Preliminary average of R(D) and R(D*) for Spring 2025

This web page contains the averages of the ratios of Branching Fractions R(D*)=BF(B→D*τντ)/BF(B→D* l νl) and R(D)=BF(B→Dτντ)/BF(B→D l νl).
In the present average we consider the following measurements:


In the average we assume 100% correlation for the systematic uncertainties associated with the B→D(*) form factors, the D** composition and shapes, and the τ branching fractions. The other uncertainties are considered uncorrelated between the various experiments. The average is obtained using the the CoCo averaging tool.


Experiment R(D*) R(D) Rescaled Correlation (stat/total) Inputs Remarks
BaBar 0.332 ± 0.024 ± 0.018 0.440 ± 0.058 ± 0.042 -0.45/-0.27 input Phys.Rev.Lett. 109,101802 (2012) arXiv:1205.5442_[hep-ex] Phys.Rev.D 88, 072012 (2013) arXiv:1303.0571_[hep-ex]
BELLEa 0.293 ± 0.038 ± 0.015 0.375 ± 0.064 ± 0.026 -0.56/-0.49 input Phys.Rev.D 92, 072014 (2015) arXiv:1507.03233 [hep-ex]
BELLEb 0.270 ± 0.035 + 0.028-0.025 - - input Phys.Rev.Lett.118,211801 (2017) arXiv:1612.00529 [hep-ex] Phys.Rev.D 97, 012004 (2018) arXiv:1709.00129_[hep-ex]
BELLEc 0.283 ± 0.018 ± 0.014 0.307 ± 0.037 ± 0.016 -0.53/-0.51 input Phys.Rev.Lett. 124 (2020) 16, 161803 arXiv:1910.05864 [hep-ex]
LHCba 0.281 ± 0.018 ± 0.024 0.441 ± 0.060 ± 0.066 -0.49/-0.43 input Phys. Rev. Lett. 131, 111802 [arXiv:2302.02886]
LHCbb 0.267 ± 0.012 ± 0.019 - - input Phys. Rev. D 108, 012018 [arXiv:2305.01463]
Belle IIa 0.262 (+0.041 -0.039) (+0.035 -0.032) - - input Phys. Rev. D 110, 072020 (2024) arXiv:2401.02840
LHCbc 0.402 ± 0.081 ± 0.085 0.249 ± 0.043 ± 0.047 -0.48/-0.39 input Phys. Rev. Lett. 134, 061801 (2025) [arXiv:2406.03387]
Belle IIb 0.306 ± 0.034 ± 0.018 0.418 ± 0.074 ± 0.051 -0.27/-0.22 input Presented at Moriond EW 2025 and submitted to PRD [arXiv:2504.11220]
Average logfile.txt  0.288 ± 0.012 0.347 ± 0.025 -0.39 chi2/dof = 13.435/13 (CL = 0.35) R(D)-R(D*), 68% C.L. contours rdrds.pdf 

For visualisation only (HFLAV average uses always the individual measurements as inputs)
R(D)-R(D*), 68% C.L. single experiment contours rdrds_experiments.pdf 

R(D) .pdf 
R(D*) .pdf 

Compatibility with SM predictions

SM predictions for R(D) based on following Lattice calculations:

The prediction obtained combining the two calculation above FLAG Collaboration arXiv:2411.04268 [hep-lat] ) is R(D) =0.2938 ± 0.054.

P. Gambino and D. Bigi in Phys.Rev.D 94, 094008 (2016) arXiv:1606.08030 [hep-ph] combined the two lattice calculations, with the experimental Form Factor of B→ D l ν from BaBar (2010) and Belle (2016), obtaining R(D) = 0.299 ± 0.003. The result is compatible with the above calculations, but more accurate. Similar calculations were performed more recently by other groups (see table below for references).

The SM prediction for R(D*) widely used for many HFLAV reports was:

In 2021 FNAL/MILC released the first unquenched Lattice calculation of B→D*l ν form factors at non-zero recoil, A.Bazavov et al. [Eur. Phys. J. C 82, 1141 (2022)] , predicting a value of R(D*)=0.265 ± 0.013, using only Lattice inputs. In addition, since 2023, two indipendent lattice calculations at non-zero recoil are available: from HPQCD arXiv:2304.03137[hep-lat] (R(D*)=0.273 ± 0.015), and JLQCD arXiv:2306.05657[hep-lat] (R(D*)=0.252 ± 0.022), have been released. Various indipendent analyses of these three lattice data has been performed by various groups. The first were performed by G. Martinelli et al. [Eur. Phys. J. C 84 (2024) 400] and I.Ray et al. [JHEP 01 (2024) 022], and the results reported in the table below. In these papers result combined with experimental inputs from Belle and Belle II on B→D*l ν are reported along with results based on lattice only calculations.

In the following table SM predictions are reported along with the compatibility of the current HFLAV average with each of them. The correlation between R(D) and R(D*) theory prediction has been used when avaialable in the publication.

R(D) R(D*) Compatibility in σ
D.Bigi, P.Gambino, Phys.Rev. D94 (2016) no.9, 094008 [arXiv:1606.08030 [hep-ph]] 0.299 ± 0.003 1.89
M.Bordone, M.Jung, Danny van Dyk, Eur.Phy.J.C 80 (2020) 2, 74 [arXiv:1908.09398 [hep-ph]] 0.298 ± 0.003 0.247 ± 0.006 4.13
G. Martinelli, S. Simula, L. Vittorio, Phys.RevD 105 (2022) 3, 034503 [arXiv:2105.08674 [hep-ph]] 0.296 ± 0.008 1.93
F. U. Bernlochner, Z. Ligeti, M. Papucci, M. T. Prim, D. J. Robinson, C. Xiong, Phys. Rev. D 106 (2022) 096015 [arXiv:2206.11281 [hep-ph]] 0.288 ± 0.004 0.249 ± 0.003 4.65
I.Ray, S.Nandi, JHEP 01 (2024) 022 [arXiv:2305.11855 [hep-lat]] 0.304 ± 0.003 0.258 ± 0.012 2.44
FLAG Collaboration, [arXiv:2411.04268 [hep-lat]] 0.2938 ± 0.0054 2.06
BaBar Collaboration, Phys.Rev.Lett. 123 (2019) 9, 091801 [arXiv:1903.10002 [hep-ex]] 0.253 ± 0.005 2.79
P.Gambino, M.Jung, S.Schacht, Phys.Lett.B795 (2019) 386 [arXiv:1905.08209 [hep-ph]] 0.254 + 0.007 − 0.006 2.58
G. Martinelli, S. Simula, L. Vittorio, Eur. Phys. J. C 84 (2024) 400 [arXiv:2310.03680 [hep-ph]] 0.262 ± 0.009 1.79
Arithmetic average 0.296 ± 0.004 0.254 ± 0.005 3.77

R(D) and R(D*) exceed the SM predictions (arithmetic average) given above, by 1.9σ and 2.7σ respectively. Considering the R(D)-R(D*)) correlation of -0.39, the resulting combined χ2 is 16.92 for 2 degree of freedom, corresponding to a p-value of 2.12 x 10-4. The difference with the SM predictions reported above, corresponds to about 3.8σ.

Acknowledgments

We thank Veronika Georgieva Chobanova for the development of the CoCo averaging tool and the support provided.