b-hadron decays to charmless final states

This section provides branching fractions (BF), polarization fractions, partial rate asymmetries (A_{CP}) and other observables of *b*-hadron decays to final states that do not contain charm hadrons or charmonium mesons¹, except for a few lepton-flavour- and lepton-number-violating decays reported in section 6.

Four categories of B^0 and B^+ decays are reported: mesonic (*i.e.*, final states containing only mesons), baryonic (hadronic final states with baryon-antibaryon pairs), radiative (including a photon or a lepton-antilepton pair) and semileptonic/leptonic (including/only leptons). We also report measurements of B_s^0 , B_c^+ and b-baryon decays, and measurements of final-state polarization in b-hadron decays. Results of CKM-matrix parameters obtained from A_{CP} measurements are listed and described by the HFLAV Unitary triangle angles group. Measurements included in our averages are those supported with public notes, including journal papers, conference contributed papers, preprints or conference proceedings, except when a result has not led to a journal publication after an extended period of time.

The averaging procedure follows the methodology described in Chapter 3 of the latest HFLAV publication. We perform fits of the full likelihood function and do not use the approximation described in Section 3.1. For the cases where more than one measurement is available, in total 235 fits are performed, with on average (maximally) 1.3 (20) parameters and 2.9 (23) measurements per fit. Systematic uncertainties are taken as quoted without the scaling of multiplicative uncertainties discussed in Section 3.3. In our tables, the individual measurements and average of each parameter p_i are shown in one row. We quote numerical values of all direct measurements of a parameter p_i . We also show numerical values derived from measurements of branching-fraction ratios p_j/p_k , performed with respect to the branching fraction p_k of a normalization mode, as well as measurements of products $p_i p_k$ of the branching fraction of interest with that of a daughter decay. In these cases, the quoted value and uncertainty of the measurement are determined with the fitted value of p_k , and the uncertainty of p_k is included in the systematic uncertainty. A footnote "Using p_k " is added in these cases. Note that the fit uses p_j/p_k or p_jp_k directly and not the derived value of p_j , which is quoted in our table in order to give a sense of the contribution of the measurement to the average. When the measurement depends on p_i in some other way, it is also included in our fit for p_i , but in the tables no derived value is shown. Instead, the measured function f of parameters is given in a footnote "Measurement of f used in our fit". Where available, correlations between measurements are taken into account. We consider correlations not only between measurements of the same parameter, as done in our previous publication [1], but also among parameters. The correlation coefficients among parameters are quoted in the detailed version of the tables in this web page.

If one or more experiments report a BF measurement with a significance of more than three standard deviations (σ), all available central values for that BF are used in our average. For BFs that do not satisfy this criterion, the most stringent limit is used. Quoted upper limits are at 90% confidence level (CL), unless mentioned otherwise. For observables that are not BFs, such as A_{CP} or polarization fractions, we include in our averages all the available

¹The treatment of intermediate charm or charmonium states differs between observables and sometimes among results for the same observable. In the latter case, when these results are averaged, we indicate the differences by footnotes.

results, regardless of their significance. Most of the branching fractions from *BABAR* and Belle assume equal production of charged and neutral *B*-meson pairs. The best measurements to date show that this is still a reasonable approximation (see Chapter 4 of the latest HFLAV publication), and we make no correction for it. At the end of some of the sections we list results that were not included in the tables. Typical cases are measurements of distributions, such as differential branching fractions or longitudinal polarizations, which are measured in different binning schemes by the different collaborations, and thus cannot be directly used to obtain averages.

Observables obtained by Dalitz-plot analyses are marked by footnotes. In these analyses, different experimental collaborations often use different models, in particular for the non-resonant component. When it applies we detail the model used for the non-resonant component in a footnote. In addition to this, Dalitz-plot analyses often yield multiple solutions. In this case, we take the results corresponding to the global minimum and follow the conclusions of the papers.

The order of entries in the tables of this section corresponds in most cases to that in the 2021 Review of Particle Physics (PDG 2021) [2]. In most of the tables the averages are compared to those from PDG 2021. When this is done, the "Average" column quotes the PDG averages (in grey) only if they differ from ours. In general, this is due to different input parameters, differences in the averaging methods and different rounding conventions. Unlike the PDG, no error scaling is applied in our averages when the fit χ^2 is greater than 1. On the other hand, the fit *p*-value is quoted if it is below 1%. Input values that appear in red are not included in the PDG 2021 average. They are new results published since the closing of PDG 2021 and before the closing of this report in June 2021. Input values in blue are results that were unpublished at the closing of this report (unpublished results are never included in the PDG averages).

Sections 1 and 2 provide compilations of branching fractions of B^0 and B^+ to mesonic and baryonic charmless final states, respectively. Secs. 3 and 4 give branching fractions of *b*-baryon and B_s^0 -meson charmless decays, respectively. In Sec. 6 observables of interest are given for radiative decays and FCNC decays with leptons of B^0 and B^+ mesons, including limits from searches for lepton-flavour/number-violating decays. Sections 7 and 8 give *CP* asymmetries and results of polarization measurements, respectively, in various *b*-hadron charmless decays. Finally, Sec. 5 gives branching fractions of B_c^+ meson decays to charmless final states.

1 Mesonic decays of B^+ and B^0 mesons

This section provides branching fractions of charmless mesonic decays. Tables 1 to 10 are for B^+ and Tables 11 to 24 are for B^0 mesons. For both, decay modes with and without strange mesons in the final state appear in different tables. Finally, Tables 25 and 26 detail several relative branching fractions of B^+ and B^0 decays, respectively. Figure 1 gives a graphic representation of a selection of high-precision branching fractions given in this section.

Parameter $[10^{-6}]$	Measureme	\mathbf{nts}	Average $_{\rm PDG}^{\rm HFLAV}$
	Belle [3]	$23.97 \pm 0.53 \pm 0.71$	
	BaBar [4]	$23.9 \pm 1.1 \pm 1.0$	23.5 ± 0.7
$\mathcal{B}(B^+ \to K^0 \pi^+)^1$	Belle II [5]	$21.4^{+2.3}_{-2.2} \pm 1.6$	23.5 ± 0.1 23.7 ± 0.8
	CLEO $[6]$	$18.8^{+3.7}_{-3.3}{}^{+2.1}_{-1.8}$	20.1 ± 0.0
	LHCb $[7]^2$		
	Belle [3]	$12.62 \pm 0.31 \pm 0.56$	
$\mathcal{B}(B^+ \to K^+ \pi^0)$	BaBar [8]	$13.6 \pm 0.6 \pm 0.7$	12.0 ± 0.5
$\mathcal{D}(D^{+} \rightarrow K^{+} \pi^{-})$	Belle II [9]	$11.9^{+1.1}_{-1.0} \pm 1.6$	12.9 ± 0.0
	CLEO $[6]$	$12.9^{+2.4}_{-2.2}{}^{+1.2}_{-1.1}$	
	BaBar [10]	$71.5 \pm 1.3 \pm 3.2$	
	Belle [11]	$69.2 \pm 2.2 \pm 3.7$	
$\mathcal{B}(R^+ \to n'K^+)$	Belle II $[12]$	$63.4^{+3.4}_{-3.3}\pm3.4$	68.9 ± 2.3
$D(D \rightarrow \eta \Lambda)$	Belle [13]	$61^{+10}_{-8} \pm 1$	70.4 ± 2.5
	CLEO $[14]$	$80^{+10}_{-9} \pm 7$	
	LHCb [15] ³		
$\mathcal{B}(B^+ \rightarrow n' K^*(802)^+)$	BaBar [16]	$4.8^{+1.6}_{-1.4} \pm 0.8$	1 8 +1.8
$D(D \rightarrow \eta R (0.052))$	Belle $[17]$	< 2.9	4.0 -1.6
$\mathcal{B}(B^+ \rightarrow n'(K_\pi)^{*+})$	BaBar [16]	$60^{+2.2} \pm 00$	6.0 ± 2.3
$\mathcal{D}(D \to \eta(\pi\pi)_0)$	DaDai [10]	$0.0_{-2.0} \pm 0.9$	none
$\mathcal{B}(B^+ \to \eta' K_0^*(1430)^+)$	BaBar [16]	$5.2 \pm 1.9 \pm 1.0^{-4}$	5.2 ± 2.1
$\mathcal{B}(B^+ \to n' K^*(1430)^+)$	BaBar [16]	$28.0^{+4.6} + 2.6$	28.0 ± 5.2
$\mathcal{L}(\mathcal{L}^{\prime}, \eta \mathbf{R}_{2}(1400))$		20.0 - 4.3 - 2.0	$28.0^{+5.3}_{-5.0}$

Table 1: Branching fractions of charmless mesonic B^+ decays with strange mesons (part 1).

¹ The PDG average is a result of a fit including input from other measurements.

² Measurement of $\mathcal{B}(B^+ \to K^+ \overline{K}^0) / \mathcal{B}(B^+ \to \overline{K}^0 \pi^+)$ used in our fit.

³ Measurement of $\mathcal{B}(B^0_s \to \eta' \eta') / \mathcal{B}(B^+ \to \eta' K^+)$ used in our fit.

⁴ Multiple systematic uncertainties are added in quadrature.

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ o \eta K^+)^1$	Belle [18] BaBar [10] CLEO [14]	$\begin{array}{c} 2.12 \pm 0.23 \pm 0.11 \\ 2.94 \substack{+0.39 \\ -0.34} \pm 0.21 \\ 2.2 \substack{+2.8 \\ -2.2} \end{array}$	$\begin{array}{c} 2.36 \pm 0.21 \\ 2.36 \stackrel{+0.38}{_{-0.37}} \end{array}$
$\mathcal{B}(B^+ \to \eta K^*(892)^+)$	BaBar [19] Belle [20] CLEO [14]	$\begin{array}{c} 18.9 \pm 1.8 \pm 1.3 \\ 19.3 \substack{+2.0 \\ -1.9} \pm 1.5 \\ 26.4 \substack{+9.6 \\ -8.2} \pm 3.3 \end{array}$	19.3 ± 1.6
$\mathcal{B}(B^+ \to \eta(K\pi)_0^{*+})$	BaBar $[19]$	$18.2 \pm 2.6 \pm 2.6$	18.2 ± 3.7 none
$\mathcal{B}(B^+ \to \eta K_0^*(1430)^+)^2$	BaBar $[19]$	$12.9 \pm 1.8 \pm 1.8$ 3	12.9 ± 2.5 18.2 ± 3.7
$\mathcal{B}(B^+ \to \eta K_2^*(1430)^+)$	BaBar [19]	$9.1 \pm 2.7 \pm 1.4$	9.1 ± 3.0
$\mathcal{B}(B^+ \to \eta(1295)K^+) \times \mathcal{B}(\eta(1295) \to \eta\pi\pi)$	BaBar [21]	$2.9^{+0.8}_{-0.7} \pm 0.2$	$2.9^{+0.8}_{-0.7}$
$\mathcal{B}(B^+ \to \eta(1405)K^+) \times \mathcal{B}(\eta(1405) \to \eta\pi\pi)$	BaBar [21]	< 1.3	< 1.3
$\mathcal{B}(B^+ \to \eta(1405)K^+) \times \mathcal{B}(\eta(1405) \to K^*K)$	BaBar [21]	< 1.2	< 1.2
$\mathcal{B}(B^+ \to \eta(1475)K^+) \times \mathcal{B}(\eta(1475) \to K^*K)$	BaBar [21]	$13.8^{+1.8}_{-1.7}{}^{+1.0}_{-0.6}$	$13.8^{+2.1}_{-1.8}$
$\mathcal{B}(B^+ \to f_1(1285)K^+) \times \mathcal{B}(f_1(1285) \to \eta\pi\pi)$	BaBar [21]	< 0.8	< 0.80 none
$\mathcal{B}(B^+ \to f_1(1420)K^+) \times \mathcal{B}(f_1(1420) \to \eta\pi\pi)$	BaBar [21]	< 2.9	< 2.9
$\mathcal{B}(B^+ \to f_1(1420)K^+) \times \mathcal{B}(f_1(1420) \to K^*K)$	BaBar [21]	< 4.1	< 4.1
$\mathcal{B}(B^+ \to \phi(1680)K^+) \times \mathcal{B}(\phi(1680) \to K^*K)$	BaBar [21]	< 3.4	< 3.4
$\mathcal{B}(B^+ \to f_0(1500)K^+)$	BaBar [22] BaBar [22]	$17 \pm 4 \pm 12^{-4}$ $20 \pm 10 \pm 27^{-5}$	$\begin{array}{c} 17\pm12\\ 4\pm2 \end{array}$
$\mathcal{B}(B^+ \to \omega(782)K^+)^6$	Belle [23] BaBar [24] CLEO [25]	$\begin{array}{c} 6.8 \pm 0.4 \pm 0.4 \\ 6.3 \pm 0.5 \pm 0.3 \\ 3.2 \substack{+2.4 \\ -1.9} \pm 0.8 \end{array}$	6.47 ± 0.40
$\mathcal{B}(B^+ \to \omega(782)K^*(892)^+)$	BaBar [26]	< 7.4	< 7.4
$\mathcal{B}(B^+ \to \omega(782)(K\pi)_0^{*+})$	BaBar [26]	$27.5 \pm 3.0 \pm 2.6$	27.5 ± 4.0
$\mathcal{B}(B^+ \to \omega(782)K_0^*(1430)^+)$	BaBar [26]	$24.0 \pm 2.6 \pm 4.4$	24.0 ± 5.1
$\mathcal{B}(B^+ \to \omega(782)K_2^*(1430)^+)$	BaBar [26]	$21.5 \pm 3.6 \pm 2.4$	21.5 ± 4.3
$\mathcal{B}(B^+ \to a_0(980)^+ K^0) \times \mathcal{B}(a_0(980)^+ \to \eta \pi^+)$	BaBar [27]	< 3.9	< 3.9
$\mathcal{B}(B^+ \to a_0(980)^0 K^+) \times \mathcal{B}(a_0(980)^0 \to \eta \pi^0)$	BaBar [27]	< 2.5	< 2.5

¹ The PDG uncertainty includes a scale factor. ² The PDG entry corresponds to $\mathcal{B}(B^+ \to \eta(K\pi)_0^{*+})$. ³ Multiple systematic uncertainties are added in quadrature. ⁴ Result extracted from Dalitz-plot analysis of $B^+ \to K^+K^+K^-$ decays. ⁵ Result extracted from Dalitz-plot analysis of $B^+ \to K_S^0K_S^0K^+$ decays. ⁶ The measurement from the Dalitz-plot analysis of $B^+ \to K^+\pi^+\pi^-$ decays [28] was not included in this average. It is quoted as a separate entry.

Parameter $[10^{-6}]$	Measureme	ents	Average $_{\rm PDG}^{\rm HFLAV}$
$\mathcal{B}(B^+ \to K^*(892)^0 \pi^+)$	BaBar [28] Belle [29] BaBar [30]	$ \begin{array}{c} 10.8 \pm 0.6 \stackrel{+1.2}{_{-1.4}} 1 \\ 9.67 \pm 0.64 \stackrel{+0.81}{_{-0.89}} 1 \\ 14.6 \pm 2.4 \stackrel{+1.4}{_{-1.5}} 2,3 \end{array} $	10.4 ± 0.8 10.1 ± 0.8
$\mathcal{B}(B^+ \to K^*(892)^+ \pi^0)$	BaBar [30] BaBar [31] CLEO [25]	$9.2 \pm 1.3 \substack{+0.7 \\ -0.8} \substack{2,3 \\ 2,4 \\ -0.8} 3.2 \pm 1.5 \pm 1.1 \\ 7.1 \substack{+11.4 \\ -7.1} \pm 1.0 $	8.8 ± 1.2 6.8 ± 0.9
$\mathcal{B}(B^+ \to K^+ \pi^+ \pi^-)$	LHCb [32] BaBar [28] Belle [29]	$56.05 \pm 0.36 \pm 1.51^{-4} \\ 54.4 \pm 1.1 \pm 4.6^{-1} \\ 48.8 \pm 1.1 \pm 3.6^{-1}$	55.7 ± 1.4 51.0 ± 2.9
$\mathcal{B}(B^+ \to K^+ \pi^+ \pi^- (\mathrm{NR}))$	BaBar [28] Belle [29]	$9.3 \pm 1.0 \substack{+6.9 \\ -1.7} \substack{1.5 \\ 16.9 \pm 1.3 \substack{+1.7 \\ -1.6} \substack{1.5 \\ 1.6 \ -1.7 \ 1}$	$\frac{16.3_{-1.8}^{+2.0}}{16.3_{-1.5}^{+2.1}}$
$\mathcal{B}(B^+ \to \omega(782)K^+ (K^+ \pi^+ \pi^-))^6$	BaBar [28]	$5.9^{+8.8}_{-9.0}{}^{+0.5}_{-0.4}{}^{1}$	$\begin{array}{c} 5.9 \pm 8.9 \\ 5.9 \substack{+8.8 \\ -9.0} \end{array}$
$\mathcal{B}(B^+ \to f_0(980)K^+) \times \mathcal{B}(f_0(980) \to \pi^+\pi^-)$	BaBar [28] Belle [29]	$ \begin{array}{c} 10.3 \pm 0.5 {}^{+2.0 \ 1}_{-1.4} \\ 8.78 \pm 0.82 {}^{+0.85 \ 1}_{-1.76} \end{array} $	$9.40^{+0.84}_{-0.92}\\9.40^{+1.02}_{-1.18}$
$\mathcal{B}(B^+ \to f_2(1270)K^+)$	Belle [29] BaBar [28]		$\begin{array}{c} 1.07 \pm 0.31 \\ 1.07 \pm 0.27 \end{array}$
$\mathcal{B}(B^+ \to f_0(1370)K^+) \times \mathcal{B}(f_0(1370) \to \pi^+\pi^-)$	BaBar [33]	< 10.7 ¹	< 11
$\mathcal{B}(B^+ \to \rho(1450)^0 K^+) \times \mathcal{B}(\rho(1450)^0 \to \pi^+ \pi^-)$	BaBar [33]	< 11.7 ¹	< 12
$\mathcal{B}(B^+ \to f_2'(1525)K^+) \times \mathcal{B}(f_2'(1525) \to \pi^+\pi^-)$	BaBar [33]	$< 3.4^{-1}$	< 3.4
$\mathcal{B}(B^+ \to \rho^0(770)K^+)$	BaBar [28] Belle [29]	$ 3.56 \pm 0.45 ^{+0.57}_{-0.46} {}^{1}_{1} \\ 3.89 \pm 0.47 ^{+0.43}_{-0.41} {}^{1}_{1} $	$\begin{array}{c} 3.74 \pm 0.47 \\ 3.74 \substack{+0.48 \\ -0.45} \end{array}$
$\mathcal{B}(B^+ \to K_0^* (1430)^0 \pi^+)^7$	BaBar [28] Belle [29] BaBar [30]	$\begin{array}{r} 32.0 \pm 1.2 \substack{+10.8 \ 1}{-6.0} \\ 51.6 \pm 1.7 \substack{+7.0 \ 1}{-7.5} \\ 50.0 \pm 4.8 \substack{+6.7 \ 2.3}{-6.6} \end{array}$	$\begin{array}{c} 46.9 \pm 5.0 \\ 39.0 {}^{+5.7}_{-5.0} \end{array}$
$\mathcal{B}(B^+ \to K_2^*(1430)^0 \pi^+)$	BaBar [28] Belle [34]	$5.6 \pm 1.2 ^{+1.8 \ 1}_{-0.8} \\ < 6.9^{\ 1}$	$5.6^{+2.2}_{-1.4}$ $5.6^{+2.2}_{-1.5}$
$\mathcal{B}(B^+ \to K^*(1410)^0 \pi^+)$	Belle [34]	$< 45.0^{-1}$	< 45
$\mathcal{B}(B^+ \to K^*(1680)^0 \pi^+)$	Belle [34] BaBar [33]	$< 12.0^{-1}$ $< 15.0^{-1}$	< 12

Table 3: Branching fractions of charmless mesonic B^+ decays with strange mesons (part 3).

