A fit of the available experimental measurements is used to determine the τ branching fractions, together with their uncertainties and correlations.
All relevant published statistical and systematic correlations among the measurements are used. In addition, for a selection of measurements, particularly the most precise and the most recent ones, the documented systematic uncertainty contributions are examined to consider systematic dependencies from external parameters. We use the standard HFLAV procedures to account for the updated values and uncertainties of the external parameters and for the correlations induced on different measurements with a systematic dependence from the same external parameter.
Both the measurements and the fitted quantities consist of either τ decay branching fractions, labelled as Bi, or ratios of two τ decay branching fractions, labelled as Bi/ Bj. Some branching fractions are sums of other branching fractions, for instance B8 = B(τ→h− ντ) is the sum of B9 = B(τ→π− ντ) and B10 = B(τ→K− ντ). The symbol h is used to mean either a π or a K. The fit χ2 is minimized while respecting a list of constraints on the fitted quantities:
In some cases, constraints describe approximate relations that nevertheless hold within the present experimental precision. For instance, the constraint B(τ→K− K− K+ ντ) = B(τ→K− φ ντ) × B(φ→ K+K−) is justified within the current experimental evidence. Section 2.7 lists all equations relating one quantity to other quantities.
The fit computes the quantities qi by minimizing a χ2 while respecting a series of equality constraints on the qi. The χ2 is computed using the measurements xi and their covariance matrix Vij as
|
where the model matrix Aij is used to get the vector of the predicted measurements xi′ from the vector of the fit parameters qj as xi′= Aijqj. In this particular implementation, the measurements are grouped according to the measured quantity, and all quantities with at least one measurement correspond to a fit parameter. Therefore, the matrix Aij has one row per measurement xi and one column per fitted quantity qj, with unity coefficients for the rows and column that identify a measurement xi of the quantity qj. In summary, the χ2 given in Eq. (1) is minimized subject to the constraints
|
where Eq. (2) corresponds to the constraint equations, written as a set of “constraint expressions” that are equated to zero. Using the method of Lagrange multipliers, a set of equations is obtained by taking the derivatives with respect to the fitted quantities qk and the Lagrange multipliers λr of the sum of the χ2 and the constraint expressions multiplied by the Lagrange multipliers λr, one for each constraint:
|
Equation (4) defines a set of equations for the vector of the unknowns (qk, λr), some of which may be non-linear, in case of non-linear constraints. An iterative minimization procedure approximates at each step the non-linear constraint expressions by their first order Taylor expansion around the current values of the fitted quantities, qs:
|
which can be written as
|
where cr′ are the resulting constant known terms, independent of qs at first order. After linearization, the differentiation by qk and λr is trivial and leads to a set of linear equations
|
which can be expressed as:
|
where uj = (qk, λr) and vi is the vector of the known constant terms running over the index k and then r in the right terms of Eq. (7) and Eq. (8). Solving the equation set in Eq. (9) gives the fitted quantities and their covariance matrix, using the measurements and their covariance matrix. The fit procedure starts by computing the linear approximation of the non-linear constraint expressions around the quantities seed values. With an iterative procedure, the unknowns are updated at each step by solving the equations and the equations are then linearized around the updated values, until the RMS average of relative variation of the fitted unknowns is reduced below 10−12.
Although the fit treats all quantities in the same way, for the purpose of describing the results we select a set of 47 “basis quantities” from which all remaining quantities can be calculated using the definitions listed in Section 2.7.
The fit output consists of 136 fitted quantities that correspond to either branching fractions or ratios of branching fractions. The fitted quantities values and uncertainties are listed in Table 1. The off-diagonal correlation terms between the basis quantities are listed in Section 2.6.
Furthermore we define (see Section 2.7) B110 = B(τ− → Xs− ντ), the total branching fraction of the τ decays to final states with the strangeness quantum number equal to one, and BAll, the branching fraction of the τ into any measured final state, which should be equal to 1 within the experimental uncertainty. We define the unitarity residual as B998 = 1 − BAll.
The fit has χ2/d.o.f. = 142/129, corresponding to a confidence level CL = 20.13%. We use a total of 176 measurements to fit the above mentioned 136 quantities subjected to 89 constraints. Although the unitarity constraint is not applied, the fit is statistically consistent with unitarity, where the residual is B998 = 1 − BAll = (0.0274 ± 0.1026) · 10−2.
A scale factor of 5.44 has been applied to the published uncertainties of the two severely inconsistent measurements of B96 = τ → KKKν by BaBar and Belle. The scale factor has been determined using the PDG procedure, i.e., to the proper size in order to obtain a reduced χ2 equal to 1 when fitting just the two B96 measurements.
The following changes have been introduced with respect to the previous HFLAV report [2].
We added the BaBar 2018 result [3] for the τ branching fraction
B37 = K− K0 ντ ( 14.78 ± 0.22 ± 0.40 ) · 10 −4 ,
and the 2018 BaBar preliminary results [4] for the τ branching fractions
B10 = K− ντ ( 7.17 ± 0.031 ± 0.21 ) · 10 −3
B16 = K− π0 ντ ( 5.05 ± 0.02 ± 0.15 ) · 10 −3
B23 = K− 2π0 ντ (ex. K0) ( 6.15 ± 0.12 ± 0.34 ) · 10 −4
B27 = π− 3π0 ντ (ex. K0) ( 1.168 ± 0.006 ± 0.038 ) · 10 −2
B28 = K− 3π0 ντ (ex. K0,η) ( 1.25 ± 0.16 ± 0.24 ) · 10 −4
B809 = π− 4π0 ντ (ex. K0, η) ( 9.02 ± 0.40 ± 0.65 ) · 10 −4 .
