35 +  B37          
     
 B38 =  B42 +  B37          
     
 B39 =  B40 +  B42          
     
 B43 =  B40 +  B44          
     
 B46 =  B48 +  B47 +  B804          
     
 B49 =  B50 +  B51 +  B806          
     
 B54 =  B35·( B<K0|KS>· BKS→π+π) +  B37·( B<K0|KS>· BKS→π+π)           
   +  B40·( B<K0|KS>· BKS→π+π) +  B42·( B<K0|KS>· BKS→π+π)           
   +  B47·(2· BKS→π+π· BKS→π0π0) +  B48· BKS→π+π           
   +  B50·(2· BKS→π+π· BKS→π0π0) +  B51· BKS→π+π           
   +  B53·( B<K0|KS>· BKS→π0π0+ B<K0|KL>) +  B62 +  B70           
   +  B77 +  B78 +  B93 +  B94 +  B126· Bη→charged           
   +  B128· Bη→charged +  B130· Bη→charged +  B132·( B<K0|KL>· Bη→π+ππ0           
   +  B<K0|KS>· BKS→π0π0· Bη→π+ππ0 +  B<K0|KS>· BKS→π+π· Bη→3π0)           
   +  B151·( Bω→π+ππ0+ Bω→π+π) +  B152·( Bω→π+ππ0+ Bω→π+π)           
   +  B167·( Bφ→ K+K +  Bφ→ KS KL· BKS→π+π) +  B802 +  B803           
   +  B800·( Bω→π+ππ0+ Bω→π+π)          
     
 B55 =  B128· Bη→charged +  B152·( Bω→π+ππ0+ Bω→π+π) +  B78           
   +  B77 +  B94 +  B62 +  B70 +  B93 +  B126· Bη→charged           
   +  B802 +  B803 +  B800·( Bω→π+ππ0+ Bω→π+π) +  B151·( Bω→π+ππ0          
   + Bω→π+π) +  B130· Bη→charged +  B168          
     
 B56 =  B35·( B<K0|KS>· BKS→π+π) +  B62 +  B93 +  B37·( B<K0|KS>· BKS→π+π)           
   +  B802 +  B800· Bω→π+π +  B151· Bω→π+π +  B168          
     
 B57 =  B62 +  B93 +  B802 +  B800· Bω→π+π +  B151· Bω→π+π           
   +  B167· Bφ→ K+K          
     
 B57
 B55
 =
 
 B57
 B55
         
     
 B58 =  B62 +  B93 +  B802 +  B167· Bφ→ K+K          
     
 B59 =  B35·( B<K0|KS>· BKS→π+π) +  B62 +  B800· Bω→π+π          
     
 B60 =  B62 +  B800· Bω→π+π          
     
 B63 =  B40·( B<K0|KS>· BKS→π+π) +  B42·( B<K0|KS>· BKS→π+π)           
   +  B47·(2· BKS→π+π· BKS→π0π0) +  B50·(2· BKS→π+π· BKS→π0π0)           
   +  B70 +  B77 +  B78 +  B94 +  B126· Bη→charged           
   +  B128· Bη→charged +  B130· Bη→charged +  B132·( B<K0|KS>· BKS→π+π· Bη→neutral           
   +  B<K0|KS>· BKS→π0π0· Bη→charged) +  B151· Bω→π+ππ0 +  B152·( Bω→π+ππ0          
   + Bω→π+π) +  B800· Bω→π+ππ0 +  B803          
     
 B64 =  B78 +  B77 +  B94 +  B70 +  B126· Bη→π+ππ0           
   +  B128· Bη→π+ππ0 +  B130· Bη→π+ππ0 +  B800· Bω→π+ππ0           
   +  B151· Bω→π+ππ0 +  B152·( Bω→π+ππ0+ Bω→π+π) +  B803          
     
 B65 =  B40·( B<K0|KS>· BKS→π+π) +  B42·( B<K0|KS>· BKS→π+π)           
   +  B70 +  B94 +  B128· Bη→π+ππ0 +  B151· Bω→π+ππ0           
   +  B152· Bω→π+π +  B800· Bω→π+ππ0 +  B803          
     
 B66 =  B70 +  B94 +  B128· Bη→π+ππ0 +  B151· Bω→π+ππ0           
   +  B152· Bω→π+π +  B800· Bω→π+ππ0 +  B803          
     
 B67 =  B70 +  B94 +  B128· Bη→π+ππ0 +  B803          
     
 B68 =  B40·( B<K0|KS>· BKS→π+π) +  B70 +  B152· Bω→π+π           
   +  B800· Bω→π+ππ0          
     
 B69 =  B152· Bω→π+π +  B70 +  B800· Bω→π+ππ0          
     
 B74 =  B152· Bω→π+ππ0 +  B78 +  B77 +  B126· Bη→π+ππ0           
   +  B130· Bη→π+ππ0          
     
 B75 =  B152· Bω→π+ππ0 +  B47·(2· BKS→π+π· BKS→π0π0)           
   +  B77 +  B126· Bη→π+ππ0 +  B130· Bη→π+ππ0          
     