¹ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ \pi^+ \pi^-$ decays. ² Result extracted from Dalitz-plot analysis of $B^+ \to K^0_S \pi^+ \pi^0$ decays.

³ Multiple systematic uncertainties are added in quadrature.

⁴ Using $\mathcal{B}(B^+ \to K^+ K^+ K^-)$.

 5 The total nonresonant contribution is obtained by combining an exponential nonresonant component with the effective-range part of the LASS lineshape.

⁶ This result was not included in the main entry of $\mathcal{B}(B^+ \to \omega(782)K^+)$.

 7 The PDG uncertainty includes a scale factor.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$	
$\mathcal{B}(B^+ \to K^+ \pi^0 \pi^0)$	BaBar [31]	$16.2 \pm 1.2 \pm 1.5$	16.2 ± 1.9	
$\mathcal{B}(B^+ \to f_0(980)K^+) \times \mathcal{B}(f_0($	$980) \to \pi^0 \pi^0)$			
	BaBar [31]	$2.8\pm0.6\pm0.5$	2.8 ± 0.8	
	LHCb [35]	< 0.046		
$\mathcal{B}(B^+ \to K^- \pi^+ \pi^+)$	BaBar [36]	< 0.95	< 0.046	
	Belle [37]	< 4.5		
$\mathcal{B}(B^+ \to K^- \pi^+ \pi^+ (\mathrm{NR}))$	CLEO [38]	< 56	< 56	
$\mathcal{B}(B^+ \to K_1(1270)^0 \pi^+)$	BaBar [39]	< 40	< 40	
$\mathcal{B}(B^+ \to K_1(1400)^0 \pi^+)$	BaBar $[39]$	< 39	< 39	
$\mathcal{B}(B^+ \to K^0 \pi^+ \pi^0)$	CLEO [40]	< 66.0	< 66	
$\mathcal{B}(B^+ \rightarrow K^*(1430)^+ \pi^0)$	BaBar [30]	$172 + 24^{+1.5}$ ^{1,2}	$17.2^{+2.8}_{-3.8}$	
	DaDar [00]	$11.2 \pm 2.1 = 3.0$	$11.9^{+2.0}_{-2.3}$	
$\mathcal{B}(B^+ \to \rho^+(770)K^0)$	BaBar [30]	$9.4 \pm 1.6^{+1.1}_{-2.8}$	$9.4^{+1.9}_{-3.2}$	
		2.8	7.3 +1.0	
$\mathcal{B}(B^+ \to K^*(892)^+\pi^+\pi^-)$	BaBar [41]	$75.3 \pm 6.0 \pm 8.1$	75 ± 10	
$\mathcal{B}(B^+ \to K^*(892)^+ \rho^0(770))$	BaBar [42]	$4.6 \pm 1.0 \pm 0.4$	4.6 ± 1.1	
$\mathcal{B}(B^+ \to f_0(980)K^*(892)^+) \times$	$\mathcal{B}(f_0(980) \to 7)$	$\pi^+\pi^-)$		
	BaBar $[42]$	$4.2\pm0.6\pm0.3$	4.2 ± 0.7	
$\mathcal{B}(B^+ \to a_1(1260)^+ K^0)$	BaBar $[43]$	$34.9\pm5.0\pm4.4$	34.9 ± 6.7	
$\mathcal{B}(B^+ \to b_1(1235)^+ K^0) \times \mathcal{B}(b_1(1235)^0 \to \omega(782)\pi^+)$				
	BaBar $[47]$	$9.6\pm1.7\pm0.9$	9.6 ± 1.9	
$\mathcal{B}(B^+ \rightarrow K^*(892)^0 \circ^+(770))$	BaBar [44]	$9.6\pm1.7\pm1.5$	9.2 ± 1.5	
D(D + R(002) p(110))	Belle $[45]$	$8.9 \pm 1.7 \pm 1.2$ ³	5.2 ± 1.5	
$\mathcal{B}(B^+ \to K_1(1400)^+ \rho^0(770))$	ARGUS [46]	< 780	< 780	
$\mathcal{B}(B^+ \to K_2^*(1430)^+ \rho^0(770))$	ARGUS [46]	< 1500	< 1500	
$\mathcal{B}(B^+ \to b_1(1235)^0 K^+) \times \mathcal{B}(b)$	$_1(1235)^0 \to \omega(7)$	$(782)\pi^0)$		
	BaBar $[48]$	$9.1\pm1.7\pm1.0$	9.1 ± 2.0	
$\mathcal{B}(B^+ \to b_1(1235)^+ K^*(892)^0)$	$\times \mathcal{B}(b_1(1235)^+$	$\rightarrow \omega(782)\pi^+)$		
	BaBar [49]	< 5.9	< 5.9	
$\mathcal{B}(B^+ \to b_1(1235)^0 K^*(892)^+)$	$\times \mathcal{B}(b_1(1235)^0)$	$\rightarrow \omega(782)\pi^0)$		
	BaBar [49]	< 6.7	< 6.7	
¹ Result extracted from Dali	z-plot analysis	s of $B^+ \to K^0_S \pi^+ \pi^0$ of	lecays.	
² Multiple systematic uncerta	ainties are adde	ed in quadrature.		
³ See also Ref. [50].				

Table 4: Branching fractions of charmless mesonic B^+ decays with strange mesons (part 4).

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to K^+ \overline{K}^0)^1$	Belle [3] LHCb [7] BaBar [4]	$\begin{array}{c} 1.11 \pm 0.19 \pm 0.05 \\ 1.51 \pm 0.21 \pm 0.10 \ ^2 \\ 1.61 \pm 0.44 \pm 0.09 \end{array}$	$\begin{array}{c} 1.31 \pm 0.14 \\ 1.31 \pm 0.17 \end{array}$
$\mathcal{B}(B^+ \to \overline{K}^0 K^+ \pi^0)$	CLEO [40]	< 24.0	< 24
$\mathcal{B}(B^+ \to K^+ K^0_S K^0_S)^3$	Belle [51] BaBar [22]	$\begin{array}{c} 10.42 \pm 0.43 \pm 0.22 \\ 10.1 \pm 0.5 \pm 0.3 \end{array} $	10.29 ± 0.37 10.49 ± 0.37
$\mathcal{B}(B^+ \to f_0(980)K^+) \times \mathcal{B}($	$f_0(980) \to K_S^0$	K_S^0)	
	BaBar $[22]$	$14.7 \pm 2.8 \pm 1.8$ ⁴	14.7 ± 3.3
$\mathcal{B}(B^+ \to f_0(1710)K^+) \times \mathcal{B}$	$B(f_0(1710) \rightarrow F)$	$K^0_S K^0_S)$	
	BaBar $[22]$	$0.48^{+0.40}_{-0.24}\pm 0.11^{-4}$	$0.48 {}^{+0.41}_{-0.26}$
$\mathcal{B}(B^+ \to K^+ K^0_S K^0_S(\mathrm{NR}))$	BaBar $[22]$	$19.8 \pm 3.7 \pm 2.5^{-6}$	19.8 ± 4.5
$\mathcal{B}(B^+ \to K^0_S K^0_S \pi^+)$	BaBar [52] Belle [51]	< 0.51 < 0.87	< 0.51
$\mathcal{B}(B^+ \to K^+ K^- \pi^+)$	LHCb [32] Belle [53] BaBar [54]	$\begin{array}{c} 4.97 \pm 0.13 \pm 0.29 \ ^{7} \\ 5.38 \pm 0.40 \pm 0.35 \ ^{8} \\ 5.0 \pm 0.5 \pm 0.5 \end{array}$	5.06 ± 0.26 5.24 ± 0.42
$\mathcal{B}(B^+ \to K^+ K^- \pi^+ (\mathrm{NR}))$	LHCb [55]	$1.625 \pm 0.075 \pm 0.221 \ ^{9,10}$	$\frac{1.62^{+0.24}_{-0.23}}{1.68 \pm 0.26}$
$\mathcal{B}(B^+ \to \overline{K}^*(892)^0 K^+)$	BaBar [56] LHCb $[55]^{11,1}$	< 1.1	$\begin{array}{c} 0.57 {}^{+0.07}_{-0.06} \\ 0.59 \pm 0.08 \end{array}$
$\mathcal{B}(B^+ \to \overline{K}_0^*(1430)^0 K^+)$	BaBar [56] LHCb $[55]^{11,1}$	< 2.2 3	$\begin{array}{c} 0.37 {}^{+0.13}_{-0.12} \\ 0.38 \pm 0.13 \end{array}$

Table 5: Branching fractions of charmless mesonic B^+ decays with strange mesons (part 5).

¹ The PDG average is a result of a fit including input from other measurements.

² Using $\mathcal{B}(B^+ \to K^0 \pi^+)$.

³ PDG uses the BABAR result including the χ_{c0} intermediate state.

⁴ Result extracted from Dalitz-plot analysis of $B^+ \to K^0_S K^0_S K^+$ decays.

⁵ All charmonium resonances are vetoed. The analysis also reports $\mathcal{B}(B^+ \to K^0_S K^0_S K^+) =$ $(10.6 \pm 0.5 \pm 0.3) \times 10^{-6}$ including the χ_{c0} intermediate state.

⁶ The nonresonant amplitude is modelled using a polynomial function of order 2.

- ⁷ Using $\mathcal{B}(B^+ \to K^+ K^+ K^-)$.
- ⁸ Also measured in bins of $m_{K^+K^-}$.
- 9 LHCb uses a model of non-resonant obtained from a phenomenological description of the partonic interaction that produces the final state. This contribution is called single pole in the paper, see Ref. [55] for details.

¹⁰ Using
$$\mathcal{B}(B^+ \to K^+ K^- \pi^+)$$
.

¹¹ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^- \pi^+$ decays. ¹² Measurement of $(\mathcal{B}(B^+ \to \overline{K}^*(892)^0 K^+)\mathcal{B}(K^*(892)^0 \to K\pi)2/3)/\mathcal{B}(B^+ \to K^+ K^- \pi^+)$ used in our fit.

¹³ Measurement of $(\mathcal{B}(B^+ \rightarrow \overline{K}^*_0(1430)^0 K^+)\mathcal{B}(K^*(1430) \rightarrow K\pi)2/3)/\mathcal{B}(B^+ \rightarrow K\pi)^2/3)/\mathcal{B}(B^+ \rightarrow K\pi)^2/3)/2)/\mathcal{B}(B^+ \rightarrow K\pi)^2/3)/2)/2)/\mathcal{B}(B^+ \rightarrow K\pi)^2/3)/2)/2)/2)/2)/2)/2)$ $K^+K^-\pi^+$) used in our fit.

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to K^+ K^- \pi^+) \ \pi \pi \leftrightarrow KK \text{ rescattering}$	LHCb [55]	$0.825 \pm 0.040 \pm 0.065 \ ^{1,2}$	$\begin{array}{c} 0.825 \substack{+0.078 \\ -0.075} \\ 0.853 \pm 0.094 \end{array}$
$\mathcal{B}(B^+ \to K^+ K^+ \pi^-)$	LHCb [35] BaBar [36] Belle [37]	< 0.011 < 0.16 < 2.4	< 0.011
$\mathcal{B}(B^+ \to f_2'(1525)K^+)^3$	BaBar [22] BaBar [22] Belle [34]	$\begin{array}{c} 1.56 \pm 0.36 \pm 0.30 \ {}^{4}\\ 2.8 \pm 0.9 \ {}^{+0.5}_{-0.4} \ {}^{5}\\ < 8.0 \ {}^{4}\end{array}$	$\begin{array}{c} 1.79 \pm 0.42 \\ 1.79 \pm 0.48 \end{array}$
$\mathcal{B}(B^+ \to f_J(2220)K^+) \times \mathcal{B}(f_J(2220) \to p\overline{p})$	Belle [57]	< 0.41	< 0.41
$\mathcal{B}(B^+ \to K^*(892)^+ \pi^+ K^-)$	BaBar [41]	< 11.8	< 12
$\mathcal{B}(B^+ \to K^*(892)^+ \overline{K}^*(892)^0)$	Belle [58] BaBar [59]	$\begin{array}{c} 0.77 {}^{+0.35}_{-0.30} \pm 0.12 \\ 1.2 \pm 0.5 \pm 0.1 \end{array}$	$\begin{array}{c} 0.91 \pm 0.30 \\ 0.91 {}^{+0.30}_{-0.27} \end{array}$
$\mathcal{B}(B^+ \to K^*(892)^+ K^+ \pi^-)$	BaBar [41]	< 6.1	< 6.1
$\mathcal{B}(B^+ \to K^+ K^+ K^-)^{3,6}$	BaBar [22] Belle [34] Belle II LHCb [32] ^{8,9}	$\begin{array}{c} 34.6 \pm 0.6 \pm 0.9 \ ^{4,7} \\ 30.6 \pm 1.2 \pm 2.3 \ ^{4} \\ 32.0 \pm 2.2 \pm 1.4 \\ _{0,10} \end{array}$	32.9 ± 0.8 34.0 ± 1.4
$\mathcal{B}(B^+ \to \phi(1020)K^+)^3$	BaBar [22] Belle [34] Belle II [61] CDF [62] CLEO	$\begin{array}{c} 9.2 \pm 0.4 \substack{+0.7 & 4 \\ -0.5} \\ 9.60 \pm 0.92 \substack{+1.05 & 4 \\ -0.85} \\ 6.7 \pm 1.1 \pm 0.5 \\ 7.6 \pm 1.3 \pm 0.6 \\ 5.5 \substack{+2.1 \\ -1.8} \pm 0.6 \end{array}$	$\begin{array}{c} 8.53 \pm 0.47 \\ 8.83 \substack{+0.67 \\ -0.57} \end{array}$
$\mathcal{B}(B^+ \to f_0(980)K^+) \times \mathcal{B}(f_0(980) \to K^+K^-)$)		
	BaBar $[22]$	$9.4 \pm 1.6 \pm 2.8$ ⁴	9.4 ± 3.2
$\mathcal{B}(B^+ \to a_2(1320)^0 K^+) \times \mathcal{B}(a_2(1320)^0 \to K^+)$	$\frac{1}{K^{-}}$ Belle [34]	< 1.1 ⁴	< 1.1
$\mathcal{B}(B^+ \to \phi(1680)K^+) \times \mathcal{B}(\phi(1680) \to K^+K^-)$) Belle [34]	<0.8 4	< 0.8
$\mathcal{B}(B^+ \to f_0(1710)K^+) \times \mathcal{B}(f_0(1710) \to K^+K)$	(-) BaBar [22]	$1.12 \pm 0.25 \pm 0.50^{-4}$	1.12 ± 0.56
$\mathcal{B}(B^+ \to \overline{K^+ K^+ K^- (\mathrm{NR})})$	Belle [34] BaBar [22]	$24.0 \pm 1.5 ^{+2.6}_{-6.0} \ 22.8 \pm 2.7 \pm 7.6^{-11}$	$23.7^{+3.0}_{-4.9}$ $23.8^{+2.8}_{-4.9}$

Table 6: Branching fractions of charmless mesonic B^+ decays with strange mesons (part 6).

¹ LHCb uses a dedicated lineshape to take into account $\pi\pi \leftrightarrow KK$ rescattering, which is particularly significant in the region $1 < m_{KK} < 1.5 \text{ GeV}/c^2$. See Ref. [55] for details.

² Using $\mathcal{B}(B^+ \to K^+ K^- \pi^+)$.

³ The PDG uncertainty includes a scale factor.

⁴ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^+ K^-$ decays.

⁵ Result extracted from Dalitz-plot analysis of $B^+ \to K^0_S K^0_S K^+$ decays.

⁶ Treatment of charmonium intermediate components differs between the results.

⁷ All charmonium resonances are vetoed, except for χ_{c0} . The analysis also reports $\mathcal{B}(B^+ \to K^+ K^+ K^-) =$ (33.4 ± 0.5 ± 0.9) × 10⁻⁶ excluding χ_{c0} . ⁸ Measurement of $\mathcal{B}(B^+ \to K^+K^-\pi^+)/\mathcal{B}(B^+ \to K^+K^+K^-)$ used in our fit. ⁹ Measurement of $\mathcal{B}(B^+ \to K^+\pi^+\pi^-)/\mathcal{B}(B^+ \to K^+K^+K^-)$ used in our fit.

¹⁰ Measurement of $\mathcal{B}(B^+ \to \pi^+ \pi^+ \pi^-)/\mathcal{B}(B^+ \to K^+ K^+ K^-)$ used in our fit.