The above B16 result supersedes the previous BaBar result in Ref. [5].
The parameters used to update the measurements’ systematic biases and the parameters appearing in the constraint equations in Section 2.7 have been updated to the PDG 2018 averages [6].
As is standard for the PDG branching fraction fits, the PDG 2018 τ branching fraction fit is unitarity constrained, while the HFLAV 2018 fit is unconstrained.
The HFLAV-Tau fit uses an elaboration of the measurements reported on the main ALEPH paper on τ branching fractions [7] to obtain branching fractions to inclusive final states with “hadrons” (where a hadron is either a pion or a kaon), since this set of results is closer to the actual experimental measurements and facilitates a more appropriate and comprehensive treatment of the experimental results correlations. The PDG 2018 fit on the other hand continues to use – as in the past editions – the published ALEPH measurements of branching fractions to esclusive final states with pions [7].
As in 2016, HFLAV uses the ALEPH estimate for B805 = B(τ→a1− (→ π− γ) ντ), which is not a direct measurement, and the PDG 2018 fit uses the PDG average of B(a1→πγ) as a parameter and defines B805 = B(a1→πγ)× B(τ → 3π ν). As a consequence, the PDG fit procedure does not take into account the large uncertainty on B(a1→πγ), resulting in an underestimated fit uncertainty on B805. Therefore, in this case an appropriate correction has been applied after the fit.
Finally, the HFLAV 2018 τ branching fraction fit includes measurements that appeared after the deadline for inclusion in the PDG, and preliminary measurements that are not included in the PDG.
Table 1 reports the τ branching ratio fit results and experimental inputs.
τ lepton branching fraction Experiment Reference
B1 = (particles)− ≥ 0 neutrals ≥ 0 K0 ντ 0.8521 ± 0.0011 average
B2 = (particles)− ≥ 0 neutrals ≥ 0 KL0 ντ 0.8455 ± 0.0010 average
B3 = µ− νµντ 0.17392 ± 0.00039 average 0.17319 ± 0.00070 ± 0.00032 ALEPH [7] 0.17325 ± 0.00095 ± 0.00077 DELPHI [8] 0.17342 ± 0.00110 ± 0.00067 L3 [9] 0.17340 ± 0.00090 ± 0.00060 OPAL [10]
B3 B5 =
µ− νµντ e− νe ντ 0.9761 ± 0.0028 average 0.9970 ± 0.0350 ± 0.0400 ARGUS [11] 0.9796 ± 0.0016 ± 0.0036 BaBar [12] 0.9777 ± 0.0063 ± 0.0087 CLEO [13]
B5 = e− νe ντ 0.17817 ± 0.00041 average 0.17837 ± 0.00072 ± 0.00036 ALEPH [7] 0.17760 ± 0.00060 ± 0.00170 CLEO [13] 0.17877 ± 0.00109 ± 0.00110 DELPHI [8] 0.17806 ± 0.00104 ± 0.00076 L3 [9] 0.17810 ± 0.00090 ± 0.00060 OPAL [14]
B7 = h− ≥ 0 KL0 ντ 0.12019 ± 0.00053 average 0.12400 ± 0.00700 ± 0.00700 DELPHI [15] 0.12470 ± 0.00260 ± 0.00430 L3 [16] 0.12100 ± 0.00700 ± 0.00500 OPAL [17]
B8 = h− ντ 0.11502 ± 0.00053 average 0.11524 ± 0.00070 ± 0.00078 ALEPH [7] 0.11520 ± 0.00050 ± 0.00120 CLEO [13] 0.11571 ± 0.00120 ± 0.00114 DELPHI [18] 0.11980 ± 0.00130 ± 0.00160 OPAL [19]
B8 B5 =
h− ντ e− νe ντ 0.6456 ± 0.0033 average