 B76 =  B152· Bω→π+ππ0 +  B77 +  B126· Bη→π+ππ0 +  B130· Bη→π+ππ0          
     
 B76
 B54
 =
 
 B76
 B54
         
     
 B78 =  B810 +  B50·(2· BKS→π+π· BKS→π0π0) +  B132·( B<K0|KS>· BKS→π+π· Bη→3π0)          
     
 B79 =  B37·( B<K0|KS>· BKS→π+π) +  B42·( B<K0|KS>· BKS→π+π)           
   +  B93 +  B94 +  B128· Bη→charged +  B151·( Bω→π+ππ0          
   + Bω→π+π) +  B168 +  B802 +  B803          
     
 B80 =  B93 +  B802 +  B151· Bω→π+π          
     
 B80
 B60
 =
 
 B80
 B60
         
     
 B81 =  B128· Bη→π+ππ0 +  B94 +  B803 +  B151· Bω→π+ππ0          
     
 B81
 B69
 =
 
 B81
 B69
         
     
 B82 =  B128· Bη→charged +  B42·( B<K0|KS>· BKS→π+π) +  B802           
   +  B803 +  B151·( Bω→π+ππ0+ Bω→π+π) +  B37·( B<K0|KS>· BKS→π+π)          
     
 B83 =  B128· Bη→π+ππ0 +  B802 +  B803 +  B151·( Bω→π+ππ0          
   + Bω→π+π)          
     
 B84 =  B802 +  B151· Bω→π+π +  B37·( B<K0|KS>· BKS→π+π)          
     
 B85 =  B802 +  B151· Bω→π+π          
     
 B85
 B60
 =
 
 B85
 B60
         
     
 B87 =  B42·( B<K0|KS>· BKS→π+π) +  B128· Bη→π+ππ0 +  B151· Bω→π+ππ0           
   +  B803          
     
 B88 =  B128· Bη→π+ππ0 +  B803 +  B151· Bω→π+ππ0          
     
 B89 =  B803 +  B151· Bω→π+ππ0          
     
 B92 =  B94 +  B93          
     
 B93
 B60
 =
 
 B93
 B60
         
     
 B94
 B69
 =
 
 B94
 B69
         
     
 B96 =  B167· Bφ→ K+K          
     
 B102 =  B103 +  B104          
     
 B103 =  B820 +  B822 +  B831· Bω→π+π          
     
 B104 =  B830 +  B833          
     
 B106 =  B30 +  B44· B<K0|KS> +  B47 +  B53· B<K0|KS>           
   +  B77 +  B103 +  B126·( Bη→3π0+ Bη→π+ππ0) +  B152· Bω→π+ππ0          
     
 B110 =  B10 +  B16 +  B23 +  B28 +  B35 +  B40           
   +  B128 +  B802 +  B803 +  B151 +  B130 +  B132           
   +  B44 +  B53 +  B168 +  B169 +  B822 +  B833          
     
 B149 =  B152 +  B800 +  B151          
     
 B150 =  B800 +  B151          
     
 B150
 B66
 =
 
 B150
 B66
         
     
 B152
 B54
 =
 
 B152
 B54
         
     
 B152
 B76
 =
 
 B152
 B76
         
     
 B168 =  B167· Bφ→ K+K          
     
 B169 =  B167· Bφ→ KS KL          
     
 B804 =  B47 · (( B<K0|KL>· B<K0|KL>) / ( B<K0|KS>· B<K0|KS>))          
     
 B806 =  B50 · (( B<K0|KL>· B<K0|KL>) / ( B<K0|KS>· B<K0|KS>))          
     
 B809 =  B30          
     
 B810 =  B910 +  B911 +  B811· Bω→π+ππ0 +  B812          
     
 B820 =  B920 +  B821          
     
 B830 =  B930 +  B831· Bω→π+ππ0 +  B832          
     
 B910 =  B136· Bη→3π0          
     
 B911 =  B945· Bη→π+ππ0          
     
 B930 =  B136· Bη→π+ππ0          
     
 B944 =  B136· Bη→γγ          
     
 BAll =  B3 +  B5 +  B9 +  B10 +  B14 +  B16           
   +  B20 +  B23 +  B27 +  B28 +  B30 +  B35           
   +  B37 +  B40 +  B42 +  B47·(1 + (( B<K0|KL>· B<K0|KL>) / ( B<K0|KS>· B<K0|KS>)))           
   +  B48 +  B62 +  B70 +  B77 +  B811 +  B812           
   +  B93 +  B94 +  B832 +  B833 +  B126 +  B128           
   +  B802 +  B803 +  B800 +  B151 +  B130 +  B132           
   +  B44 +  B53 +  B50·(1 + (( B<K0|KL>· B<K0|KL>) / ( B<K0|KS>· B<K0|KS>)))           
   +  B51 +  B167·( Bφ→ K+K+ Bφ→ KS KL) +  B152 +  B920           
   +  B821 +  B822 +  B831 +  B136 +  B945 +  B805          

Previous

HFLAV-Tau 2018 Report

Next