¹¹ The nonresonant amplitude is modelled using a polynomial function including S-wave and P-wave terms.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to K^*(892)^+ K^+ K^-)$	BaBar [41]	$36.2 \pm 3.3 \pm 3.6$	36.2 ± 4.9
	BaBar [64]	$11.2 \pm 1.0 \pm 0.9^{-2}$	
$\mathcal{B}(B^+ \to \phi(1020) K^*(802)^+)^1$	Belle [65]	$6.7^{+2.1}_{-1.9}{}^{+0.7}_{-1.0}$	10.6 ± 1.1
$\mathcal{D}(D \rightarrow \psi(1020) \mathcal{K}(052))$	Belle II [61]	$21.7 \pm 4.6 \pm 1.9$	10.0 ± 2.0
	CLEO [63]	$10.6^{+6.4}_{-4.9}{}^{+1.8}_{-1.6}$	
$\mathcal{B}(B^+ \to \phi(1020)(K\pi)_0^{*+})$	BaBar $[66]$	$8.3\pm1.4\pm0.8$	8.3 ± 1.6
$\mathcal{B}(B^+ \to K_1(1270)^+ \phi(1020))$	BaBar $[66]$	$6.1\pm1.6\pm1.1$	6.1 ± 1.9
$\mathcal{B}(B^+ \to K_1(1400)^+ \phi(1020))$	BaBar $[66]$	< 3.2	< 3.2
$\mathcal{B}(B^+ \to K^*(1410)^+ \phi(1020))$	BaBar $[66]$	< 4.3	< 4.3
$\mathcal{B}(B^+ \to K_0^*(1430)^+ \phi(1020))$	BaBar $[66]$	$7.0\pm1.3\pm0.9$	7.0 ± 1.6
$\mathcal{B}(B^+ \to K_2^*(1430)^+ \phi(1020))$	BaBar $[66]$	$8.4\pm1.8\pm1.0$	8.4 ± 2.1
$\mathcal{B}(B^+ \to K_2(1770)^+ \phi(1020))$	BaBar $[66]$	< 15.0	< 15
$\mathcal{B}(B^+ \to \phi(1020)K_2(1820)^+)$	BaBar $[66]$	< 16.3	< 16
$\mathcal{B}(B^+ \to a_1(1260)^+ K^*(892)^0)$	BaBar $[67]$	< 3.6	< 3.6
$\mathcal{B}(P^+ \to \phi(1020)\phi(1020)K^+)^1$	BaBar [68]	$5.6 \pm 0.5 \pm 0.3$ ³	4.98 ± 0.52
$\mathcal{B}(D^* \to \phi(1020)\phi(1020)K^*)$	Belle [69]	$2.6^{+1.1}_{-0.9}\pm 0.3^{3}$	$4.98 {}^{+1.22}_{-1.16}$
$\mathcal{B}(B^+ o \eta' \eta' K^+)$	BaBar $[70]$	< 25.0	< 25
$\mathcal{B}(B^+ \to \phi(1020)\omega(782)K^+)$	Belle [71]	< 1.9	< 1.9
$\mathcal{B}(B^+ \to X(1812)K^+) \times \mathcal{B}(X(1812)K^+) \times \mathcal{B}($	$1812) \to \phi(102)$	$0)\omega(782))$	
	Belle [71]	< 0.32	< 0.32
$\mathcal{B}(B^+ \to h^+ X^0(\text{Familon}))^4$	CLEO [72]	< 49	< 49

Table 7: Branching fractions of charmless mesonic B^+ decays with strange mesons (part 7).

¹ The PDG uncertainty includes a scale factor.

² Combination of two final states of the $K^*(892)^{\pm}$, $K_S^0 \pi^{\pm}$ and $K^{\pm} \pi^0$. In addition to the combined results, the paper reports separately the results for each individual final state.

³ Measured in the $\phi\phi$ invariant mass range below the η_c resonance $(M_{\phi\phi} < 2.85 \text{ GeV}/c^2)$.

 $^{4}h = \pi, K.$

Parameter [10 ⁻⁶]	Measureme	ents	Average $_{\rm PDG}^{\rm HFLAV}$
	Belle [3]	$5.86 \pm 0.26 \pm 0.38$	
p(p+) = -+-0)1	BaBar [8]	$5.02 \pm 0.46 \pm 0.29$	5.48 ± 0.33
$\mathcal{D}(B^+ \to \pi^+\pi^*)^2$	Belle II [9]	$5.5^{+1.0}_{-0.9} \pm 0.7$	5.48 ± 0.41
	CLEO [6]	$4.6^{+1.8}_{-1.6}^{+0.6}_{-0.7}$	
$\mathcal{R}(D^+ \to \pi^+ \pi^+ \pi^-)$	LHCb [32]	$16.06 \pm 0.16 \pm 0.48^{-2}$	16.01 ± 0.49
$\mathcal{B}(B^+ \to \pi^+\pi^-)$	BaBar [73]	$15.2 \pm 0.6 {}^{+1.3}_{-1.2} {}^{3,4,5}_{-1.2}$	$15.20^{+1.43}_{-1.34}$
	LHCb [74]	$8.82 \pm 0.10 \pm 0.50^{-3,6,5,7}$	
$\mathcal{B}(D^+ \rightarrow c^0(770)\pi^+)$	BaBar [73]	$8.1 \pm 0.7 {}^{+1.3}_{-1.6} {}^{3,5}_{-1.6}$	8.76 ± 0.47
$D(D^* \to p^*(110)\pi^*)$	Belle [75]	$8.0^{+2.3}_{-2.0} \pm 0.7$	$8.29^{+1.20}_{-1.28}$
	CLEO $[25]$	$10.4^{+3.3}_{-3.4} \pm 2.1$	
$\mathcal{B}(B^+ \to f_0(980)\pi^+) \times \mathcal{B}(f_0(980) \to \pi^+\pi^-)$	BaBar [73]	$< 1.5^{-3}$	< 1.5
$\mathcal{B}(B^+ \to f_2(1270)\pi^+) \times \mathcal{B}(f_2(1270) \to \pi^+\pi^-)$			
	LHCb [74]	$1.43 \pm 0.05 \pm 0.27$ ^{3,6,5,7}	$1.27^{+0.20}_{-0.23}$
	BaBar [73]	$0.9 \pm 0.2 \substack{+0.3 \ -0.1}^{+0.3 \ 3,5}$	none
$\mathcal{B}(B^+ \to f_2(1270)\pi^+) \times \mathcal{B}(f_2(1270) \to K^+K^-)$)		
		0.077 + 0.040 + 0.040 89	$0.377^{+0.058}_{-0.056}$
	LHCb [55]	$0.377 \pm 0.040 \pm 0.040^{-0.03}$	none
$\mathcal{B}(B^+ \to \rho(1450)^0 \pi^+) \times \mathcal{B}(\rho(1450)^0 \to \pi^+ \pi^-)$			
	LHCb [74]	$0.83 \pm 0.05 \pm 0.89$ ^{3,6,5,7}	$1.14^{+0.59}_{-0.67}$
	BaBar [73]	$1.4 \pm 0.4 \substack{+0.5 \\ -0.8} \stackrel{3.5}{}$	$1.40^{+0.64}_{-0.89}$
$\mathcal{B}(B^+ \to \rho(1450)^0 \pi^+) \times \mathcal{B}(\rho(1450)^0 \to K^+ K^-)$)		0100
		1 7 1 1 0 0 0 1 0 0 0 8 9	1.54 ± 0.11
	LHCb [55]	$1.544 \pm 0.060 \pm 0.089^{-0.05}$	1.60 ± 0.14
$\mathcal{B}(B^+ \to \rho_3(1690)^0 \pi^+) \times \mathcal{B}(\rho_3(1690)^0 \to \pi^+ \pi^-)$	-)		
		$0.02 \pm 0.02 \pm 0.163657$	0.08 ± 0.16
	LHCD [74]	$0.08 \pm 0.02 \pm 0.16^{-0.03,0,0,0,0}$	none
$\mathcal{P}(D^+)$ $\mathbf{r}^+\mathbf{r}^+\mathbf{r}^-)$ C wave	I UCb [74]	$4.04 \pm 0.08 \pm 0.64.105.7$	4.04 ± 0.64
$D(B^+ \rightarrow \pi^+\pi^+\pi^-)$ S-wave	LIIC0 [74]	$4.04 \pm 0.08 \pm 0.04$	none
$\mathcal{B}(B^+ \to f_0(1370)\pi^+) \times \mathcal{B}(f_0(1370) \to \pi^+\pi^-)$	BaBar $[73]$	< 4.0 ³	< 4.0
$\beta(B^+ \to \pi^+ \pi^- \pi^+ (NB))$	BaBar [73]	$5.3 \pm 0.7^{\pm 1.3}$ 11,5	$5.3^{+1.4}_{-1.0}$
	DaDar [10]	$0.0 \pm 0.1 - 0.8$	$5.3^{+1.5}_{-1.1}$

Table 8: Branching fractions of charmless mesonic B^+ decays without strange mesons (part 1).

¹ The PDG uncertainty includes a scale factor.

² Using $\mathcal{B}(B^+ \to K^+ \bar{K^+} K^-)$.

³ Result extracted from Dalitz-plot analysis of $B^+ \to \pi^+ \pi^+ \pi^-$ decays.

⁴ Charm and charmonium contributions are subtracted.

⁵ Multiple systematic uncertainties are added in quadrature.

 6 This analysis uses three different approaches: isobar, *K*-matrix and quasi-model-independent, to describe the *S*-wave component. The results are taken from the isobar model with an additional error accounting for the different S-wave methods as reported in Appendix D of Ref. [76].

⁷ Using $\mathcal{B}(B^+ \to \pi^+ \pi^+ \pi^-)$.

⁸ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^- \pi^+$ decays.

⁹ Using $\mathcal{B}(B^+ \to K^+ K^- \pi^+)$.

¹⁰ LHCb accounts the S-wave component using a model that comprises the coherent sum of a σ pole. See Ref. [74] for details.

¹¹ The nonresonant amplitude is modelled using a sum of exponential functions.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to \pi^+ \pi^0 \pi^0)$	ARGUS [77]	< 890	< 890
$\mathcal{B}(B^+ \to o^+(770)\pi^0)$	BaBar [78]	$10.2 \pm 1.4 \pm 0.9$	10.9 ± 1.5
	Belle [79]	$13.2 \pm 2.3 {}^{+1.4}_{-1.9}$	$10.9^{+1.4}_{-1.5}$
$\mathcal{B}(B^+ \to \pi^+ \pi^+ \pi^- \pi^0)$	ARGUS [77]	< 4000	< 4000
$\mathcal{B}(B^+ \to a^+(770)a^0(770))$	BaBar [80]	$23.7 \pm 1.4 \pm 1.4$	24.0 ± 1.9
	Belle [81]	$31.7 \pm 7.1 \substack{+3.8 \\ -6.7}$	21.0 ± 1.0
$\mathcal{B}(B^+ \to f_0(980)\rho^+(770)) \times \mathcal{B}(f_0(980) \to \pi^+\pi^-)$	BaBar $[80]$	< 2.0	< 2.0
$\mathcal{B}(B^+ \to a_1(1260)^+ \pi^0)$	BaBar $[82]$	$26.4 \pm 5.4 \pm 4.1$	26.4 ± 6.8
$\mathcal{B}(B^+ \to a_1(1260)^0 \pi^+)$	BaBar $[82]$	$20.4\pm4.7\pm3.4$	20.4 ± 5.8
	BaBar [24]	$6.7\pm0.5\pm0.4$	
$\mathcal{B}(B^+ \to (782)_{\pi^+})$	Belle [83]	$6.9\pm0.6\pm0.5$	$6.60_{-0.45}^{+0.46}$
$D(D \rightarrow \omega(102)\pi)$	CLEO [25]	$11.3^{+3.3}_{-2.9}\pm1.4$	6.88 ± 0.49
	LHCb $[74]^{1,2}$	2,3,4	
$\mathcal{B}(B^+ \to \omega(782)\rho^+(770))$	BaBar $[26]$	$15.9\pm1.6\pm1.4$	15.9 ± 2.1
	Belle [18]	$4.07 \pm 0.26 \pm 0.21$	4.02 ± 0.27
$\mathcal{B}(B^+ \to \eta \pi^+)$	BaBar [10]	$4.00 \pm 0.40 \pm 0.24$	4.02 ± 0.27 4.02 ± 0.27
	CLEO [14]	$1.2^{+2.8}_{-1.2}$	-0.26
	BaBar [84]	$9.9 \pm 1.2 \pm 0.8$	6.9 ± 1.0
$\mathcal{B}(B^+ \to \eta \rho^+(770))^5$	Belle [20]	$4.1^{+1.4}_{-1.3} \pm 0.4$	$7.0^{+2.9}$
	CLEO [14]	$4.8^{+5.2}_{-3.8}$	-2.8
	BaBar [10]	$3.5 \pm 0.6 \pm 0.2$	2.68 ± 0.46
$\mathcal{B}(B^+ o \eta' \pi^+)^{\mathrm{s}}$	Belle [11]	$1.76^{+0.07}_{-0.62}{}^{+0.15}_{-0.14}$	$2.70^{+0.87}$
	CLEO [14]	$1.0^{+0.8}_{-1.0}$	0.84
	BaBar [16]	$9.7^{+1.9}_{-1.8} \pm 1.1$	9.8 ± 2.1
$\mathcal{B}(B^+ \to \eta' \rho^+(770))$	CLEO [14]	$11.2^{+11.9}_{-7.0}$	$9.7^{+2.2}$
	Belle [17]	< 5.8	-2.1

Table 9: Branching fractions of charmless mesonic B^+ decays without strange mesons (part 2).

¹ Result extracted from Dalitz-plot analysis of $B^+ \to \pi^+ \pi^-$ decays.

² This analysis uses three different approaches: isobar, K-matrix and quasi-model-independent, to describe the S-wave component. The results are taken from the isobar model with an additional error accounting for the different S-wave methods as reported in Appendix D of Ref. [76].

³ Multiple systematic uncertainties are added in quadrature.

⁴ Measurement of $(\mathcal{B}(B^+ \to \omega(782)\pi^+)\mathcal{B}(\omega(782) \to \pi^+\pi^-))/\mathcal{B}(B^+ \to \pi^+\pi^+\pi^-)$ used in our fit.

 5 The PDG uncertainty includes a scale factor.

Parameter $[10^{-6}]$	Measurement	ts	Average $_{\rm PDG}^{\rm HFLAV}$
$\mathcal{B}(B^+ \to \phi(1020)\pi^+)$	BaBar [85] Belle [86] LHCb [55] ^{1,2}	< 0.24 < 0.33	$\begin{array}{c} 0.031 \substack{+0.015 \\ -0.014 \\ 0.032 \pm 0.015 \end{array}$
$\mathcal{B}(B^+ \to \phi(1020)\rho^+(770))$	BaBar [87]	< 3.0	< 3.0
$\mathcal{B}(B^+ \to a_0(980)^0 \pi^+) \times \mathcal{B}(a_0(980)^0 \to \eta \pi^0)$	BaBar [27]	< 5.8	< 5.8
$\mathcal{B}(B^+ \to \pi^+ \pi^+ \pi^- \pi^-)$	ARGUS [77]	< 860	< 860
$\mathcal{B}(B^+ \to a_1(1260)^+ \rho^0(770))$	CLEO [88]	$< 620.0^{-3}$	< 620
$\mathcal{B}(B^+ \to a_2(1320)^+ \rho^0(770))$	CLEO [88]	$< 720.0^{-3}$	< 720
$\mathcal{B}(B^+ \to b_1(1235)^0 \pi^+) \times \mathcal{B}(b_1(1235)^0 \to \omega(782)\pi^0)$	BaBar [48]	$6.7 \pm 1.7 \pm 1.0$	6.7 ± 2.0
$\mathcal{B}(B^+ \to b_1^+ \pi^0)$	BaBar [47]	< 3.3	< 3.3
$\mathcal{B}(B^+ \to \pi^+ \pi^+ \pi^- \pi^- \pi^0)$	ARGUS [77]	< 6300	< 6300
$\mathcal{B}(B^+ \to b_1(1235)^+ \rho^0(770)) \times \mathcal{B}(b_1(1235)^0 \to \omega(782))$	(π^{+})		
	BaBar [49]	< 5.2	< 5.2
$\mathcal{B}(B^+ \to a_1(1260)^+ a_1(1260)^0)$	ARGUS [77]	< 13000	< 13000
$\mathcal{B}(B^+ \to b_1(1235)^0 \rho^+(770)) \times \mathcal{B}(b_1(1235)^0 \to \omega(782)^0)$	$)\pi^0)$		
	BaBar [49]	< 3.3	< 3.3

Table 10: Branching fractions of charmless mesonic B^+ decays without strange mesons (part 3).

¹ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^- \pi^+$ decays. ² Measurement of $(\mathcal{B}(B^+ \to \phi(1020)\pi^+)\mathcal{B}(\phi(1020) \to K^+K^-))/\mathcal{B}(B^+ \to K^+K^-\pi^+)$ used in our fit. ³ CLEO assumes $\mathcal{B}(\Upsilon(4S) \to B^0\overline{B}^0) = 0.43$. The result has been modified to account for a branching fraction of 0.50.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
	Belle [3]	$20.00 \pm 0.34 \pm 0.60$	
	BaBar [89]	$19.1\pm0.6\pm0.6$	
$\mathcal{P}(D^0 \to U^+ -)$	Belle II [5]	$18.0\pm0.9\pm0.9$	19.5 ± 0.5
$\mathcal{D}(D^* \to K^+ \pi^-)$	CLEO [6]	$18.0^{+2.3}_{-2.1}{}^{+1.2}_{-0.9}$	19.6 ± 0.5
	CDF $[90]^{1,2}$,	$[91]^{3,4}, [92]^{5,6}$	
	LHCb $[93]^{5,6}$,	$^{1}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	Belle [3]	$9.68 \pm 0.46 \pm 0.50$	
$\mathcal{B}(\mathbb{R}^0 \setminus K^0 \pi^0)$	BaBar [95]	$10.1\pm0.6\pm0.4$	9.96 ± 0.48
$D(D \to K \pi)$	Belle II [60]	$10.9^{+2.9}_{-2.6} \pm 1.6$	9.93 ± 0.49
	CLEO $[6]$	$12.8^{+4.0}_{-3.3}{}^{+1.7}_{-1.4}$	
	BaBar [10]	$68.5 \pm 2.2 \pm 3.1$	
	Belle [11]	$58.9^{+3.6}_{-3.5}\pm 4.3$	65.0 ± 2.8
$\mathcal{B}(B^0 \to \eta' K^0)^7$	Belle II $[12]$	$59.9^{+5.8}_{-5.5}\pm2.7$	66.1 ± 4.5
	CLEO [14]	$89.0^{+18.0}_{-16.0}\pm 9.0$	$00.1_{-4.4}$
	LHCb [96] ^{8,9})	
$\mathcal{B}(\mathbb{P}^0 \setminus m' K^*(902)^0)$	Belle [97]	$2.6\pm0.7\pm0.2$	28 ± 0.6
$D(D \to \eta \Lambda (092))$	BaBar [16]	$3.1^{+0.9}_{-0.8} \pm 0.3$	2.0 ± 0.0
$\mathcal{B}(B^0 \to \eta' K_0^* (1430)^0)$	BaBar $[16]$	$6.3 \pm 1.3 \pm 0.9$ ¹⁰	6.3 ± 1.6
$\mathcal{B}(\mathbb{R}^0 \to n'(K_\pi)^{*0})$	BaBar [16]	$74^{+1.5} \pm 0.6$	7.4 ± 1.6
$ \square \square$		1.1 - 1.4 - 0.0	none
$\mathcal{B}(\mathbb{R}^0 \rightarrow n' K^*(1/(30))^0)$	BaBar [16]	$137^{+3.0} + 12$	13.7 ± 3.2
$ \bigcup \bigcup \bigcup \neg \eta \Pi_2(1430)) $		10.1 - 2.9 - 1.2	$13.7^{+3.2}_{-3.1}$

Table 11: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 1).