B9 = π− ντ 0.10804 ± 0.00052 average
B9 B5 =
π− ντ e− νe ντ 0.6064 ± 0.0032 average 0.5945 ± 0.0014 ± 0.0061 BaBar [12]
B10 = K− ντ (0.6986 ± 0.0085) · 10−2 average (0.6960 ± 0.0250 ± 0.0140) · 10−2 ALEPH [20] (0.7170 ± 0.0031 ± 0.0210) · 10−2 BaBar [4] (0.6600 ± 0.0700 ± 0.0900) · 10−2 CLEO [21] (0.8500 ± 0.1800 ± 0.0000) · 10−2 DELPHI [22] (0.6580 ± 0.0270 ± 0.0290) · 10−2 OPAL [23]
B10 B5 =
K− ντ e− νe ντ (3.921 ± 0.048) · 10−2 average (3.882 ± 0.032 ± 0.057) · 10−2 BaBar [12]
B10 B9 =
K− ντ π− ντ (6.467 ± 0.084) · 10−2 average
B11 = h− ≥ 1 neutrals ντ 0.36996 ± 0.00094 average
B12 = h− ≥ 1 π0 ντ (ex. K0) 0.36495 ± 0.00094 average
B13 = h− π0 ντ 0.25938 ± 0.00090 average 0.25924 ± 0.00097 ± 0.00085 ALEPH [7] 0.25670 ± 0.00010 ± 0.00390 Belle [24] 0.25870 ± 0.00120 ± 0.00420 CLEO [25] 0.25740 ± 0.00201 ± 0.00138 DELPHI [18] 0.25050 ± 0.00350 ± 0.00500 L3 [16] 0.25890 ± 0.00170 ± 0.00290 OPAL [19]
B14 = π− π0 ντ 0.25447 ± 0.00091 average
B16 = K− π0 ντ (0.4904 ± 0.0092) · 10−2 average (0.4440 ± 0.0260 ± 0.0240) · 10−2 ALEPH [20] (0.5050 ± 0.0020 ± 0.0150) · 10−2 BaBar [4] (0.5100 ± 0.1000 ± 0.0700) · 10−2 CLEO [21] (0.4710 ± 0.0590 ± 0.0230) · 10−2 OPAL [26]
B17 = h− ≥ 2 π0 ντ 0.10793 ± 0.00091 average 0.09910 ± 0.00310 ± 0.00270 OPAL [19]
B18 = h− 2π0 ντ (9.421 ± 0.092) · 10−2 average
B19 = h− 2π0 ντ (ex. K0) (9.270 ± 0.092) · 10−2 average (9.295 ± 0.084 ± 0.088) · 10−2 ALEPH [7] (9.498 ± 0.320 ± 0.275) · 10−2 DELPHI [18] (8.880 ± 0.370 ± 0.420) · 10−2 L3 [16]
B19 B13 =
h− 2π0 ντ (ex. K0) h− π0 ντ 0.3574 ± 0.0042 average 0.3420 ± 0.0060 ± 0.0160 CLEO [27]
B20 = π− 2π0 ντ (ex. K0) (9.211 ± 0.092) · 10−2 average
B23 = K− 2π0 ντ (ex. K0) (0.0585 ± 0.0027) · 10−2 average (0.0560 ± 0.0200 ± 0.0150) · 10−2 ALEPH [20] (0.0615 ± 0.0012 ± 0.0034) · 10−2 BaBar [4] (0.0900 ± 0.1000 ± 0.0300) · 10−2 CLEO [21]
B24 = h− ≥ 3 π0 ντ (1.372 ± 0.034) · 10−2 average
B25 = h− ≥ 3 π0 ντ (ex. K0) (1.288 ± 0.034) · 10−2 average (1.403 ± 0.214 ± 0.224) · 10−2 DELPHI [18]
B26 = h− 3π0 ντ (1.236 ± 0.030) · 10−2 average (1.082 ± 0.071 ± 0.059) · 10−2 ALEPH [7] (1.700 ± 0.240 ± 0.380) · 10−2 L3 [16]
B26 B13 =
h− 3π0 ντ h− π0 ντ (4.764 ± 0.118) · 10−2 average (4.400 ± 0.300 ± 0.500) · 10−2 CLEO [27]
B27 = π− 3π0 ντ (ex. K0) (1.1381 ± 0.0292) · 10−2 average (1.1680 ± 0.0060 ± 0.0380) · 10−2 BaBar [4]
B28 = K− 3π0 ντ (ex. K0,η) (1.127 ± 0.263) · 10−4 average (3.700 ± 2.100 ± 1.100) · 10−4 ALEPH [20] (1.250 ± 0.160 ± 0.240) · 10−4 BaBar [4]
B29 = h− 4π0 ντ (ex. K0) (0.1333 ± 0.0071) · 10−2 average (0.1600 ± 0.0500 ± 0.0500) · 10−2 CLEO [27]
B30 = h− 4π0 ντ (ex. K0,η) (0.0864 ± 0.0067) · 10−2 average (0.1120 ± 0.0370 ± 0.0350) · 10−2 ALEPH [7]
B31 = K− ≥ 0 π0 ≥ 0 K0 ≥ 0 γ ντ (1.568 ± 0.018) · 10−2 average (1.700 ± 0.120 ± 0.190) · 10−2 CLEO [21] (1.540 ± 0.240 ± 0.000) · 10−2 DELPHI [22] (1.528 ± 0.039 ± 0.040) · 10−2 OPAL [23]
B32 = K− ≥ 1 (π0 or K0 or γ) ντ (0.8729 ± 0.0141) · 10−2 average
B33 = KS0 (particles)− ντ (0.9366 ± 0.0292) · 10−2 average (0.9700 ± 0.0580 ± 0.0620) · 10−2 ALEPH [28] (0.9700 ± 0.0900 ± 0.0600) · 10−2 OPAL [29]
B34 = h− K0 ντ (0.9860 ± 0.0138) · 10−2 average (0.8550 ± 0.0360 ± 0.0730) · 10−2 CLEO [30]
B35 = π− K0 ντ (0.8378 ± 0.0139) · 10−2 average (0.9280 ± 0.0450 ± 0.0340) · 10−2 ALEPH [20] (0.8320 ± 0.0025 ± 0.0150) · 10−2 Belle [31] (0.9500 ± 0.1500 ± 0.0600) · 10−2 L3 [32] (0.9330 ± 0.0680 ± 0.0490) · 10−2 OPAL [33]
B37 = K− K0 ντ (0.1483 ± 0.0034) · 10−2 average (0.1580 ± 0.0420 ± 0.0170) · 10−2 ALEPH [28] (0.1620 ± 0.0210 ± 0.0110) · 10−2 ALEPH [20] (0.1478 ± 0.0022 ± 0.0040) · 10−2 BaBar [3] (0.1480 ± 0.0013 ± 0.0055) · 10−2 Belle [31] (0.1510 ± 0.0210 ± 0.0220) · 10−2 CLEO [30]
B38 = K− K0 ≥ 0 π0 ντ (0.2977 ± 0.0073) · 10−2 average (0.3300 ± 0.0550 ± 0.0390) · 10−2 OPAL [33]
B39 = h− K0 π0 ντ (0.5302 ± 0.0134) · 10−2 average (0.5620 ± 0.0500 ± 0.0480) · 10−2 CLEO [30]
B40 = π− K0 π0 ντ (0.3807 ± 0.0129) · 10−2 average (0.2940 ± 0.0730 ± 0.0370) · 10−2 ALEPH [28] (0.3470 ± 0.0530 ± 0.0370) · 10−2 ALEPH [20] (0.3860 ± 0.0031 ± 0.0135) · 10−2 Belle [31] (0.4100 ± 0.1200 ± 0.0300) · 10−2 L3 [32]
B42 = K− π0 K0 ντ (0.1494 ± 0.0070) · 10−2 average (0.1520 ± 0.0760 ± 0.0210) · 10−2 ALEPH [28] (0.1430 ± 0.0250 ± 0.0150) · 10−2 ALEPH [20] (0.1496 ± 0.0019 ± 0.0073) · 10−2 Belle [31] (0.1450 ± 0.0360 ± 0.0200) · 10−2 CLEO [30]
B43 = π− K0 ≥ 1 π0 ντ (0.4042 ± 0.0260) · 10−2 average (0.3240 ± 0.0740 ± 0.0660) · 10−2 OPAL [33]
B44 = π− K0 2π0 ντ (ex. K0) (2.346 ± 2.306) · 10−4 average (2.600 ± 2.400 ± 0.000) · 10−4 ALEPH [34]
B46 = π− K0 K0 ντ (0.1516 ± 0.0247) · 10−2 average
B47 = π− KS0 KS0 ντ (2.342 ± 0.065) · 10−4 average (2.600 ± 1.000 ± 0.500) · 10−4 ALEPH [28] (2.310 ± 0.040 ± 0.080) · 10−4 BaBar [35] (2.330 ± 0.033 ± 0.093) · 10−4 Belle [31] (2.300 ± 0.500 ± 0.300) · 10−4 CLEO [30]
B48 = π− KS0 KL0 ντ (0.1048 ± 0.0247) · 10−2 average (0.1010 ± 0.0230 ± 0.0130) · 10−2 ALEPH [28]
B49 = π− K0 K0 π0 ντ (3.543 ± 1.193) · 10−4 average
B50 = π− π0 KS0 KS0 ντ (1.816 ± 0.207) · 10−5 average (1.600 ± 0.200 ± 0.220) · 10−5 BaBar [35] (2.000 ± 0.216 ± 0.202) · 10−5 Belle [31]
B51 = π− π0 KS0 KL0 ντ (3.179 ± 1.192) · 10−4 average (3.100 ± 1.100 ± 0.500) · 10−4 ALEPH [28]
B53 = K0 h− h− h+ ντ (2.220 ± 2.024) · 10−4 average (2.300 ± 1.900 ± 0.700) · 10−4 ALEPH [28]
B54 = h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ 0.15206 ± 0.00061 average 0.15000 ± 0.00400 ± 0.00300 CELLO [36] 0.14400 ± 0.00600 ± 0.00300 L3 [37] 0.15100 ± 0.00800 ± 0.00600 TPC [38]
B55 = h− h− h+ ≥ 0 neutrals ντ (ex. K0) 0.14558 ± 0.00056 average 0.14556 ± 0.00105 ± 0.00076 L3 [39] 0.14960 ± 0.00090 ± 0.00220 OPAL [40]
B56 = h− h− h+ ντ (9.769 ± 0.053) · 10−2 average
B57 = h− h− h+ ντ (ex. K0) (9.428 ± 0.053) · 10−2 average (9.510 ± 0.070 ± 0.200) · 10−2 CLEO [41] (9.317 ± 0.090 ± 0.082) · 10−2 DELPHI [18]