¹ Measurement of $(\mathcal{B}(B^0_s \to K^-\pi^+)/\mathcal{B}(B^0 \to K^+\pi^-))\frac{f_s}{f_d}$ used in our fit. ² Measurement of $(\mathcal{B}(\Lambda^0_b \to p\pi^-)/\mathcal{B}(B^0 \to K^+\pi^-))(f_{\Lambda^0_b}/f_d)$ used in our fit. ³ Measurement of $\mathcal{B}(B^0 \to K^+K^-)/\mathcal{B}(B^0 \to K^+\pi^-)$ used in our fit. ⁴ Measurement of $(\mathcal{B}(B^0_s \to \pi^+\pi^-)/\mathcal{B}(B^0 \to K^+\pi^-))\frac{f_s}{f_d}$ used in our fit. ⁵ Measurement of $\mathcal{B}(B^0 \to \pi^+\pi^-)/\mathcal{B}(B^0 \to K^+\pi^-)$ used in our fit. ⁶ Measurement of $(\mathcal{B}(B^0_s \to K^+K^-)/\mathcal{B}(B^0 \to K^+\pi^-))\frac{f_s}{f_d}$ used in our fit. ⁷ The DDC uncertainty includes a coole factor.

⁷ The PDG uncertainty includes a scale factor. ⁸ Measurement of $\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \eta) / \mathcal{B}(B^0 \to \eta' K^0)$ used in our fit. ⁹ Measurement of $\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \eta') / \mathcal{B}(B^0 \to \eta' K^0)$ used in our fit.

¹⁰ Multiple systematic uncertainties are added in guadrature.

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0 \rightarrow nK^0)$	Belle [18]	$1.27^{+0.33}_{-0.29}\pm 0.08$	1.23 ± 0.25
	BaBar [10]	$1.15^{+0.43}_{-0.38} \pm 0.09$	$1.23^{+0.27}_{-0.24}$
	BaBar $[19]$	$16.5 \pm 1.1 \pm 0.8$	
$\mathcal{B}(B^0 \to \eta K^*(892)^0)$	Belle $[20]$	$15.2 \pm 1.2 \pm 1.0$	15.9 ± 1.0
	CLEO [14]	$13.8^{+5.5}_{-4.6} \pm 1.6$	
$\mathcal{B}(B^0 \to n(K\pi)^{*0})$	BaBar [19]	$11.0 \pm 1.6 \pm 1.5$	11.0 ± 2.2
	[]		none
$\mathcal{B}(B^0 \to \eta K_0^*(1430)^0)$	BaBar [19]	$7.8 \pm 1.1 \pm 1.1$ 1	7.8 ± 1.5
$\mathbf{N}(\mathbf{D}) = \mathbf{V}^*(1(2))$		0.0.1.0.1.1	11.0 ± 2.2
$\mathcal{B}(B^\circ \to \eta K_2^*(1430)^\circ)$	BaBar [19]	$9.6 \pm 1.8 \pm 1.1$	9.6 ± 2.1
$\mathcal{B}(\mathcal{D})$ (7_{00}) $\mathcal{U}(0)$	Belle $[23]$	$4.5 \pm 0.4 \pm 0.3$	4 70 + 0 49
$\mathcal{B}(B^{\circ} \to \omega(182)K^{\circ})$	DaDar [24]	$5.4 \pm 0.8 \pm 0.3$ 10.0 ± 5.4 \pm 1.4	4.78 ± 0.43
$\mathcal{R}(\mathcal{D}^0) \rightarrow \mathcal{R}(\mathcal{D}^0) \vee \mathcal{R}(\mathcal{D})$	$\frac{\text{CLEO}\left[25\right]}{(080)^{0}}$	$10.0_{-4.2} \pm 1.4$	
$ D(B^\circ \to a_0(980)^\circ K^\circ) \times D(a_0) $	$(980)^\circ \rightarrow \eta \pi^\circ)$ $\mathbf{PaPar} [27]$	< 7.9	~ 7 9
$\mathcal{P}(\mathcal{D}^0 \to L(1925)0 \mathbb{K}^0) \to \mathcal{P}(L)$	$\frac{\text{DaDal}\left[27\right]}{(1925)^{0}}$	$\frac{< 1.0}{(200) - 0}$	< 1.0
$\begin{bmatrix} \mathcal{D}(B^* \to \theta_1(1235)^*K^*) \times \mathcal{D}(\theta_1) \\ \end{bmatrix}$	$(1235)^* \rightarrow \omega(7)$	$(82)\pi^{\circ})$	~ 7 9
$\mathcal{R}(\mathcal{D}^0) \rightarrow \mathcal{R}(\mathcal{D}^0) = \mathcal{V}^+ \rightarrow \mathcal{R}(\mathcal{D}^0)$	$\frac{\text{DaDal} [47]}{(080)^{-1}} \rightarrow m^{-1}$	< 1.0	< 1.0
$D(B^{*} \to a_{0}(980) \ K^{+}) \times D(a_{0})$	$D(980) \rightarrow \eta \pi$ $D_0 D_{0} T_0 = 000$)	< 1.0
$\mathcal{R}(D^0 \rightarrow h (1925) - V^+) \rightarrow \mathcal{R}(D^0)$	$\frac{\text{DaDal}[99]}{(1925)} = 0.000$	$\frac{< 1.9}{(789))}$	< 1.9
$ D(D^* \to b_1(1255) \ K^+) \times D(0) $	$D_1(1250) \rightarrow \omega$ $D_2D_{27}[49]$	$(762)\pi$) 74 + 10 + 10	74 ± 14
$\mathcal{P}(D^0 \rightarrow h (1925)^0 V^*(902)^0)$	$\frac{\text{DaDal} [40]}{(1.025)^0}$	$7.4 \pm 1.0 \pm 1.0$	<i>1.</i> 4 ⊥ 1.4
$\mathcal{D}(B^\circ \to \theta_1(1235)^\circ K^\circ(892)^\circ)$	$\times \mathcal{D}(\theta_1(1233)^\circ)$ $\mathbb{D}_2\mathbb{D}_2\mathbb{D}_2\mathbb{D}_2\mathbb{D}_2$	$\rightarrow \omega(182)\pi^*)$	< 80
$\mathcal{P}(D^0 \to L(1925) - V^*(909)^+)$	$\frac{\text{DaDal} \left[49\right]}{\text{DaDal} \left[1025\right]}$	< 0.0	< 0.0
$\mathcal{B}(B^{\circ} \to \theta_1(1235) \ \text{K}^{\circ}(892)^{\circ})$	$\mathcal{D} \times \mathcal{D}(0_1(1235))$ DeDer [40]	$\rightarrow \omega(782)\pi$)	< 5.0
$\mathcal{P}(\mathcal{D}^0) \rightarrow \pi (1450) - \mathcal{U}^+ \rightarrow \mathcal{P}(\mathcal{D}^0)$	$\frac{\text{DaDar}[49]}{(1450)} = 1000$	$\frac{< 0.0}{)}$	< 0.0
$\begin{bmatrix} \mathcal{D}(D^* \to a_0(1450) \ K^+) \times \mathcal{D}(a) \\ \end{bmatrix}$	$\mu_0(1400) \rightarrow \eta$	″/) ∠91	< 9 1
$\mathcal{B}(D0 \rightarrow V0 V0 (E_{\rm Prov}; 1_{\rm Pro}))$	$\frac{\text{DaDaf}\left[99\right]}{\text{CLEO}\left[79\right]}$	< 0.1	< 0.1 < 50
$\mathcal{D}(\mathcal{D}^{\circ} \to \Lambda_{\check{S}}^{\circ} \Lambda^{\circ}(\text{Familon}))$	$\frac{\text{OLEU}\left[(2) \right]}{\text{DaDay}\left[2 \right]}$	< 33	< 99
$\mathcal{B}(B^0 \to \omega(782)K^*(892)^0)$	Balla [20]	$2.2 \pm 0.0 \pm 0.2$ 1 8 ± 0 7 ± 0 2	2.04 ± 0.49
$\mathcal{B}(D^0 \to (\sqrt{792})(K_{\pi})^{*0})$	$\frac{\text{Define [90]}}{\text{D}_{2}\text{D}_{2}\text{T}_{2}}$	$\frac{1.0 \pm 0.1 \pm 0.3}{10.4 \pm 1.0 \pm 1.7}$	19.4 ± 9.5
$\frac{\mathcal{D}(D^{\circ} \to \omega(102)(K\pi)_{0}^{\circ})}{\mathcal{D}(D^{\circ} \to (702)K^{\circ}(1420)^{\circ})}$	DaDaľ [20]	$10.4 \pm 1.8 \pm 1.1$	10.4 ± 2.0
$\frac{\mathcal{D}(B^\circ \to \omega(782)K_0^\circ(1430)^\circ)}{\mathcal{D}(D^\circ)}$	BaBar [26]	$10.0 \pm 1.0 \pm 3.0$	10.0 ± 3.4
$\mathcal{B}(B^0 \to \omega(782)K_2^*(1430)^0)$	BaBar [26]	$10.1 \pm 2.0 \pm 1.1$	10.1 ± 2.3
$ \mathcal{B}(B^0 \to \omega(782)K^+\pi^-(\mathrm{NR})) \rangle$	Belle [98]	$5.1 \pm 0.7 \pm 0.7$ 2	5.1 ± 1.0

Table 12: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 2).

 1 Multiple systematic uncertainties are added in quadrature. 2 0.755 $< M_{K\pi} < 1.250~{\rm GeV}/c^2.$

Average HFLAV Parameter $[10^{-6}]$ Measurements BaBar [100] $38.5 \pm 1.0 \pm 3.9^{-1}$ $\mathcal{B}(B^0 \to K^+ \pi^- \pi^0)$ 37.8 ± 3.2 $36.6^{\,+4.2}_{\,-4.1}\pm 3.0$ Belle [101] BaBar [100] $6.6 \pm 0.5 \pm 0.8^{-1}$ $\mathcal{B}(B^0 \to \rho^-(770)K^+)$ 7.01 ± 0.92 $15.1^{+3.4}_{-3.3}{}^{+2.4}_{-2.6}{}^2$ Belle [101] $\mathcal{B}(B^0 \to \rho(1450)^- K^+)$ BaBar [100] $2.4 \pm 1.0 \pm 0.6^{-1}$ 2.4 ± 1.2 $\mathcal{B}(B^0 \to \rho(1700)^- K^+)$ BaBar [100] $0.6 \pm 0.6 \pm 0.4^{-1}$ 0.6 ± 0.7 $2.8 \pm 0.5 \pm 0.4$ ³ BaBar [100] $\mathcal{B}(B^0 \to K^+ \pi^- \pi^0 (\mathrm{NR}))$ 2.8 ± 0.6 Belle [101] < 9.4 $\mathcal{B}(B^0 \to (K\pi)_0^{*+}\pi^-) \times \mathcal{B}((K\pi)_0^{*+} \to K^+\pi^0)$ $34.2 \pm 2.4 \pm 4.1$ ¹ BaBar [100] 34.2 ± 4.8 $\mathcal{B}(B^0 \to (K\pi)^{*0}_0 \pi^0) \times \mathcal{B}((K\pi)^{*0}_0 \to K^+\pi^-)$ BaBar [100] $8.6 \pm 1.1 \pm 1.3^{-1}$ 8.6 ± 1.7 $\mathcal{B}(B^0 \to K_2^*(1430)^0 \pi^0)$ BaBar [102] $< 4.0^{-1}$ < 4.0 $\mathcal{B}(B^0 \to K^*(1680)^0 \pi^0)$ $< 7.5^{-1}$ BaBar [102] < 7.5 6.1 ± 1.6 $6.1^{\,+1.6}_{\,-1.5}{}^{\,+0.5}_{\,-0.6}{}^{\,4}$ $\mathcal{B}(B^0 \to K_x^{*0} \pi^0)$ Belle [101] $6.1^{+1.7}_{-1.6}$

Table 13: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 3).

¹ Result extracted from Dalitz-plot analysis of $B^0 \to K^+ \pi^- \pi^0$ decays.

 2 Multiple systematic uncertainties are added in quadrature.

³ The nonresonant amplitude is taken to be constant across the Dalitz plane. ⁴ $1.1 < m_{K\pi} < 1.6 \text{ GeV/c}^2$.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
	BaBar [103]	$50.15 \pm 1.47 \pm 1.76^{-3,4}$	
	Belle [104]	$47.5 \pm 2.4 \pm 3.7^{-3}$	
$\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)^{1,2}$	CLEO [40]	$50.0^{+10.0}_{-9.0} \pm 7.0$	49.7 ± 1.8
	LHCb [105] ⁴	$^{,5,6,7,8}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	$[107]^{10,13}, [107]^{10,14}, [107]^{10,15}$		
	LHCb [108]	$12.60 \pm 0.67 \pm 3.05^{-3,17,4,18}$	14.0 ± 1.7
$\mathcal{B}(B^0 \to K^0 \pi^+ \pi^- (\mathrm{NR}))^{16}$	BaBar [103]	$11.07^{+2.51}_{-0.99} \pm 0.90^{-3,19,4}$	p=1.6‰
	Belle [104]	$19.9 \pm 2.5 {}^{+1.7}_{-2.0} {}^{3,20}_{-2.0}$	$13.9^{+2.6}_{-1.8}$
	BaBar $[103]$	$4.36^{+0.71}_{-0.62} \pm 0.31^{-3.4}$	3.45 ± 0.48
$\mathcal{B}(B^0 \to \rho^0(770)K^0)^{16}$	LHCb [108]	$1.97^{+0.57}_{-0.83} \pm 0.42^{-3,4,18}$	p=1.6‰
	Belle $[104]$	$6.1 \pm 1.0 {}^{+1.1}_{-1.2}$ 3	$3.41^{+1.08}_{-1.14}$

Table 14: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 4).

¹ The PDG average is a result of a fit including input from other measurements.

 2 Treatment of charmonium intermediate components differs between the results.

³ Result extracted from Dalitz-plot analysis of $B^0 \to K_S^0 \pi^+ \pi^-$ decays.

⁴ Multiple systematic uncertainties are added in quadrature.

⁵ Measurement of $\mathcal{B}(\Lambda_b^0 \to p\overline{K}^0\pi^-)/\mathcal{B}(B^0 \to K^0\pi^+\pi^-)$ used in our fit. ⁶ Measurement of $\mathcal{B}(\Lambda_b^0 \to pK^0K^-)/\mathcal{B}(B^0 \to K^0\pi^+\pi^-)$ used in our fit.

⁷ Measurement of $\frac{f_{\Xi_b^0}}{f_d} \mathcal{B}(\Xi_b^0 \to p\overline{K}^0\pi^-) / \mathcal{B}(B^0 \to K^0\pi^+\pi^-)$ used in our fit. ⁸ Measurement of $\frac{f_{\Xi_b^0}}{f_d} \mathcal{B}(\Xi_b^0 \to p\overline{K}^0K^-) / \mathcal{B}(B^0 \to K^0\pi^+\pi^-)$ used in our fit.

⁹ Measurement of $\mathcal{B}(B^0 \to K^*(892)^0 \overline{K}^0 + \text{c.c.}) / \mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$ used in our fit.

¹⁰ Regions corresponding to D, Λ_c^+ and charmonium resonances are vetoed in this analysis.

¹¹ Measurement of $\mathcal{B}(B^0 \to K^0 K^+ \pi^- + \text{c.c.})/\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$ used in our fit.

¹² Measurement of $\mathcal{B}(B^0 \to K^0 K^+ K^-) / \mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$ used in our fit.

¹³ Measurement of $\mathcal{B}(B_s^0 \to K^0 \pi^+ \pi^-)/\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$ used in our fit. ¹⁴ Measurement of $\mathcal{B}(B_s^0 \to K^0 K^+ \pi^- + \text{c.c.})/\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$ used in our fit. ¹⁵ Measurement of $\mathcal{B}(B_s^0 \to K^0 K^+ K^-)/\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$ used in our fit.

¹⁶ The PDG uncertainty includes a scale factor.

¹⁷ The nonresonant component is modelled as a flat contribution over the Dalitz plane.

¹⁸ Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$.

¹⁹ This value includes the flat NR component and the effective range of the LASS lineshape. The value corresponding to the flat component alone is also given in the article.