B57 B55 =
h− h− h+ ντ (ex. K0) h− h− h+ ≥ 0 neutrals ντ (ex. K0) 0.6476 ± 0.0029 average 0.6600 ± 0.0040 ± 0.0140 OPAL [40]
B58 = h− h− h+ ντ (ex. K0, ω) (9.397 ± 0.053) · 10−2 average (9.469 ± 0.062 ± 0.073) · 10−2 ALEPH [7]
B59 = π− π+ π− ντ (9.279 ± 0.051) · 10−2 average
B60 = π− π+ π− ντ (ex. K0) (8.990 ± 0.051) · 10−2 average (8.830 ± 0.010 ± 0.130) · 10−2 BaBar [42] (8.420 ± 0.000 −0.250+0.260) · 10−2 Belle [43] (9.130 ± 0.050 ± 0.460) · 10−2 CLEO3 [44]
B62 = π− π− π+ ντ (ex. K0,ω) (8.960 ± 0.051) · 10−2 average
B63 = h− h− h+ ≥ 1 neutrals ντ (5.327 ± 0.049) · 10−2 average
B64 = h− h− h+ ≥ 1 π0 ντ (ex. K0) (5.122 ± 0.049) · 10−2 average
B65 = h− h− h+ π0 ντ (4.791 ± 0.052) · 10−2 average
B66 = h− h− h+ π0 ντ (ex. K0) (4.607 ± 0.051) · 10−2 average (4.734 ± 0.059 ± 0.049) · 10−2 ALEPH [7] (4.230 ± 0.060 ± 0.220) · 10−2 CLEO [41] (4.545 ± 0.106 ± 0.103) · 10−2 DELPHI [18]
B67 = h− h− h+ π0 ντ (ex. K0, ω) (2.821 ± 0.070) · 10−2 average
B68 = π− π+ π− π0 ντ (4.652 ± 0.053) · 10−2 average
B69 = π− π+ π− π0 ντ (ex. K0) (4.520 ± 0.052) · 10−2 average (4.190 ± 0.100 ± 0.210) · 10−2 CLEO [45]
B70 = π− π− π+ π0 ντ (ex. K0,ω) (2.770 ± 0.071) · 10−2 average
B74 = h− h− h+ ≥ 2 π0 ντ (ex. K0) (0.5148 ± 0.0311) · 10−2 average (0.5610 ± 0.0680 ± 0.0950) · 10−2 DELPHI [18]
B75 = h− h− h+ 2π0 ντ (0.5037 ± 0.0309) · 10−2 average
B76 = h− h− h+ 2π0 ντ (ex. K0) (0.4937 ± 0.0309) · 10−2 average (0.4350 ± 0.0300 ± 0.0350) · 10−2 ALEPH [7]
B76 B54 =
h− h− h+ 2π0 ντ (ex. K0) h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ (3.247 ± 0.202) · 10−2 average (3.400 ± 0.200 ± 0.300) · 10−2 CLEO [46]
B77 = h− h− h+ 2π0 ντ (ex. K0,ω,η) (9.812 ± 3.555) · 10−4 average
B78 = h− h− h+ 3π0 ντ (2.114 ± 0.299) · 10−4 average (2.200 ± 0.300 ± 0.400) · 10−4 CLEO [47]
B79 = K− h− h+ ≥ 0 neutrals ντ (0.6293 ± 0.0140) · 10−2 average
B80 = K− π− h+ ντ (ex. K0) (0.4361 ± 0.0072) · 10−2 average
B80 B60 =
K− π− h+ ντ (ex. K0) π− π+ π− ντ (ex. K0) (4.851 ± 0.080) · 10−2 average (5.440 ± 0.210 ± 0.530) · 10−2 CLEO [48]
B81 = K− π− h+ π0 ντ (ex. K0) (8.727 ± 1.177) · 10−4 average
B81 B69 =
K− π− h+ π0 ντ (ex. K0) π− π+ π− π0 ντ (ex. K0) (1.931 ± 0.266) · 10−2 average (2.610 ± 0.450 ± 0.420) · 10−2 CLEO [48]
B82 = K− π− π+ ≥ 0 neutrals ντ (0.4779 ± 0.0137) · 10−2 average (0.5800 −0.1300+0.1500 ± 0.1200) · 10−2 TPC [49]
B83 = K− π− π+ ≥ 0 π0 ντ (ex. K0) (0.3741 ± 0.0135) · 10−2 average
B84 = K− π− π+ ντ (0.3442 ± 0.0068) · 10−2 average
B85 = K− π+ π− ντ (ex. K0) (0.2929 ± 0.0067) · 10−2 average (0.2140 ± 0.0370 ± 0.0290) · 10−2 ALEPH [50] (0.2730 ± 0.0020 ± 0.0090) · 10−2 BaBar [42] (0.3300 ± 0.0010 −0.0170+0.0160) · 10−2 Belle [43] (0.3840 ± 0.0140 ± 0.0380) · 10−2 CLEO3 [44] (0.4150 ± 0.0530 ± 0.0400) · 10−2 OPAL [26]
B85 B60 =
K− π+ π− ντ (ex. K0) π− π+ π− ντ (ex. K0) (3.258 ± 0.074) · 10−2 average
B87 = K− π− π+ π0 ντ (0.1329 ± 0.0119) · 10−2 average
B88 = K− π− π+ π0 ντ (ex. K0) (8.116 ± 1.168) · 10−4 average (6.100 ± 3.900 ± 1.800) · 10−4 ALEPH [50] (7.400 ± 0.800 ± 1.100) · 10−4 CLEO3 [51]
B89 = K− π− π+ π0 ντ (ex. K0, η) (7.762 ± 1.168) · 10−4 average
B92 = π− K− K+ ≥ 0 neutrals ντ (0.1493 ± 0.0033) · 10−2 average (0.1590 ± 0.0530 ± 0.0200) · 10−2 OPAL [52] (0.1500 −0.0700+0.0900 ± 0.0300) · 10−2 TPC [49]
B93 = π− K− K+ ντ (0.1431 ± 0.0027) · 10−2 average (0.1630 ± 0.0210 ± 0.0170) · 10−2 ALEPH [50] (0.1346 ± 0.0010 ± 0.0036) · 10−2 BaBar [42] (0.1550 ± 0.0010 −0.0050+0.0060) · 10−2 Belle [43] (0.1550 ± 0.0060 ± 0.0090) · 10−2 CLEO3 [44]
B93 B60 =
π− K− K+ ντ π− π+ π− ντ (ex. K0) (1.592 ± 0.030) · 10−2 average (1.600 ± 0.150 ± 0.300) · 10−2 CLEO [48]
B94 = π− K− K+ π0 ντ (0.611 ± 0.183) · 10−4 average (7.500 ± 2.900 ± 1.500) · 10−4 ALEPH [50] (0.550 ± 0.140 ± 0.120) · 10−4 CLEO3 [51]
B94 B69 =
π− K− K+ π0 ντ π− π+ π− π0 ντ (ex. K0) (0.1353 ± 0.0405) · 10−2 average (0.7900 ± 0.4400 ± 0.1600) · 10−2 CLEO [48]
B96 = K− K− K+ ντ (2.169 ± 0.800) · 10−5 average (1.578 ± 0.130 ± 0.123) · 10−5 BaBar [42] (3.290 ± 0.170 −0.200+0.190) · 10−5 Belle [43]
B102 = 3h− 2h+ ≥ 0 neutrals ντ (ex. K0) (0.0990 ± 0.0037) · 10−2 average (0.0970 ± 0.0050 ± 0.0110) · 10−2 CLEO [53] (0.1020 ± 0.0290 ± 0.0000) · 10−2 HRS [54] (0.1700 ± 0.0220 ± 0.0260) · 10−2 L3 [39]
B103 = 3h− 2h+ ντ (ex. K0) (8.260 ± 0.314) · 10−4 average (7.200 ± 0.900 ± 1.200) · 10−4 ALEPH [7] (6.400 ± 2.300 ± 1.000) · 10−4 ARGUS [55] (7.700 ± 0.500 ± 0.900) · 10−4 CLEO [53] (9.700 ± 1.500 ± 0.500) · 10−4 DELPHI [18] (5.100 ± 2.000 ± 0.000) · 10−4 HRS [54] (9.100 ± 1.400 ± 0.600) · 10−4 OPAL [56]
B104 = 3h− 2h+ π0 ντ (ex. K0) (1.641 ± 0.114) · 10−4 average (2.100 ± 0.700 ± 0.900) · 10−4 ALEPH [7] (1.700 ± 0.200 ± 0.200) · 10−4 CLEO [47] (1.600 ± 1.200 ± 0.600) · 10−4 DELPHI [18] (2.700 ± 1.800 ± 0.900) · 10−4 OPAL [56]
B106 = (5π)− ντ (0.7532 ± 0.0356) · 10−2 average
B110 = Xs− ντ (2.931 ± 0.041) · 10−2 average
B126 = π− π0 η ντ (0.1386 ± 0.0072) · 10−2 average (0.1800 ± 0.0400 ± 0.0200) · 10−2 ALEPH [57] (0.1350 ± 0.0030 ± 0.0070) · 10−2 Belle [58] (0.1700 ± 0.0200 ± 0.0200) · 10−2 CLEO [59]
B128 = K− η ντ (1.543 ± 0.080) · 10−4 average (2.900 −1.200+1.300 ± 0.700) · 10−4 ALEPH [57] (1.420 ± 0.110 ± 0.070) · 10−4 BaBar [60] (1.580 ± 0.050 ± 0.090) · 10−4 Belle [58] (2.600 ± 0.500 ± 0.500) · 10−4 CLEO [61]
B130 = K− π0 η ντ (0.483 ± 0.116) · 10−4 average (0.460 ± 0.110 ± 0.040) · 10−4 Belle [58] (1.770 ± 0.560 ± 0.710) · 10−4 CLEO [62]
B132 = π− K0 η ντ (0.936 ± 0.149) · 10−4 average (0.880 ± 0.140 ± 0.060) · 10−4 Belle [58] (2.200 ± 0.700 ± 0.220) · 10−4 CLEO [62]
B136 = π− π+ π− η ντ (ex. K0) (2.196 ± 0.129) · 10−4 average
B149 = h− ω ≥ 0 neutrals ντ (2.402 ± 0.075) · 10−2 average
B150 = h− ω ντ (1.996 ± 0.064) · 10−2 average (1.910 ± 0.070 ± 0.060) · 10−2 ALEPH [57] (1.600 ± 0.270 ± 0.410) · 10−2 CLEO [63]
B150 B66 =