²⁰ The nonresonant component is modelled using a sum of two exponential functions.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
	BaBar [103]	$8.29^{+0.92}_{-0.81} \pm 0.82^{-1.2}$	
	BaBar [100]	$8.0 \pm 1.1 \pm 0.8^{-3}$	7.64 ± 0.44
$\mathcal{B}(B^0 \to K^*(892)^+\pi^-)$	Belle [104]	$8.4 \pm 1.1^{+1.0}_{-0.9}$	p=1.6‰
	CLEO [40]	$16.0^{+6.0}_{-5.0} \pm 2.0$	7.50 ± 0.44
	LHCb [109] ⁴	$^{,5}, [108]^{1,2,6}$	
$\mathcal{R}(D^0) \to \mathcal{V}^*(1420) + - 7$	BaBar [103]	$29.9^{+2.3}_{-1.7} \pm 3.6^{-1.2}$	$33.6^{+3.8}_{-4.0}$
$\mathcal{D}(D^* \to K_0(1450)^* \pi^*)^*$	Belle $[104]$	$49.7 \pm 3.8 {}^{+6.8}_{-8.2}{}^{1}$	$33.5^{+7.4}_{-7.2}$
$\mathcal{B}(\mathbb{R}^0 \to K^{*+}\pi^{-})$	Bollo [101]	$5.1 \pm 1.5 \pm 0.6.8$	5.1 ± 1.6
$D(D \to K_x \cdot \pi)$	Dene [101]	$5.1 \pm 1.3_{-0.7}$	$5.1^{+1.6}_{-1.7}$
$\mathcal{B}(B^0 \to K^*(1410)^+\pi^-) \times$	$\mathcal{B}(K^*(1410)^+$	$\rightarrow K^0 \pi^+)$	
	Belle [104]	$< 3.8^{-1}$	< 3.8
$\mathcal{B}(B^0 \to (K\pi)_0^{*+}\pi^-) \times \mathcal{B}(K\pi)$	$(K\pi)^{*+}_0 \to K^0$	$\pi^+)$	
	LHCb [108]	$16.95 \pm 0.73 \pm 1.12^{-1,2,9}$	18.6 ± 1.1
	BaBar [103]	$22.7^{+1.7}_{-1.3} \pm 1.3^{-1.2}_{-1.3}$	p=1.6% 16.2 \pm 1.3
$\mathcal{B}(\mathbb{R}^0 \setminus f_1(080) \mathbb{K}^0) \times \mathcal{B}(1)$	$f(080) \rightarrow \pi^+$	$\pi^{-})7$	10.2 1.0
$D(D \rightarrow f_0(980)K) \times D($	I HCh [108]	$0.64 \pm 0.41 \pm 0.70^{-1,2,9}$	0.00 + 0.01
	$\frac{\text{LHCD}}{\text{BaBar}} \begin{bmatrix} 100 \end{bmatrix}$	$9.04 \pm 0.41 \pm 0.79$	8.38 ± 0.01
	$\begin{array}{c} \text{DaDar} \left[103 \right] \\ \text{Bollo} \left[104 \right] \end{array}$	$7.6 \pm 1.7^{+0.9}$ 1	$8.15^{+0.78}_{-0.78}$
	Dene [104]	$1.0 \pm 1.1_{-1.3}$	$\frac{0.17 \pm 0.26}{0.17 \pm 0.26}$
$\mathcal{B}(B^0 \to f_0(500)K^0)$	LHCb [108]	$0.166^{+0.207}_{-0.041} \pm 0.155^{-1.2.9}_{-0.155}$	0.17 - 0.16 p=1.6‰
	- []	-0.041	$0.16^{+0.25}_{-0.16}$
$\mathcal{B}(B^0 \to f_0(1500)K^0) \times \mathcal{R}$	$\mathcal{B}(f_0(1500) \to \pi)$	- ⁺ π ⁻)	
			1.35 ± 0.79
	LHCb [108]	$1.348 \pm 0.280 \pm 0.734^{-1,2,9}$	p=1.6%
	DoDon [109]	$2.71 \pm 0.99 \pm 0.97 1.2$	1.29 ± 0.70
$\mathcal{B}(B^0 \to f_2(1270)K^0)$	DaDaf $[103]$ Bollo $[104]$	$2.(1 - 0.83 \pm 0.8)$	2.1 \pm 1.3 2.7 \pm 1.3
$\mathcal{D}(\mathcal{D}) \to f(1000)0\mathcal{I}(\mathcal{D})$	$\frac{\text{Defile [104]}}{\mathcal{P}(f_{1200})^{0}}$	< 2.0 -, +>	Z.1 -1.2
$\mathcal{B}(B^\circ \to f_x(1300)^\circ K^\circ) \times$	$\mathcal{B}(f_x(1300)^\circ \rightarrow D)$	$\pi'\pi$)	1 01 +0.73
	BaBar [103]	$1.81_{-0.45}^{+0.05} \pm 0.48_{-0.42}^{+0.05}$	$1.81_{-0.66}^{+0.16}$

Table 15: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 5).

 1 Result extracted from Dalitz-plot analysis of $B^0 \to K^0_S \pi^+ \pi^-$ decays.

 2 Multiple systematic uncertainties are added in quadrature.

³ Result extracted from Dalitz-plot analysis of $B^0 \to K^+ \pi^- \pi^0$ decays.

⁴ Measurement of $\mathcal{B}(B^0_s \to K^*(892)^-\pi^+)/\mathcal{B}(B^0 \to K^*(892)^+\pi^-)$ used in our fit. ⁵ Measurement of $\mathcal{B}(B^0 \to K^*(892)^-K^++\text{c.c.})/\mathcal{B}(B^0 \to K^*(892)^+\pi^-)$ used in our fit. ⁶ Measurement of $(\mathcal{B}(B^0 \to K^*(892)^+\pi^-)2/3)/\mathcal{B}(B^0 \to K^0\pi^+\pi^-)$ used in our fit.

⁷ The PDG uncertainty includes a scale factor.

⁸ 1.1 < $m_{K\pi}$ < 1.6 GeV/c². ⁹ Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$.

¹⁰ Using $\mathcal{B}(f_2(1270) \to \pi^+\pi^-)$.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$		
$\mathcal{B}(B^0 \to K^*(892)^0 \pi^0)$	BaBar $[100]$	$3.3 \pm 0.5 \pm 0.4$ ¹	33 + 06		
	Belle [101]	< 3.5	0.0 ± 0.0		
	Belle $[104]$	$< 6.3^{-2}$	3.82 ± 0.36		
$\mathcal{B}(B^0 \to K_2^*(1430)^+\pi^-)$	BaBar $[102]$	$< 16.2^{-1}$	p=1.6%		
	LHCb [108] ^{2,3}	3,4	$3.65^{+0.34}_{-0.33}$		
	Belle [104]	$< 10.1^{-2}$	$14.7^{+1.5}_{-1.3}$		
$\mathcal{B}(B^0 \to K^*(1680)^+\pi^-)$	BaBar [102]	$< 25.0^{-1}$	p=1.6%		
	LHCb [108] ^{2,3}	3,5	14.1 ± 1.0		
$\mathcal{P}(D^0 \rightarrow U^+ + -)$	DELPHI	< 920	< 920		
$\mathcal{B}(B^{\circ} \to K^{+}\pi^{-}\pi^{+}\pi^{-})$	[110]	< 230	< 230		
$\mathcal{B}(B^0 \to \rho^0(770)K^+\pi^-)$	Belle [111]	$2.8 \pm 0.5 \pm 0.5$ ⁶	2.8 ± 0.7		
$\mathcal{B}(B^0 \to f_0(980)K^+\pi^-) \times \mathcal{B}$	$(f_0(980) \rightarrow \pi\pi)$)			
	Belle [111]	$1.4 \pm 0.4 {}^{+0.3}_{-0.4} {}^{6}_{-0.4}$	$1.4^{+0.5}_{-0.6}$		
$\mathcal{B}(B^0 \to K^+ \pi^- \pi^+ \pi^- (\mathrm{NR}))$	Belle [111]	$< 2.1^{-6,7}$	< 2.1		
$\mathcal{B}(B^0 \to K^*(892)^0 \pi^+ \pi^-)$	BaBar $[112]$	$54.5 \pm 2.9 \pm 4.3$	54.5 ± 5.2		
$\mathcal{P}(D^0 \to U^*(902)^0 0^{-0}(770))$	BaBar [113]	$5.1 \pm 0.6 {}^{+0.6}_{-0.8}$	3.88 ± 0.77		
$\mathcal{B}(B^{\circ} \to K^{\circ}(892)^{\circ}\rho^{\circ}(770))^{\circ}$	Belle $[111]$	$2.1^{+0.8}_{-0.7}{}^{+0.9}_{-0.5}$	$3.88^{+1.33}_{-1.25}$		
$\mathcal{B}(B^0 \to f_0(980)K_0^*(892)^0) \times \mathcal{B}(f_0(980) \to \pi\pi)^8$					
	Belle [111]	$1.4^{+0.6}_{-0.5}^{+0.6}_{-0.4}$	3.90 ± 0.55		
	BaBar [113]	$5.7 \pm 0.6 \pm 0.4$	p=0.1%		
	=		J.90 1 1 25		

Table 16: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 6).

¹ Result extracted from Dalitz-plot analysis of $B^0 \to K^+ \pi^- \pi^0$ decays.

² Result extracted from Dalitz-plot analysis of $B^0 \to K_S^0 \pi^+ \pi^-$ decays.

³ Multiple systematic uncertainties are added in quadrature.

⁴ Measurement of $(\mathcal{B}(B^0 \to K_2^*(1430)^+\pi^-)\mathcal{B}(K_2^*(1430)^+ \to K\pi)2/3)/\mathcal{B}(B^0 \to K^0\pi^+\pi^-)$ used in our fit.

⁵ Measurement of $(\mathcal{B}(B^0 \to K^*(1680)^+\pi^-)\mathcal{B}(K^*(1680)^+ \to K\pi)2/3)/\mathcal{B}(B^0 \to K^0\pi^+\pi^-)$ used in our fit.

 ${}^{6}_{-}$ 0.75 < $\dot{M}(K\pi)$ < 1.20 GeV/c².

 7 0.55 < $\dot{M(\pi\pi)}$ < 1.20 GeV/c².

⁸ The PDG uncertainty includes a scale factor.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$			
$\mathcal{B}(B^0 \to K_1(1270)^+\pi^-)$	BaBar [39]	< 30	< 30			
$\mathcal{B}(B^0 \to K_1(1400)^+\pi^-)$	BaBar [39]	< 27	< 27			
$\mathcal{B}(B^0 \to a_1(1260)^- K^+)$	BaBar [43]	$16.3 \pm 2.9 \pm 2.3$	16.3 ± 3.7			
$\mathcal{B}(B^0 \to K^*(892)^+ \rho^-(770))$	BaBar [113]	$10.3 \pm 2.3 \pm 1.3$	10.3 ± 2.6			
$\mathcal{B}(B^0 \to (K\pi)^{*+}_* \rho^-(770)) \times \mathcal{B}((K\pi)^{*}_* \to K\pi)$	BaBar [113]	< 48	< 48			
			none			
$\mathcal{B}(B^0 \to K_0^*(1430)^+ \rho^-(770))$	BaBar $[113]$	$28 \pm 10 \pm 6^{-1}$	28 ± 12			
$\mathcal{B}(B^0 \to K_1(1400)^0 \rho^0(770))$	ARGUS $[46]$	< 3000	< 3000			
$\mathcal{B}(B^0 \to (K\pi)^{*0}_* o^0(770)) \times \mathcal{B}((K\pi)^*_* \to K\pi)$	BaBar [113]	31 + 4 + 3	31.0 ± 5.0			
		01 ± 1 ± 0	none			
$\mathcal{B}(B^0 \to K_{\circ}^{*}(1430)^{0} \rho^{0}(770))$	BaBar [113]	$27 \pm 4 \pm 4$ ¹	27.0 ± 5.4			
	Dabar [110]		27.0 ± 5.7			
$\mathcal{B}(B^0 \to (K\pi)^{*0}_0 f_0(980)) \times \mathcal{B}(f_0(980) \to \pi\pi) >$	$\langle \mathcal{B}((K\pi)^*_0 \to P) \rangle$	(π)				
	BaBar [113]	$3.1 \pm 0.8 \pm 0.7$	3.1 ± 1.1			
			none			
$\mathcal{B}(B^0 \to K_0^*(1430)^0 f_0(980)) \times \mathcal{B}(f_0(980) \to \pi\pi)$						
	BaBar $[113]$	$2.7 \pm 0.7 \pm 0.6^{-1}$	2.7 ± 0.9			
$\mathcal{B}(B^0 \to K_2^*(1430)^0 f_0(980)) \times \mathcal{B}(f_0(980) \to \pi\pi)$						
	BaBar $[113]$	$8.6 \pm 1.7 \pm 1.0$	8.6 ± 2.0			
	LHCb [94]	$0.0774 \pm 0.0126 \pm 0.0084^{-2}$				
$\mathcal{B}(B^0 \rightarrow K^+ K^-)$	Belle [3]	$0.10 \pm 0.08 \pm 0.04$	0.080 ± 0.015			
$\mathcal{D}(D \to K K)$	CDF [91]	$0.23 \pm 0.10 \pm 0.10$ 2	0.078 ± 0.015			
	BaBar [89]	< 0.5				
$\mathcal{B}(B^0 \to K^0 \overline{K}^0)$	Belle [3]	$1.26 \pm 0.19 \pm 0.05$	1.21 ± 0.16			
	BaBar [4]	$1.08 \pm 0.28 \pm 0.11$	1.21 ± 0.10			
	LHCb [107]	$6.11 \pm 0.45 \pm 0.78^{-3.4}$				
$\mathcal{B}(B^0 \to K^0 K^+ \pi^- + \text{c.c.})$	Belle [114]	$7.20 \pm 0.66 \pm 0.30$	6.7 ± 0.5			
	BaBar $[115]$	$6.4 \pm 1.0 \pm 0.6$				
$\mathcal{B}(B^0 \to K^*(892)^-K^+ + \text{c.c.})$	LHCb [109]	< 0.38 5	< 0.4			
$\mathcal{B}(B^0 \to K^*(892)^0 \overline{K}^0 + c.c.)^6$	LHCb [106]	$< 1.0^{-4}$	< 0.99			
	BaBar [116]	< 1.9	< 0.96			

Table 17: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 7).

¹ Multiple systematic uncertainties are added in quadrature. ² Using $\mathcal{B}(B^0 \to K^+\pi^-)$. ³ Regions corresponding to D, Λ_c^+ and charmonium resonances are vetoed in this analysis. ⁴ Using $\mathcal{B}(B^0 \to K^0\pi^+\pi^-)$. ⁵ Using $\mathcal{B}(B^0 \to K^*(892)^+\pi^-)$. ⁶ 0.75 < $M(K\pi)$ < 1.20 GeV/c².

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$		
$\mathcal{B}(B^0 \to K^+ K^- \pi^0)$	Belle [117]	$2.17 \pm 0.60 \pm 0.24$	2.17 ± 0.65		
$\mathcal{B}(B^0 \to K^0_S K^0_S \pi^0)$	BaBar $[118]$	< 0.9	< 0.9		
$\mathcal{B}(B^0 \to K^0_S K^0_S \eta)$	BaBar $[118]$	< 1.0	< 1.0		
$\mathcal{B}(B^0 \to K^0_S K^0_S \eta')$	BaBar $[118]$	< 2.0	< 2.0		
$\mathcal{B}(B^0 \to K^0 K^+ K^-)$	LHCb [107] BaBar [22] Belle [37]	$27.29 \pm 0.89 \pm 1.90^{-1,2}$ $26.5 \pm 0.9 \pm 0.8^{-3,4}$ $28.3 \pm 3.3 \pm 4.0$	26.8 ± 1.0 26.8 ± 1.1		
$\mathcal{B}(B^0 \to \phi(1020)K^0)$	BaBar [22] Belle II [61] Belle [65] LHCb [119] ⁵	$7.1 \pm 0.6^{+0.4}_{-0.3} \\ 5.9 \pm 1.8 \pm 0.7 \\ 9.0^{+2.2}_{-1.8} \pm 0.7 \\ , \ [120]^{6,7}$	$\begin{array}{c} 7.25 \pm 0.60 \\ 7.32 {}^{+0.69}_{-0.63} \end{array}$		
$\mathcal{B}(B^0 \to f_0(980)K^0) \times \mathcal{B}(f)$	$f_0(980) \to K^+ I$	K ⁻)			
	BaBar $[22]$	$7.0^{+2.6}_{-1.8} \pm 2.4^{-3}$	$7.0^{+3.5}_{-3.0}$		
$\mathcal{B}(B^0 \to f_0(1500)K^0)$	BaBar $[22]$	$13.3^{+5.8}_{-4.4} \pm 3.2^{3}$	$13.3^{+6.6}_{-5.4}$		
$\mathcal{B}(B^0 \to f_2'(1525)K^0)$	BaBar [22]	$0.29^{+0.27}_{-0.18}\pm 0.36^{-3}$	$0.29 {}^{+0.45}_{-0.40}$		
$\mathcal{B}(B^0 \to f_0(1710)K^0) \times \mathcal{B}(f_0(1710) \to K^+K^-)$					
	BaBar $[22]$	$4.4 \pm 0.7 \pm 0.5$ ³	4.4 ± 0.9		
$\mathcal{B}(B^0 \to K^0 K^+ K^- (\mathrm{NR}))$	BaBar [22]	$33 \pm 5 \pm 9^{-8}$	33 ± 10		

Table 18: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 8).

¹ Regions corresponding to D, Λ_c^+ and charmonium resonances are vetoed in this analysis.

² Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$.

³ Result extracted from Dalitz-plot analysis of $B^0 \to K_S^0 K^+ K^-$ decays.

⁴ All charmonium resonances are vetoed, except for χ_{c0} . The analysis also reports $\mathcal{B}(B^0 \to K^0 K^+ K^-) = (25.4 \pm 0.9 \pm 0.8) \times 10^{-6} \text{ excluding } \chi_{c0}.$ ⁵ Measurement of $(\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \phi(1020))/\mathcal{B}(B^0 \to \phi(1020)K^0))(f_{\Lambda_b^0}/f_d)^2$ used in our

- fit.

⁶ Multiple systematic uncertainties are added in quadrature. ⁷ Measurement of $\mathcal{B}(B^0_s \to K^0 \overline{K}^0) / \mathcal{B}(B^0 \to \phi(1020)K^0)$ used in our fit.