h− ω ντ h− h− h+ π0 ντ (ex. K0) 0.4331 ± 0.0139 average 0.4310 ± 0.0330 ± 0.0000 ALEPH [64] 0.4640 ± 0.0160 ± 0.0170 CLEO [41]
B151 = K− ω ντ (4.100 ± 0.922) · 10−4 average (4.100 ± 0.600 ± 0.700) · 10−4 CLEO3 [51]
B152 = h− π0 ω ντ (0.4066 ± 0.0419) · 10−2 average (0.4300 ± 0.0600 ± 0.0500) · 10−2 ALEPH [57]
B152 B54 =
h− ω π0 ντ h− h− h+ ≥ 0 neutrals ≥ 0 KL0 ντ (2.674 ± 0.275) · 10−2 average
B152 B76 =
h− ω π0 ντ h− h− h+ 2π0 ντ (ex. K0) 0.8236 ± 0.0757 average 0.8100 ± 0.0600 ± 0.0600 CLEO [46]
B167 = K− φ ντ (4.409 ± 1.626) · 10−5 average
B168 = K− φ ντ (φ → K+ K−) (2.169 ± 0.800) · 10−5 average
B169 = K− φ ντ (φ → KS0 KL0) (1.499 ± 0.553) · 10−5 average
B800 = π− ω ντ (1.955 ± 0.065) · 10−2 average
B802 = K− π− π+ ντ (ex. K0,ω) (0.2923 ± 0.0067) · 10−2 average
B803 = K− π− π+ π0 ντ (ex. K0,ω,η) (4.105 ± 1.429) · 10−4 average
B804 = π− KL0 KL0 ντ (2.342 ± 0.065) · 10−4 average
B805 = a1− (→ π− γ) ντ (4.000 ± 2.000) · 10−4 average (4.000 ± 2.000 ± 0.000) · 10−4 ALEPH [7]
B806 = π− π0 KL0 KL0 ντ (1.816 ± 0.207) · 10−5 average
B809 = π− 4π0 ντ (ex. K0, η) (8.640 ± 0.670) · 10−4 average (9.020 ± 0.400 ± 0.650) · 10−4 BaBar [4]
B810 = 2π− π+ 3π0 ντ (ex. K0) (1.931 ± 0.298) · 10−4 average
B811 = π− 2π0 ω ντ (ex. K0) (7.139 ± 1.586) · 10−5 average (7.300 ± 1.200 ± 1.200) · 10−5 BaBar [65]
B812 = 2π− π+ 3π0 ντ (ex. K0, η, ω, f1) (1.325 ± 2.682) · 10−5 average (1.000 ± 0.800 ± 3.000) · 10−5 BaBar [65]
B820 = 3π− 2π+ ντ (ex. K0, ω) (8.242 ± 0.313) · 10−4 average
B821 = 3π− 2π+ ντ (ex. K0, ω, f1) (7.719 ± 0.295) · 10−4 average (7.680 ± 0.040 ± 0.400) · 10−4 BaBar [65]
B822 = K− 2π− 2π+ ντ (ex. K0) (0.594 ± 1.208) · 10−6 average (0.600 ± 0.500 ± 1.100) · 10−6 BaBar [65]
B830 = 3π− 2π+ π0 ντ (ex. K0) (1.630 ± 0.113) · 10−4 average
B831 = 2π− π+ ω ντ (ex. K0) (8.400 ± 0.624) · 10−5 average (8.400 ± 0.400 ± 0.600) · 10−5 BaBar [65]
B832 = 3π− 2π+ π0 ντ (ex. K0, η, ω, f1) (3.775 ± 0.874) · 10−5 average (3.600 ± 0.300 ± 0.900) · 10−5 BaBar [65]
B833 = K− 2π− 2π+ π0 ντ (ex. K0) (1.108 ± 0.566) · 10−6 average (1.100 ± 0.400 ± 0.400) · 10−6 BaBar [65]
B910 = 2π− π+ η ντ (η → 3π0) (ex. K0) (7.176 ± 0.422) · 10−5 average (8.270 ± 0.880 ± 0.810) · 10−5 BaBar [65]
B911 = π− 2π0 η ντ (η → π+ π− π0) (ex. K0) (4.444 ± 0.867) · 10−5 average (4.570 ± 0.770 ± 0.500) · 10−5 BaBar [65]
B920 = π− f1 ντ (f1 → 2π− 2π+) (5.225 ± 0.444) · 10−5 average (5.200 ± 0.310 ± 0.370) · 10−5 BaBar [65]
B930 = 2π− π+ η ντ (η → π+π−π0) (ex. K0) (5.033 ± 0.296) · 10−5 average (5.390 ± 0.270 ± 0.410) · 10−5 BaBar [65]
B944 = 2π− π+ η ντ (η → γγ) (ex. K0) (8.654 ± 0.509) · 10−5 average (8.260 ± 0.350 ± 0.510) · 10−5 BaBar [65]
B945 = π− 2π0 η ντ (1.939 ± 0.378) · 10−4 average
B998 = 1 − BAll (0.0274 ± 0.1026) · 10−2 average
The following tables report the correlation coefficients between basis quantities that were obtained from the τ branching fractions fit, in percent.