⁸ The nonresonant amplitude is modelled using a polynomial function including Swave and P-wave terms.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$	
$\mathcal{B}(D0 \rightarrow W0 W0 W0)1$	BaBar [121]	$6.19 \pm 0.48 \pm 0.19^{-2,3}$	6.04 ± 0.50	
$\mathcal{D}(D \to \Lambda_S \Lambda_S \Lambda_S)$	Belle [37]	$4.2^{+1.6}_{-1.3} \pm 0.8$	$6.04_{-0.52}^{+0.53}$	
$\mathcal{B}(B^0 \to f_0(980)K_S^0) \times \mathcal{B}(f_0(980) \to K_S^0K_S^0)$				
	BaBar $[121]$	$2.7^{+1.3}_{-1.2} \pm 1.3^{-2.3}_{-1.2}$	2.7 ± 1.8	
$\mathcal{B}(B^0 \to f_0(1710)K_S^0) \times \mathcal{B}(f_0(1710)K_S^0))$	$1710) \to K^0_S K^0_S$	(z)		
	BaBar $[121]$	$0.50^{+0.46}_{-0.24} \pm 0.11^{-2,3}$	$0.50 {}^{+0.47}_{-0.26}$	
$\mathcal{B}(B^0 \to f_2(2010)K^0_S) \times \mathcal{B}(f_2(2010)K^0_S))$	$\overline{2010} \to K^0_S K^0_S$	(z)		
	BaBar $[121]$	$0.54^{+0.21}_{-0.20} \pm 0.52^{-2.3}_{-0.20}$	0.54 ± 0.56	
$\mathcal{B}(\mathbb{R}^0 \longrightarrow \mathbb{K}^0 \mathbb{K}^0 \mathbb{K}^0(\mathbb{N}\mathbb{R}))$	BaBar [191]	$133^{+2.2} + 0.64^{+3}$	13.3 ± 2.3	
$B(D \rightarrow K_S K_S K_S (MU))$	DaDai [121]	$13.3_{-2.3} \pm 0.0$	$13.3^{+3.1}_{-3.2}$	
$\mathcal{B}(B^0 \to K^0_S K^0_S K^0_L)$	BaBar $[122]$	$< 16^{-5}$	< 16	
$\mathcal{B}(B^0 \to K^*(892)^0 K^+ K^-)$	BaBar $[112]$	$27.5 \pm 1.3 \pm 2.2$	27.5 ± 2.6	
	BaBar $[123]$	$9.7 \pm 0.5 \pm 0.5$		
	Belle $[124]$	$10.4 \pm 0.5 \pm 0.6$	10.11 ± 0.48	
$\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)$	Belle II [61]	$11.0 \pm 2.1 \pm 1.1$	10.11 ± 0.40 10.04 ± 0.52	
	CLEO [63]	$11.5^{+4.5}_{-3.7}{}^{+1.8}_{-1.7}$	10.04 ± 0.02	
	LHCb $[125]^3$	$^{,6}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
$\mathcal{B}(B^0 \to K^+ \pi^- \pi^+ K^- (\mathrm{NR}))$	Belle [129]	< 71.7 ¹⁰	< 72	
$\mathcal{B}(D^0 \to K^*(s_0))^0 = K^{-1}$	BaBar [112]	$4.6 \pm 1.1 \pm 0.8$	45 + 19	
$\mathcal{D}(D^* \to K^*(892)^*\pi^*K^*)$	Belle [129]	$2.11^{+5.63}_{-5.26}^{+4.85}_{-4.75}$ 10	4.0 ± 1.0	
	LHCb [130]	$0.834 \pm 0.063 \pm 0.158^{-3,11}$	0.92 ± 0.16	
$\mathcal{B}(B^0 \to K^*(892)^0 \overline{K}^*(892)^0)^1$	Belle [129]	$0.26 {}^{+0.33}_{-0.29} {}^{+0.10}_{-0.08}$	0.03 ± 0.10 0.02 +0.25	
	BaBar [131]	$1.28 \substack{+0.35 \\ -0.30} \pm 0.11$	0.00 -0.23	

Table 19: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 9).

 1 The PDG uncertainty includes a scale factor.

² Result extracted from Dalitz-plot analysis of $B^0 \to K^0_S K^0_S K^0_S$ decays.

³ Multiple systematic uncertainties are added in quadrature.

⁴ The nonresonant amplitude is modelled using an exponential function.

The nonresonant amplitude is modelled using all exponential function. ⁵ 0.75 < $M(K\pi)$ < 1.20 GeV/c². ⁶ Measurement of $\mathcal{B}(B_s^0 \to \phi(1020)\overline{K}^*(892)^0)/\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)$ used in our fit. ⁷ Measurement of $\mathcal{B}(B_s^0 \to \phi(1020)\phi(1020))/\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)$ used in our fit. ⁸ Measurement of $\mathcal{B}(B_s^0 \to K^*(892)^0\overline{K}^*(892)^0)/\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)$ used in our fit. ⁹ Measurement of $\mathcal{B}(B_s^0 \to \rho^0(770)\rho^0(770))/\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)$ used in our fit. ¹⁰ 0.70 < $M(K\pi)$ < 1.70 GeV/c². ¹¹ Using $\mathcal{B}(B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0)$.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0 \to K^+ \pi^- K^+ \pi^- (\mathrm{NR}))$	Belle [129]	$< 6.0^{-1}$	< 6.0
$\mathcal{B}(B^0 \to K^*(892)^0 K^+ \pi^-)$	BaBar [112] Belle [129]	$< 2.2 < 7.6^{-1}$	< 2.2
$\mathcal{B}(B^0 \to K^*(892)^0 K^*(892)^0)$	Belle [129] BaBar [131]	< 0.20 < 0.41	< 0.2
$\mathcal{B}(B^0 \to K^*(892)^+ K^*(892)^-)$	BaBar $[132]$	< 2.0	< 2.0
$\mathcal{B}(B^0 \to K_1(1400)^0 \phi(1020))$	ARGUS $[46]$	< 5000	< 5000
$\mathcal{B}(B^0 \to (K\pi)^{*0}_0 \phi(1020))$	Belle [124] BaBar [123]	$\begin{array}{c} 4.3 \pm 0.4 \pm 0.4 \\ 4.3 \pm 0.6 \pm 0.4 \end{array}$	4.30 ± 0.45
$\mathcal{B}(B^0 \to (K\pi)^{*0}_0 \phi), 1.60 < M_{K\pi}$	< 2.15 GeV/c	2.	
	BaBar $[133]$	< 1.7	< 1.7
$\mathcal{B}(B^0 \to K_0^*(1430)^0 \pi^+ K^-)$	Belle $[129]$	$< 31.8^{-1}$	< 32
$\mathcal{B}(B^0 \to K_0^*(1430)^0 \overline{K}^*(892)^0)$	Belle [129]	< 3.3	< 3.3
$\mathcal{B}(B^0 \to K_0^*(1430)^0 \overline{K}_0^*(1430)^0)$	Belle [129]	< 8.4	< 8.4
$\mathcal{B}(B^0 \to \phi(1020) K_0^*(1430)^0)$	BaBar $[123]$	$3.9\pm0.5\pm0.6$	3.90 ± 0.78
$\mathcal{B}(B^0 \to K_0^*(1430)^0 K^*(892)^0)$	Belle [129]	< 1.7	< 1.7
$\mathcal{B}(B^0 \to K_0^*(1430)^0 K_0^*(1430)^0)$	Belle [129]	< 4.7	< 4.7
$\mathcal{B}(B^0 \to \phi(1020)K^*(1680)^0)$	BaBar [133]	< 3.5	< 3.5
$\mathcal{B}(B^0 \to \phi(1020)K_3^*(1780)^0)$	BaBar $[133]$	< 2.7	< 2.7
$\mathcal{B}(B^0 \to \phi(1020)K_4^*(2045)^0)$	BaBar $[133]$	< 15.3	< 15
$\mathcal{B}(B^0 \to \rho^0(770)K_2^*(1430)^0)$	ARGUS [46]	< 1100	< 1100
$\mathcal{B}(B^0 \to \phi(1020)K_2^*(1430)^0)^2$	Belle [124] BaBar [123]	$5.5^{+0.9}_{-0.7} \pm 1.0$ 7.5 \pm 0.9 \pm 0.5	$\begin{array}{c} 6.8 \pm 0.8 \\ 6.8 \substack{+1.0 \\ -0.9} \end{array}$
$\mathcal{B}(B^0 \to \phi(1020)\phi(1020)K^0)$	BaBar [68]	$4.5 \pm 0.8 \pm 0.3$ ³	4.5 ± 0.9
$\mathcal{B}(B^0 \to \eta' \eta' K^0)$	BaBar [70]	< 31.0	< 31

Table 20: Branching fractions of charmless mesonic B^0 decays with strange mesons (part 10).

¹ $0.70 < M(K\pi) < 1.70 \text{ GeV/c}^2$. ² The PDG uncertainty includes a scale factor. ³ Measured in the $\phi\phi$ invariant mass range below the η_c resonance $(M_{\phi\phi} < 0.5)$ $2.85 \text{ GeV}/c^2$).

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$
	LHCb [93]	$5.10 \pm 0.18 \pm 0.35^{-1}$	
	Belle [3]	$5.04 \pm 0.21 \pm 0.18$	
$\mathcal{P}(D^0 \rightarrow -+-)$	CDF [92]	$5.04 \pm 0.33 \pm 0.33$ 1	5.15 ± 0.19
$\mathcal{D}(D^* \to \pi^+\pi^-)$	BaBar [89]	$5.5\pm0.4\pm0.3$	5.12 ± 0.19
	Belle II [5]	$5.8\pm0.7\pm0.3$	
	CLEO $[6]$	$4.5^{+1.4}_{-1.2}{}^{+0.5}_{-0.4}$	
$\mathcal{B}(D^0 \to \pi^0 \pi^0)^2$	Belle [134]	$1.31 \pm 0.19 \pm 0.19$	1.59 ± 0.18
$\mathcal{D}(D \to \pi^+\pi^-)$	BaBar [95]	$1.83 \pm 0.21 \pm 0.13$	1.59 ± 0.26
	Belle [135]	$0.41^{+0.17}_{-0.15}{}^{+0.05}_{-0.07}$	0.41 ± 0.17
$\mathcal{B}(B^0 \to \eta \pi^0)$	BaBar [84]	< 1.5	0.41 ± 0.17 0.41 +0.18
	CLEO $[14]$	< 2.9	$0.41_{-0.17}$
$\mathcal{B}(B^0 \to \eta\eta)$	BaBar $[10]$	< 1.0	< 1.0
$\mathcal{B}(B^0 \setminus n' \pi^0)^2$	BaBar [84]	$0.9\pm0.4\pm0.1$	1.2 ± 0.4
$\mathcal{D}(D \to \eta \pi)$	Belle [11]	$2.79^{+1.02}_{-0.96}{}^{+0.25}_{-0.34}$	1.2 ± 0.6
$\mathcal{B}(\mathbb{R}^0 \rightarrow n'n')$	BaBar $[10]$	< 1.7	< 17
	Belle [17]	< 6.5	< 1.1
$\mathcal{B}(B^0 \rightarrow n'n)$	BaBar [84]	< 1.2	< 1.9
	Belle [17]	< 4.5	< 1.2
$\mathcal{B}(B^0 \rightarrow n' o^0(770))$	Belle $[17]$	< 1.3	< 1.3
$\mathcal{D}(\mathcal{D} \to \eta \rho (110))$	BaBar [16]	< 2.8	< 1.0
$\mathcal{B}(B^0 \to f_0(980)\eta')$	$\times \mathcal{B}(f_0(980) \rightarrow$	$\cdot \pi^+\pi^-)$	
	BaBar [16]	< 0.9	< 0.9
$\mathcal{B}(\mathbb{R}^0 \to \mathbb{R}^0(770))$	BaBar $[99]$	< 1.5	< 1.5
	Belle [20]	< 1.9	< 1.0
$ \mathcal{B}(B^0 \to f_0(980)\eta) \rangle$	$\mathcal{B}(f_0(980) \rightarrow$	$\pi^+\pi^-)$	
	BaBar $[99]$	< 0.4	< 0.4
$\mathcal{B}(B^0 \to \omega(782)\eta)$	BaBar $[10]$	$0.94^{+0.35}_{-0.30}\pm 0.09$	$0.94 {}^{+0.36}_{-0.31}$

Table 21: Branching fractions of charmless mesonic B^0 decays without strange mesons (part 1).

¹ Using $\mathcal{B}(B^0 \to K^+\pi^-)$. ² The PDG uncertainty includes a scale factor.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$		
$\mathcal{B}(B^0 \to \omega(782)\eta')$	BaBar [10] Belle [17]	$\frac{1.01 + 0.46}{-0.38} \pm 0.09 \\ < 2.2$	$1.01 {}^{+0.47}_{-0.39}$		
$\mathcal{B}(B^0 \to \omega(782)\rho^0(770))$	BaBar [26]	< 1.6	< 1.6		
$\mathcal{B}(B^0 \to f_0(980)\omega(782)) \times$	$\mathcal{B}(f_0(980) \to \pi$	$(-+\pi^{-})$			
	BaBar $[26]$	< 1.5	< 1.5		
$\mathcal{B}(B^0 \to \omega(782)\omega(782))$	BaBar $[136]$	$1.2 \pm 0.3 {}^{+0.3}_{-0.2}$	1.2 ± 0.4		
$\mathcal{B}(B^0 \to \phi(1020)\pi^0)$	Belle [86] BaBar [85]	< 0.15 < 0.28	< 0.15		
$\mathcal{B}(B^0 \to \phi(1020)\eta)$	BaBar [10]	< 0.5	< 0.5		
$\mathcal{B}(B^0 \to \phi(1020)\eta')$	Belle [17] BaBar [10]	< 0.5 < 1.1	< 0.5		
$\mathcal{B}(B^0 \to \phi(1020)\pi^+\pi^-)$	LHCb [137]	$0.182 \pm 0.025 \pm 0.043$ ^{1,2}	0.182 ± 0.050		
$\mathcal{B}(B^0 \to \phi(1020)\rho^0(770))$	BaBar [87]	< 0.33	< 0.33		
$\mathcal{B}(B^0 \to f_0(980)\phi(1020)) >$	$\langle \mathcal{B}(f_0(980) \rightarrow$	$\pi^{+}\pi^{-})$			
	BaBar [87]	< 0.38	< 0.38		
$\mathcal{B}(B^0 \to \omega(782)\phi(1020))$	BaBar [136]	< 0.7	< 0.7		
$\mathcal{B}(B^0 \to \phi(1020)\phi(1020))$	LHCb [138] BaBar [87]	< 0.027 < 0.2	< 0.027		
$\mathcal{B}(B^0 \to a_0(980)^+\pi^- + \text{c.c.}) \times \mathcal{B}(a_0(980)^+ \to \eta\pi^+)$					
	BaBar $[99]$	< 3.1	< 3.1		
$\mathcal{B}(B^0 \to a_0(1450)^+\pi^-+\text{c.c})$	$.) \times \mathcal{B}(a_0(1450))$	$^+ \to \eta \pi^+)$			
	BaBar [99]	< 2.3	< 2.3		
$\mathcal{B}(B^0 \to \pi^+ \pi^- \pi^0)$	ARGUS [77]	< 720	< 720		
$\mathcal{B}(B^0 \to \rho^0(770)\pi^0)$	Belle [139] BaBar [140] CLEO [25]	$\begin{array}{c} 3.0 \pm 0.5 \pm 0.7 \ ^{3} \\ 1.4 \pm 0.6 \pm 0.3 \\ 1.6 \ ^{+2.0}_{-1.4} \pm 0.8 \end{array}$	2.0 ± 0.5		
$\mathcal{B}(B^0 \to \rho^+(770)\pi^- + \text{c.c.})$	Belle [139] BaBar [141] CLEO [25]	$22.6 \pm 1.1 \pm 4.4^{3}$ $22.6 \pm 1.8 \pm 2.2$ $27.6^{+8.4}_{-7.4} \pm 4.2$	23.0 ± 2.3		
$\mathcal{B}(B^0 \to \pi^+ \pi^- \pi^+ \pi^-)$	Belle [142] BaBar [143]	< 11.2 ⁴ < 23.1 ⁵	< 11		

Table 22: Branching fractions of charmless mesonic B^0 decays without strange mesons (part 2).

¹ 400 < $M(\pi^+\pi^-)$ < 1600 MeV/c². ² Multiple systematic uncertainties are added in quadrature. ³ Result extracted from Dalitz-plot analysis of $B^0 \to \pi^+\pi^-\pi^0$ decays. ⁴ 0.52 < $m_{\pi^+\pi^-}$ < 1.15 GeV/c². ⁵ 0.55 < $m_{\pi^+\pi^-}$ < 1.050 GeV/c².

Table 23: Branching fractions of charmless mesonic B^0 decays without strange mesons (part 3).

Parameter [10 ⁻⁶]	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0 \to \rho^0(770)\pi^+\pi^-)$	BaBar [143] Belle [142]	$< 8.8^{-1}$ $< 12.0^{-2}$	< 8.8
$\mathcal{B}(B^0 \to \rho^0(770)\rho^0(770))$	LHCb [128] Belle [142] BaBar [143]	$\begin{array}{c} 0.95 \pm 0.17 \pm 0.10 \ ^{3} \\ 1.02 \pm 0.30 \pm 0.15 \\ 0.92 \pm 0.32 \pm 0.14 \end{array}$	0.96 ± 0.15
$\mathcal{B}(B^0 \to f_0(980)\pi^+\pi^-) \times \mathcal{B}(f_0(980)\pi^+\pi^-) \times \mathcal{B}(f_0(980)\pi^+) \times \mathcal{B}(f_0(980)$	$\begin{array}{l} 0) \rightarrow \pi^+ \pi^-) \\ \text{Belle [142]} \end{array}$	< 3.0 2	< 3.0
$\mathcal{B}(B^0 \to f_0(980)\rho^0(770)) \times \mathcal{B}(f_0(980)\rho^0(770)) \times \mathcal{B}(f_0(980)$	$(980) \rightarrow \pi^+\pi^-)$ Belle [142] BaBar [143]	$\begin{array}{l} 0.78 \pm 0.22 \pm 0.11 \\ < 0.40 \end{array}$	0.78 ± 0.25
$\mathcal{B}(B^0 \to f_0(980)f_0(980)) \times \mathcal{B}(f_0(980)) \times \mathcal{B}(f_$	$(143) \rightarrow \pi^+\pi^-)$ BaBar [143] Belle [142]		< 0.19
$\mathcal{B}(B^0 \to f_0(980)f_0(980)) \times \mathcal{B}(f_0(980)) \times \mathcal{B}(f_$	$(\overline{080}) \rightarrow \pi^+\pi^-)$ BaBar [87]	$\overline{\mathcal{B}(f_0(980) \to K^+K^-)} < 0.23$	< 0.23
$\mathcal{B}(B^0 \to a_1(1260)^+ \pi^- + \text{c.c.})^4$	Belle [144] BaBar [145]	$22.2 \pm 2.0 \pm 2.8 \\ 33.2 \pm 3.8 \pm 3.0$	25.9 ± 2.8 25.9 ± 5.2
$\mathcal{B}(B^0 \to a_2(1320)^+\pi^- + \text{c.c.})$ $\mathcal{B}(B^0 \to \pi^+\pi^-\pi^0\pi^0)$	Belle [144]	< 6.3	< 6.3
$\frac{\mathcal{B}(B^0 \to \rho^+(770)\rho^-(770))}{\mathcal{B}(B^0 \to \rho^+(770)\rho^-(770))}$	Belle [146] BaBar [147]	$28.3 \pm 1.5 \pm 1.5 \\ 25.5 \pm 2.1 ^{+3.6}_{-3.9}$	27.7 ± 1.9
$\mathcal{B}(B^0 \to a_1(1260)^0 \pi^0)$	ARGUS [77]	< 1100	< 1100
$\mathcal{B}(B^0 \to \omega(782)\pi^0)$	BaBar [84] Belle [83]	< 0.5 < 2.0	< 0.5
$\mathcal{B}(B^0 \to \pi^+ \pi^+ \pi^- \pi^- \pi^0)$	ARGUS [77]	< 9000	< 9000
$\mathcal{B}(B^0 \to a_1(1260)^+ \rho^-(770) + \text{c.c.})$	BaBar $[148]$	< 61.0	< 61
$\mathcal{B}(B^0 \to a_1(1260)^0 \rho^0(770))$	ARGUS [77]	< 2400	< 2400

 $\frac{1}{2} \frac{0.55}{(1-2)} < m_{\pi^+\pi^-} < 1.050 \text{ GeV}/c^2.$ $\frac{2}{3} \frac{0.52}{(1-2)} < m_{\pi^+\pi^-} < 1.15 \text{ GeV}/c^2.$ $\frac{3}{4} \text{ Using } \mathcal{B}(B^0 \to \phi(1020)K^*(892)^0).$ $\frac{4}{4} \text{ The PDG uncertainty includes a scale factor. }$

Parameter $[10^{-6}]$	Measureme	Average $_{PDG}^{HFLAV}$				
$\mathcal{B}(B^0 \to b_1(1235)^+\pi^- + \text{c.c.}) \times$	$\mathcal{B}(B^0 \to b_1(1235)^+\pi^- + \text{c.c.}) \times \mathcal{B}(b_1(1235)^+ \to \omega(782)\pi^+)$					
	BaBar $[48]$	$10.9\pm1.2\pm0.9$	10.9 ± 1.5			
$\mathcal{B}(B^0 \to b_1(1235)^0 \pi^0) \times \mathcal{B}(b_1(1235)^0 \pi^0) $	$(1235)^0 \to \omega(78)$	$(52)\pi^0)$				
	BaBar $[47]$	< 1.9	< 1.9			
$\mathcal{B}(B^0 \to b_1(1235)^- \rho^+(770)) \times$	$\mathcal{B}(b_1(1235)^$	$\rightarrow \omega(782)\pi^{-})$				
	BaBar [49]	< 1.4	< 1.4			
$\mathcal{B}(B^0 \to b_1(1235)^0 \rho^0(770)) \times \mathcal{B}(b_1(1235)^0 \to \omega(782)\pi^0)$						
	BaBar $[49]$	< 3.4	< 3.4			
$\mathcal{B}(B^0 \to \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^-)$	ARGUS [77]	< 3000	< 3000			
$\mathcal{B}(B^0 \to a_1(1260)^+ a_1(1260)^-)$	$) \times \mathcal{B}(a_1(1260)^+)$	$^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}) \times \mathcal{B}(a)$	$\pi_1(1260)^- \to \pi^-\pi^-\pi^+)$			
	BaBar $[149]$	$11.8\pm2.6\pm1.6$	11.8 ± 3.1			
$\mathcal{B}(B^0 \to \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^0)$	ARGUS [77]	< 11000	< 11000			

Table 24: Branching fractions of charmless mesonic B^0 decays without strange mesons (part 4).

Table 25: Relative branching fractions of charmless mesonic B^+ decays.

Parameter	Measureme	ents	Average
$\boxed{\frac{\mathcal{B}(B^+ \to K^+ K^- \pi^+)}{\mathcal{B}(B^+ \to K^+ K^+ K^-)}}$	LHCb [32]	$0.151 \pm 0.004 \pm 0.008$	0.151 ± 0.009
$\frac{\mathcal{B}(B^+ \to K^+ \pi^+ \pi^-)}{\mathcal{B}(B^+ \to K^+ K^+ K^-)}$	LHCb [32]	$1.703 \pm 0.011 \pm 0.022$	1.703 ± 0.025
$\boxed{\frac{\mathcal{B}(B^+ \to \pi^+ \pi^-)}{\mathcal{B}(B^+ \to K^+ K^+ K^-)}}$	LHCb [32]	$0.488 \pm 0.005 \pm 0.009$	0.488 ± 0.010

Parameter	Measureme	ents	Average
$\boxed{\frac{\mathcal{B}(B^0 \to K^+ K^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)} \ [10^{-3}]}$	LHCb [94] CDF [91]	$3.98 \pm 0.65 \pm 0.42$ $12 \pm 5 \pm 5$	4.07 ± 0.77
$\frac{\mathcal{B}(B^0 \to K^*(892)^+ K^- + \text{c.c.})}{\mathcal{B}(B^0 \to K^*(892)^+ \pi^-)} \ [10^{-2}]$	LHCb [109]	< 5	< 5.0
$\boxed{\frac{\mathcal{B}(B^0 \to K^0_S K^*(892)^0 + \text{c.c.})}{\mathcal{B}(B^0 \to K^0_S \pi^+ \pi^-)}} \ [10^{-2}]}$	LHCb [106]	< 2	< 2.0
$\frac{\mathcal{B}(B^0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)}$	LHCb [93] CDF [92]	$\begin{array}{c} 0.262 \pm 0.009 \pm 0.017 \\ 0.259 \pm 0.017 \pm 0.016 \end{array}$	0.261 ± 0.015
$\frac{\mathcal{B}(B^0 \to K^0 K^+ \pi^- + \text{c.c.})}{\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)}$	LHCb [107]	$0.123 \pm 0.009 \pm 0.015^{-1}$	0.123 ± 0.017
$\boxed{\frac{\mathcal{B}(B^0 \to K^0 K^+ K^-)}{\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)}}$	LHCb [107]	$0.549 \pm 0.018 \pm 0.033$ ¹	0.549 ± 0.038
$\frac{\mathcal{B}(B^0 \to K^*(892)^0 \overline{K}^*(892)^0)}{\mathcal{B}(B^0_s \to K^*(892)^0 \overline{K}^*(892)^0)} \ [10^{-2}]$	LHCb [130]	$7.58 \pm 0.57 \pm 0.30$ 2	7.58 ± 0.64
$\frac{f_s}{f_d} \frac{\mathcal{B}(B^0 \to K^+ K^-)}{\mathcal{B}(B^0_s \to K^+ K^-)} \left[10^{-2}\right]$	LHCb [93]	$1.8^{+0.8}_{-0.7}\pm 0.9$	1.8 ± 1.2
$\boxed{\frac{\mathcal{B}(B^0 \to \rho^0(770)\rho^0(770))}{\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)} \ [10^{-2}]}$	LHCb [128]	$9.4\pm1.7\pm0.9$	9.4 ± 1.9
$\frac{\mathcal{B}(B^0 \to K^0 \overline{K}^0)}{\mathcal{B}(B^0_s \to K^0 \overline{K}^0)} \ [10^{-2}]$	LHCb [120]	$7.5 \pm 3.1 \pm 0.6$ ²	7.5 ± 3.2
$\boxed{\frac{\mathcal{B}(B^0 \to K^0 \overline{K}^0)}{\mathcal{B}(B^0 \to \phi(1020)K^0)}}$	LHCb [120]	$0.17 \pm 0.08 \pm 0.02$	0.17 ± 0.08
$\frac{\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)}{\mathcal{B}(B^0 \to J/\psi K^{*0}) \times \mathcal{B}(J/\psi \to \mu^+\mu^-) \times \mathcal{B}(K^{*0} \to K^+\pi^-)}$	$\frac{1}{\tau^{-}}$ [10 ⁻⁴]		
	LHCb [150]	$4.1 \pm 1.0 \pm 0.3$ ^{3,4}	4.1 ± 1.0

Table 26: Relative branching fractions of charmless mesonic B^0 decays.

¹ Regions corresponding to D, Λ_c^+ and charmonium resonances are vetoed in this analysis. ² Multiple systematic uncertainties are added in quadrature. ³ The mass windows corresponding to ϕ and charmonium resonances decaying to $\mu\mu$ are vetoed. ⁴ $0.5 < m_{\pi^+\pi^-} < 1.3 \text{ GeV/c}^2$.

Figure 1: A selection of high-precision charmless mesonic B meson branching fraction measurements.

2 Baryonic decays of B^+ and B^0 mesons

This section provides branching fractions of charmless baryonic decays of B^+ and B^0 mesons in Tables 27-28 and 29-30, respectively. Relative branching fractions are given in Table 31. Figures 2 and 3 show graphic representations of a selection of results given in this section.

Parameter $[10^{-6}]$	Measuremen	nts	Average $_{PDG}^{HFLAV}$	
$\mathcal{B}(D^+ \to m\bar{\pi} \pi^+)$	Belle [151]	$1.60^{+0.22}_{-0.19} \pm 0.12^{-1}$	1.62 ± 0.21	
$\mathcal{B}(D^+ \to pp\pi^+)$	BaBar $[152]$	$1.69 \pm 0.29 \pm 0.26^{-2}$	$1.62^{+0.21}_{-0.19}$	
$\mathcal{B}(B^+ \rightarrow n\bar{n}\pi^+) m = < 2.85 \text{ GeV}/c^2$	LHCb [153] ³		1.00 ± 0.11	
$\mathcal{D}(D \to pp\pi^{-}), \ m_{p\overline{p}} < 2.05 \text{ GeV/C}$			none	
$\mathcal{B}(B^+ \to p\bar{p}\pi^+(\mathrm{NR}))$	CLEO [38]	< 53	< 53	
$\mathcal{B}(B^+ \to p \overline{p} \pi^+ \pi^0)$	Belle $[154]$	$4.58 \pm 1.17 \pm 0.67 \ ^4$	4.6 ± 1.3	
$\mathcal{B}(B^+ \to p\overline{p}\pi^+\pi^+\pi^-)$	ARGUS [155]	< 520	< 520	
$\mathcal{B}(B^+ \setminus m \overline{n} K^+)^5$	Belle [151]	$5.54^{+0.27}_{-0.25} \pm 0.36^{-1}_{-0.25}$	5.9 ± 0.4	
$\mathcal{D}(D \to ppK)$	BaBar [156]	$6.7 \pm 0.5 \pm 0.4$ ²	5.9 ± 0.5	
$\mathcal{B}(B^+ \rightarrow n\overline{n}K^+)$ m = < 2.85 GeV/c ²	LHCb [157] ⁶		$4.37^{+0.30}_{-0.29}$	
$D(D \rightarrow ppR), m_{pp} < 2.05 \text{ GeV/e}$			none	
$\mathcal{B}(B^+ \to \Theta^{++}(1710)\overline{p}) \times \mathcal{B}(\Theta^{++}(1710) \to pK^+)^7$				
	Belle $[57]$	< 0.091	< 0.091	
$\mathcal{B}(B^+ \to f_J(2220)K^+) \times \mathcal{B}(f_J(2220) \to p\overline{p})$				
	Belle $[57]$	< 0.41	< 0.41	
$\mathcal{B}(B^+ \rightarrow n\overline{A}(1520))$	BaBar [156]	< 1.5	$0.305 \substack{+0.084 \\ -0.081}$	
$\mathcal{D}(D \rightarrow pn(1520))$	LHCb $[153]^{8}$		0.315 ± 0.055	
$\mathcal{B}(B^+ \to p\overline{p}K^+(\mathrm{NR}))$	CLEO [38]	< 89	< 89	

Table 27: Branching fractions of charmless baryonic B^+ decays (part 1).

¹ The charmonium mass regions are vetoed.

² Charmonium decays to $p\overline{p}$ have been statistically subtracted.

³ Measurement of $\mathcal{B}(B^+ \to p\bar{p}\pi^+)$, $m_{p\bar{p}} < 2.85 \text{ GeV/c}^2/(\mathcal{B}(B^+ \to J/\psi\pi^+)\mathcal{B}(J/\psi \to p\bar{p}))$ used in our fit.

 $^4 m_{\pi^+\pi^0} < 1.3 \text{ GeV/c}^2.$

⁵ The PDG uncertainty includes a scale factor.

- ⁶ Measurement of $\mathcal{B}(B^+ \to p\overline{p}K^+)$, $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2/(\mathcal{B}(B^+ \to J/\psi K^+)\mathcal{B}(J/\psi \to p\overline{p}))$ used in our fit.
- ⁷ Pentaquark candidate.
- ⁸ Measurement of $(\mathcal{B}(B^+ \to p\overline{\Lambda}(1520))\mathcal{B}(\overline{\Lambda(1520)} \to K^+p))/(\mathcal{B}(B^+ \to J/\psi K^+)\mathcal{B}(J/\psi \to p\overline{p}))$ used in our fit.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to p\overline{p}K^*(892)^+)$	Belle [158] BaBar [152]	$\begin{array}{c} 3.38 {}^{+0.73}_{-0.60} \pm 0.39^{-1} \\ 5.3 \pm 1.5 \pm 1.3^{-2} \end{array}$	$3.6^{+0.8}_{-0.7}$
$\mathcal{B}(B^+ \to f_J(2220)K^*(892))$	$)^+) \times \mathcal{B}(f_J(222))$	$(0) \to p\overline{p})$	
	BaBar $[152]$	< 0.77	< 0.77
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0)$	LHCb [159] Belle [160]	$ \begin{array}{c} 0.24 {}^{+0.10}_{-0.08} \pm 0.03 \\ < 0.32 \end{array} $	$0.24{}^{+0.10}_{-0.09}$
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 \pi^0)$	Belle [161]	$3.00^{+0.61}_{-0.53}\pm 0.33$	$3.00 {}^{+0.69}_{-0.62}$
$\mathcal{B}(B^+ \to p\overline{\Sigma}(1385)^0)$	Belle [161]	< 0.47	< 0.47
$\mathcal{B}(B^+ \to \Delta(1232)^+ \overline{\Lambda}^0)$	Belle [161]	< 0.82	< 0.82
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 \pi^+ \pi^-)$	Belle [162]	$11.28^{+0.91}_{-0.72}\pm1.03$	$\frac{11.3 \pm 1.3}{11.3 {}^{+1.4}_{-1.3}}$
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 \pi^+ \pi^- (\mathrm{NR}))$	Belle [162]	$5.92^{+0.88}_{-0.84} \pm 0.69$	5.9 ± 1.1
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 \rho^0(770)) \times \mathcal{B}$	$(\rho^0(770) \rightarrow \pi^+$	π^{-})	
	Belle [162]	$4.78^{+0.67}_{-0.64} \pm 0.60$	4.8 ± 0.9
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 f_2(1270)) \times k$	$\mathcal{B}(f_2(1270) \to 7)$	$(\pi^{+}\pi^{-})$	
	Belle [162]	$2.03^{+0.77}_{-0.72} \pm 0.27$	2.0 ± 0.8
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 K^+ K^-)$	Belle [163]	$4.10^{+0.45}_{-0.43}\pm0.50$	4.1 ± 0.7
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 \phi(1020))$	Belle [163]	$0.795 \pm 0.209 \pm 0.077$	0.80 ± 0.22
$\mathcal{B}(B^+ \to \overline{p}\Lambda^0 K^+ K^-)$	Belle [163]	$3.70^{+0.39}_{-0.37} \pm 0.44$	3.7 ± 0.6
$\mathcal{B}(B^+ \to \Lambda^0 \overline{\Lambda}^0 \pi^+)$	Belle [164]	< 0.94 ^{3,4}	< 0.94
$\mathcal{B}(B^+ \to \Lambda^0 \overline{\Lambda}^0 K^+)$	Belle [164]	$3.38^{+0.41}_{-0.36} \pm 0.41^{-3}$	$\begin{array}{c} 3.4 \pm 0.6 \\ 3.4 \substack{+0.6 \\ -0.5} \end{array}$
$\mathcal{B}(B^+ \to \Lambda^0 \overline{\Lambda}^0 K^*(892)^+)$	Belle [164]	$2.19^{+1.13}_{-0.88}\pm 0.33^{-3.4}$	$2.2^{+1.2}_{-0.9}$
$\mathcal{B}(B^+ \to \Lambda(1520)\overline{\Lambda}^0 K^+)$	Belle [163]	$2.23 \pm 0.63 \pm 0.25$	2.2 ± 0.7
$\mathcal{B}(B^+ \to \overline{\Lambda}(1520)\Lambda^0 K^+)$	Belle [163]	< 2.08	< 2.1
$\mathcal{B}(B^+ \to \overline{\Delta}(1232)^0 p)$	Belle [151]	< 1.38	< 1.4
$\mathcal{B}(B^+ \to \Delta^{++}\overline{p})$	Belle [151]	< 0.14	< 0.14

Table 28: Branching fractions of charmless baryonic B^+ decays (part 2).

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$	
$\mathcal{B}(B^0 \to p\overline{p})$	LHCb [165] Belle [160] BaBar [166]	$\begin{array}{c} 0.0125 \pm 0.0027 \pm 0.0018 \\ < 0.11 \\ < 0.27 \end{array}$	0.0125 ± 0.0032	
$\mathcal{B}(B^0 \to p\bar{p}\pi^+\pi^-)$	LHCb [167]	$2.7 \pm 0.1 \pm 0.2$ ^{1,2}	2.7 ± 0.2 2.9 ± 0.2	
$\mathcal{B}(B^0 \to p\overline{p}\pi^+\pi^-), \ m_\pi$	$_{\pi^+\pi^-} < 1.22 \text{ Ge}$	V/c^2		
	Belle $[154]$	$0.83 \pm 0.17 \pm 0.17$ 3	0.83 ± 0.24 none	
$\mathcal{B}(B^0 \to p\overline{p}K^+\pi^-)$	LHCb [167]	$5.9 \pm 0.3 \pm 0.5$ ^{1,2}	5.9 ± 0.6 6.3 ± 0.5	
$\mathcal{B}(B^0 \to p\overline{p}K^0)$	Belle [158] BaBar [152]	$\begin{array}{c} 2.51 {}^{+0.35}_{-0.29} \pm 0.21 {}^{4} \\ 3.0 \pm 0.5 \pm 0.3 {}^{5} \end{array}$	2.7 ± 0.3	
$\mathcal{B}(B^0 \to \Theta(1540)^+ \overline{p}) \times \mathcal{B}(\Theta(1540)^+ \to pK_S^0)^6$				
	BaBar [152] Belle [57]	< 0.05 < 0.23	< 0.05	
$\mathcal{B}(B^0 \to f_J(2220)K^0) \times \mathcal{B}(f_J(2220) \to p\overline{p})$				
	BaBar $[152]$	< 0.45	< 0.45	
$\mathcal{B}(B^0 \to p\overline{p}K^*(892)^0)$	Belle [158] BaBar [152]	$\begin{array}{c} 1.18 {}^{+0.29}_{-0.25} \pm 0.11 {}^{4} \\ 1.47 \pm 0.45 \pm 0.40 {}^{5} \end{array}$	$\begin{array}{c} 1.24 \pm 0.27 \\ 1.24 \substack{+0.28 \\ -0.25} \end{array}$	
$\mathcal{B}(B^0 \to f_J(2220)K^*(892)^0) \times \mathcal{B}(f_J(2220) \to p\overline{p})$				
	BaBar $[152]$	< 0.15	< 0.15	

Table 29: Branching fractions of charmless baryonic B^0 decays (part 1).