B5 22 B9 6 4 B10 2 4 2 B14 -13 -14 -13 -7 B16 -2 -1 -3 35 -13 B20 -7 -7 -12 -4 -42 -16 B23 -3 -2 -5 14 -9 66 -18 B27 -4 -4 -7 3 -9 61 -23 72 B28 -2 -1 -3 2 -4 32 -10 28 37 B30 -3 -3 -6 -1 -6 34 -14 41 52 23 B35 0 0 0 0 0 0 0 0 0 0 0 B37 0 -1 1 0 0 0 0 0 0 -1 0 -15 B40 0 0 0 0 0 0 0 0 -1 0 0 -12 2 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B42 0 0 0 -2 1 -5 1 -4 -4 -2 -2 -1 -15 -20 B44 0 0 0 0 0 0 0 0 0 0 0 -1 0 -4 B47 0 -1 2 1 -1 2 -1 1 1 0 0 -1 2 -4 B48 0 0 0 0 0 0 0 0 0 0 0 -3 0 -2 B50 0 0 0 0 0 0 0 0 0 0 0 1 5 0 B51 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 B53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B62 -4 -5 6 2 -4 1 -11 -1 -2 -2 -3 -1 3 0 B70 -5 -6 -7 -2 -8 -1 -1 -1 -1 0 0 0 -1 0 B77 0 0 -2 0 -2 1 0 1 2 1 1 0 0 0 B93 -1 -1 2 1 -1 1 -2 0 0 0 0 0 1 0 B94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B126 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 B128 0 0 1 0 0 0 0 0 0 0 0 0 1 0 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B136 0 0 1 1 0 1 -1 0 0 0 0 0 1 0 B151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B152 0 0 -3 0 -2 1 0 1 2 1 2 0 0 0 B167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B800 -1 -1 -2 0 -3 0 0 0 0 0 0 0 0 0 B802 -1 -1 0 0 -1 -1 -3 -1 -2 -1 -1 0 0 0 B803 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B811 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B812 1 1 0 0 0 0 0 0 0 0 0 0 0 0 B821 0 0 2 1 0 1 -2 0 0 0 0 0 1 0 B822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B831 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 B832 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B920 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 B945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B3 B5 B9 B10 B14 B16 B20 B23 B27 B28 B30 B35 B37 B40
B44 0 B47 1 0 B48 -1 -6 0 B50 6 0 -7 0 B51 0 -3 0 -6 0 B53 0 0 0 0 0 0 B62 -1 0 5 0 1 0 0 B70 0 0 -1 0 0 0 0 -19 B77 0 0 0 0 0 0 0 -1 -7 B93 0 0 2 0 0 0 0 14 -4 0 B94 0 0 0 0 0 0 0 0 -2 0 0 B126 0 0 0 0 0 0 0 0 0 -5 0 0 B128 0 0 1 0 0 0 0 2 0 0 1 0 4 B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128
B130 0 0 0 0 0 0 0 0 0 -1 0 0 1 1 B132 0 0 0 0 0 0 0 0 0 0 0 0 2 1 B136 0 0 1 0 0 0 0 2 -1 0 1 0 0 0 B151 0 0 0 0 0 0 0 0 12 0 0 0 0 0 B152 0 0 0 0 0 0 0 -1 -11 -64 0 0 0 0 B167 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 B800 0 0 0 0 0 0 0 -8 -69 -2 -1 0 0 0 B802 0 0 0 0 0 0 0 16 -6 0 0 0 0 0 B803 0 0 0 0 0 0 0 -1 -19 0 0 -2 0 -1 B805 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B811 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 B812 0 0 0 0 -1 0 0 -1 -1 0 0 0 0 0 B821 0 0 2 0 0 0 0 3 -1 0 1 0 0 1 B822 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128
B831 0 0 1 0 0 0 0 1 -1 0 1 0 0 0 B832 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B920 0 0 1 0 0 0 0 1 -1 0 1 0 0 0 B945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B42 B44 B47 B48 B50 B51 B53 B62 B70 B77 B93 B94 B126 B128
B132 0 B136 0 0 B151 0 0 0 B152 0 0 0 0 B167 0 0 0 0 0 B800 0 0 0 -14 -3 0 B802 0 0 0 -2 0 1 -1 B803 0 0 0 -58 0 0 9 1 B805 0 0 0 0 0 0 0 0 0 B811 0 -1 20 0 0 0 0 0 0 0 B812 0 -2 -8 0 0 0 0 0 0 0 -16 B821 0 0 46 0 0 0 0 0 0 0 8 -4 B822 0 0 -1 0 0 0 0 0 0 0 0 0 -1 B130 B132 B136 B151 B152 B167 B800 B802 B803 B805 B811 B812 B821 B822
B831 0 0 38 0 0 0 0 0 0 0 14 -4 39 -1 B832 0 0 3 0 0 0 0 0 0 0 2 0 3 0 B833 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 B920 0 0 20 0 0 0 0 0 0 0 3 -2 34 -1 B945 0 -1 25 0 0 0 0 0 0 0 10 -11 10 0 B130 B132 B136 B151 B152 B167 B800 B802 B803 B805 B811 B812 B821 B822
B832 -2 B833 -1 -1 B920 17 1 0 B945 17 2 0 4 B831 B832 B833 B920 B945
The constraints on the τ branching fractions fitted quantities are listed in the following. The constraint equations include as coefficients the values of some non-tau branching fractions, denoted e.g., with the self-describing notation BKS → π0π0. Some coefficients are probabilities corresponding to the modulus square of amplitudes describing quantum mixtures of states such as K0, K0, KS, KL, denoted with e.g., B<K0|KS> = |<K0|KS>|2. All non-tau quantities are taken from the PDG 2018 [6] averages. The fit procedure does not account for their uncertainties, which are generally small with respect to the uncertainties on the τ branching fractions. Please note that, in the following table, when a quantity like B3/ B5 appears on the left side of the equation, it represents a fitted quantity, and when it appears on the right side it represents the ratio of two separate fitted quantities.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|