¹ $m_{p\bar{p}} < 2.85 \text{ GeV/c}^2$. ² Multiple systematic uncertainties are added in quadrature. ³ $0.46 < m_{\pi^+\pi^-} < 0.53 \text{ GeV/c}^2$ invariant mass region has been excluded.

⁴ The charmonium mass region has been vetoed. ⁵ Charmonium decays to $p\overline{p}$ have been statistically subtracted.

⁶ Pentaquark candidate.

Parameter $[10^{-6}]$	Measureme	Measurements		
$\mathcal{B}(B^0 \to p\overline{p}K^+K^-)$	LHCb [167]	$0.113 \pm 0.028 \pm 0.014^{-1,2}$	$\begin{array}{c} \textbf{0.113} \pm \textbf{0.031} \\ \textbf{0.121} \pm \textbf{0.032} \end{array}$	
$\mathcal{B}(B^0 \to p\overline{p}\pi^0)$	Belle [168]	$0.50 \pm 0.18 \pm 0.06$	0.50 ± 0.19	
$\mathcal{B}(B^0 \to pp\overline{p}\overline{p})$	BaBar $[169]$	< 0.2	< 0.2	
$\mathcal{B}(B^0 \to p\overline{\Lambda}^0 \pi^-)$	BaBar [170] Belle [161]	$\begin{array}{c} 3.07 \pm 0.31 \pm 0.23 \\ 3.23 {}^{+0.33}_{-0.29} \pm 0.29 \end{array}$	$\begin{array}{c} 3.14 \pm 0.28 \\ 3.14 \substack{+0.29 \\ -0.28} \end{array}$	
$\mathcal{B}(B^0 \to p\overline{\Sigma}(1385)^-)$	Belle [161]	< 0.26	< 0.26	
$\mathcal{B}(B^0 \to \Delta(1232)^+ \overline{p} + \text{c.c.})$	Belle [168]	< 1.6	< 1.6	
$\mathcal{B}(B^0 \to \Delta(1232)^0 \overline{\Lambda}^0)$	Belle [161]	< 0.93	< 0.93	
$\mathcal{B}(B^0 \to p\overline{\Lambda}^0 K^-)$	Belle [171]	< 0.82	< 0.82	
$\mathcal{B}(B^0 \to p\overline{\Sigma}^0 \pi^-)$	Belle [171]	< 3.8	< 3.8	
$\mathcal{B}(B^0 \to \overline{\Lambda}^0 \Lambda^0)$	Belle [160]	< 0.32	< 0.32	
$\mathcal{B}(B^0 \to \overline{\Lambda}^0 \Lambda^0 K^0)$	Belle [164]	$4.76{}^{+0.84}_{-0.68}\pm 0.61{}^3$	$4.8^{+1.0}_{-0.9}$	
$\mathcal{B}(B^0 \to \Lambda^0 \overline{\Lambda}^0 K^*(892)^0)$	Belle [164]	$2.46^{+0.87}_{-0.72}\pm 0.34^{-3}$	$2.46 {}^{+0.93}_{-0.80}$	
$\mathcal{B}(B^0 \to \Delta(1232)^0 \overline{\Delta}(1232)^0)$	CLEO [88]	< 1500 ⁴	< 1500	
$\mathcal{B}(B^0 \to \Delta^{++} \overline{\Delta}^{})$	CLEO [88]	< 110 ⁴	< 110	

Table 30: Branching fractions of charmless baryonic B^0 decays (part 2).

¹ $m_{p\bar{p}} < 2.85 \text{ GeV/c}^2$. ² Multiple systematic uncertainties are added in quadrature. ³ The charmonium mass regions are vetoed. ⁴ CLEO assumes $\mathcal{B}(\Upsilon(4S) \to B^0 \overline{B}^0) = 0.43$. The result has been modified to account for a branching fraction of 0.50.

Parameter	Measureme	nts	Average
$\boxed{\frac{\mathcal{B}(B^+ \to p\overline{p}\pi^+, m_{p\overline{p}} < 2.85 \text{ GeV/c}^2)}{\mathcal{B}(B^+ \to J/\psi\pi^+) \times \mathcal{B}(J/\psi \to p\overline{p})}}$	LHCb [153]	$12.0 \pm 1.2 \pm 0.3$	12.0 ± 1.2
$\frac{\mathcal{B}(B^+ \to p\overline{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to p\overline{p})}$	LHCb [157]	$4.91 \pm 0.19 \pm 0.14^{-1}$	4.91 ± 0.24
$\frac{\mathcal{B}(B^+ \to p\overline{p}K^+, m_{p\overline{p}} < 2.85 \text{ GeV/c}^2)}{\mathcal{B}(B^+ \to J/\psi\pi^+) \times \mathcal{B}(J/\psi \to p\overline{p})}$	LHCb [157]	$2.02 \pm 0.10 \pm 0.08$	2.02 ± 0.13
$\boxed{\frac{\mathcal{B}(B^+ \to \overline{A}(1520)p) \times \mathcal{B}(\overline{A}(1520) \to K^+ \overline{p}))}{\mathcal{B}(B^+ \to J/\psi \pi^+) \times \mathcal{B}(J/\psi \to p\overline{p})}}$	LHCb [153]	$0.033 \pm 0.005 \pm 0.007$	0.033 ± 0.009
$\frac{\mathcal{B}(B^0 \to p\bar{p}K^+K^-)}{\mathcal{B}(B^0 \to p\bar{p}K^+\pi^-)}$	LHCb [167]	$0.019 \pm 0.005 \pm 0.002$ ²	0.019 ± 0.005
$\frac{\mathcal{B}(B^0 \to p\bar{p}\pi^+\pi^-)}{\mathcal{B}(B^0 \to p\bar{p}K^+\pi^-)}$	LHCb [167]	$0.46 \pm 0.02 \pm 0.02$ ²	0.46 ± 0.03

Table 31: Baryonic Relative Branching Fractions.

¹ Includes contribution where $p\overline{p}$ is produced in charmonium decays.

 $^{2} m_{p\overline{p}} < 2.85 \text{ GeV/c}^{2}.$

Figure 2: Branching fractions of charmless baryonic B^+ and B^0 decays into non-strange baryons.

Figure 3: Branching fractions of charmless baryonic B^+ and B^0 decays into strange baryons.

3 Decays of *b* baryons

A compilation of branching fractions of Λ_b^0 baryon decays is given in Tables 32 and 33. Table 34 provides the partial branching fractions of $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$ decays in intervals of $q^2 = m^2(\mu^+ \mu^-)$. Compilations of branching fractions of Ξ_b^0 , Ξ_b^- and Ω_b^- baryon decays are given in Tables 35, 36, and 37, respectively. Finally, ratios of branching fractions of Λ_b^0 , Ξ_b^0 and Ω_b^- baryon decays are detailed in Tables 38, 39 and 40, respectively. Figure 4 shows a graphic representation of branching fractions of Λ_b^0 decays.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(\Lambda^0 \to n\overline{K}^0\pi^-)$	LHCb [105]	$12 4 + 2 0 + 3 6^{-1,2}$	12.4 ± 4.2
$\mathcal{D}(\Pi_b \to p\Pi^*\pi^*)$	LIIO0 [100]	$12.4 \pm 2.0 \pm 3.0$	12.6 ± 4.1
$\mathcal{B}(\Lambda^0_b \to p K^0 K^-)$	LHCb [105]	< 3.5 2	< 3.5
$\mathcal{B}(A^0 \times m\pi^{-})^3$	LHCb [93]	$4.68 \pm 0.44 \pm 0.95$ ⁴	$4.5^{+0.9}_{-0.8}$
$\mathcal{D}(\Lambda_b^\circ \to p\pi^\circ)^\circ$	$CDF [90]^{5}$		4.5 ± 0.8
$\mathcal{B}(\Lambda^0 \to m K^-)^3$	CDF [90]	$6.3 \pm 1.2 \pm 0.8$	5.4 ± 1.1
$\mathcal{D}(\Lambda_b^\circ \to p \Lambda^\circ)^\circ$	LHCb [93] ⁶		5.4 ± 1.0
$\mathcal{B}(\Lambda^0 \setminus \Lambda^0 \mu^+ \mu^-)$	LHCb [172]	$0.955 \pm 0.186 \pm 0.249^{-1,7}$	$1.09^{+0.34}_{-0.29}$
$\mathcal{D}(\Lambda_b^* \to \Lambda^* \mu^+ \mu^-)$	CDF [173]	$1.520 \pm 0.366 \pm 0.387$ ⁷	1.08 ± 0.28
$\mathcal{B}(\Lambda^0 \to m\pi^- \mu^+ \mu^-)$	IHCb [174]8		$0.069^{+0.027}_{-0.023}$
$\mathcal{D}(\Lambda_b^* \to p\pi^-\mu^+\mu^-)$			$0.069^{+0.025}_{-0.024}$
$\mathcal{B}(\Lambda_b^0 \to pK^-e^+e^-)$	LHCb [175]	$0.211 \pm 0.044 \pm 0.061 9.10$	$0.31^{+0.08}_{-0.06}$
	LIIO0 [170]	0.011 - 0.041 - 0.051	$0.31 \substack{+0.07 \\ -0.06}$
$\mathcal{B}(\Lambda^0 \to m K^- \mu^+ \mu^-)$	I HCb [175]	$0.266 \pm 0.013^{+0.050}$ 9,10	$0.266^{+0.052}_{-0.041}$
$\mathcal{D}(\Lambda_b \to p \Lambda^- \mu^+ \mu^-)$		$0.200 \pm 0.013_{-0.040}$	$0.265^{+0.051}_{-0.041}$

Table 32: Branching fractions of charmless Λ_b^0 decays (part 1).

¹ Multiple systematic uncertainties are added in quadrature.

² Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$.

³ The PDG average is a result of a fit including input from other measurements. ⁴ Using $\mathcal{B}(A^0 \to nK^-)$

⁴ Using $\mathcal{B}(\Lambda_b^0 \to pK^-)$.

⁵ Measurement of $(\mathcal{B}(A_b^0 \to p\pi^-)/\mathcal{B}(B^0 \to K^+\pi^-))(f_{A_b^0}/f_d)$ used in our fit.

- ⁶ Measurement of $\mathcal{B}(\Lambda_b^0 \to p\pi^-)/\mathcal{B}(\Lambda_b^0 \to pK^-)$ used in our fit.
- ⁷ Using $\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda^0)$.
- ⁸ Measurement of $\mathcal{B}(\Lambda_b^0 \to p\pi^-\mu^+\mu^-)/(\mathcal{B}(\Lambda_b^0 \to J/\psi p\pi^-)\mathcal{B}(J/\psi \to \mu^+\mu^-))$ used in our fit.

⁹ measured in the $m_{\ell^+\ell^-}^2$ bin [0.1, 6.0] GeV²/c⁴ and for $m_{pK} < 2.6 \text{ GeV/c}^2$. ¹⁰ Using $\mathcal{B}(\Lambda_b^0 \to J/\psi pK^-)$.

Parameter $[10^{-6}]$	Measurements	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(\Lambda^0_h \to \Lambda^0 \gamma)$	LHCb [176] ¹	6.9 ± 1.5
	L J	$\frac{7.1 \pm 1.7}{2.2 \pm 7.2}$
$\mathcal{B}(\Lambda^0_b \to \Lambda^0 \eta)$	LHCb [96] $9.23^{+7.15}_{-5.20} \pm 0.40^{-2}$	$9.2^{+7.2}_{-5.2}$ $9.4^{+7.3}_{-5.2}$
$\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \eta')$	LHCb [96] $< 3.05^{-2}$	< 3.1
$\mathcal{B}(\Lambda^0 \to \Lambda^0 \pi^+ \pi^-)$	I HCb [177]3	$4.7^{+2.0}_{-1.9}$
$D(\Lambda_b \to \Lambda^* \pi^* \pi^*)$		4.7 ± 1.9
$\mathcal{P}(A0 \to A0 U^+)$	I IICh [177]4	$5.7^{+1.3}_{-1.2}$
$\mathcal{D}(\Lambda_b^* \to \Lambda^* \Lambda^+ \pi^-)$	5.7 ± 1.3	
10(40, 40, 12+12-)	1101 [177]5	$16.1^{+2.4}_{-2.2}$
$\mathcal{B}(\Lambda_b^\circ \to \Lambda^\circ K^+ K^-)$	$\rightarrow \Lambda^{\circ}K^{+}K^{-}$) LHUb [1(())	
12(40, 40, (100))		$10.1^{+2.9}_{-2.5}$
$\mathcal{B}(\Lambda_b^\circ \to \Lambda^\circ \phi(1020))$	LHCb [119]°	9.8 ± 2.6
n(40 +)	1101 [170]789	$21.1^{+2.4}_{-2.3}$
$\mathcal{B}(\Lambda_b^\circ \to p\pi^+\pi^-\pi^-)$	LHCb $[178]^{1,0,0}$	21.1 ± 2.3
$\mathcal{P}(A0 \rightarrow U^{-}U^{+})$	I II CL [170]8.10	$4.06^{+0.66}_{-0.61}$
$\mathcal{B}(\Lambda_b^{\circ} \to p K^{\circ} K^{\circ} \pi^{\circ})$	LHCb [178] ^{5,10}	4.07 ± 0.63
$\mathcal{D}(A0 \to U - + -)$	I II CI [170]8]]	$50.5^{+5.6}_{-5.3}$
$\mathcal{B}(\Lambda_b^{\circ} \to pK^{-}\pi^+\pi^-)$	LHUD $[1/8]^{\circ,11}$	50.6 ± 5.4
$\mathcal{D}(A0)$, $\mathcal{U} = \mathcal{U} + \mathcal{U} = 1$	11101 [170]812	$12.6^{+1.5}_{-1.4}$
$\mathcal{B}(\Lambda_b^\circ \to pK^-K^+K^-)$	$LHUb [178]^{-,12}$	12.7 ± 1.4

Table 33: Branching fractions of charmless Λ_b^0 decays (part 2).

¹ Measurement of $(\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \gamma) / \mathcal{B}(B^0 \to K^*(892)^0 \gamma)) \frac{f_{\Lambda_b^0}}{f_d}$ used in our fit. ² Using $\mathcal{B}(B^0 \to \eta' K^0)$.

- ³ Measurement of $\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \pi^+ \pi^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)\mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+))$ used in our fit.
- ⁴ Measurement of $\mathcal{B}(\Lambda_b^0 \to \Lambda^0 K^+ \pi^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)\mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+))$ used in our fit.
- ⁵ Measurement of $\mathcal{B}(\Lambda_b^0 \to \Lambda^0 K^+ K^-) / (\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+))$ used in our fit.
- ⁶ Measurement of $(\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \phi(1020))/\mathcal{B}(B^0 \to \phi(1020)K^0))(f_{\Lambda_b^0}/f_d)^2$ used in our fit.
- ⁷ Vetoes on charm and charmonium resonances are applied.
- 8 Multiple systematic uncertainties are added in quadrature.
- ⁹ Measurement of $\mathcal{B}(\Lambda_b^0 \to p\pi^+\pi^-\pi^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+))$ used in our fit.
- ¹⁰ Measurement of $\mathcal{B}(\Lambda_b^0 \to pK^-K^+\pi^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+))$ used in our fit.
- ¹¹ Measurement of $\mathcal{B}(\Lambda_b^0 \to pK^-\pi^+\pi^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+))$ used in our fit.

¹² Measurement of $\mathcal{B}(\Lambda_b^0 \to pK^-K^+K^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+))$ used in our fit.
Parameter $[10^{-7}]$	Measureme	Measurements	
$m_{\mu^+\mu^-}^2 < 2.0 \ { m GeV^2}/$	c^4		
	LHCb [179] CDF [173]	$\begin{array}{c} 0.72 {}^{+0.24}_{-0.22} \pm 0.14 \\ 0.15 \pm 2.01 \pm 0.05 \end{array}$	0.7 ± 0.3
$2.0 < m_{\mu^+\mu^-}^2 < 4.3$ ($\mathrm{GeV}^2/\mathrm{c}^4$		
	LHCb [179] CDF [173]	$\begin{array}{c} 0.253 {}^{+0.276}_{-0.207} \pm 0.046 \\ 1.84 \pm 1.66 \pm 0.59 \end{array}$	$0.3^{+0.3}_{-0.2}$
$4.3 < m_{\mu^+\mu^-}^2 < 8.68$	${\rm GeV^2/c^4}$		
	LHCb [172] CDF [173]	$\begin{array}{c} 0.66 \pm 0.72 \pm 0.16 \\ -0.20 \pm 1.64 \pm 0.08 \end{array}$	0.5 ± 0.7
$10.09 < m_{\mu^+\mu^-}^2 < 12$	$2.86 \text{ GeV}^2/c^4$		
	LHCb [179] CDF [173]	$\begin{array}{c} 2.08 {}^{+0.42}_{-0.39} \pm 0.42 \\ 2.97 \pm 1.47 \pm 0.95 \end{array}$	2.2 ± 0.6
$14.18 < m_{\mu^+\mu^-}^2 < 16$	$6.00 \text{ GeV}^2/c^4$		
	LHCb [179] CDF [173]	$\begin{array}{c} 2.04 {}^{+0.35}_{-0.33} \pm 0.42 \\ 0.96 \pm 0.73 \pm 0.31 \end{array}$	1.7 ± 0.4 1.7 ± 0.5
$m_{\mu^+\mu^-}^2 > 16.00 \text{ GeV}$	c^{2}/c^{4}		
	CDF [173]	$6.97 \pm 1.88 \pm 2.23$	7.0 ± 2.9

Table 34: Partial branching fractions of $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$ decays in intervals of $m_{\mu^+\mu^-}^2$.

Parameter $[10^{-6}]$	Measurements	Average $_{\rm PDG}^{\rm HFLAV}$
$\boxed{\frac{f_{\Xi_b^0}}{f_d}\mathcal{B}(\Xi_b^0 \to p\overline{K}^0\pi^-)}$	LHCb [105] $< 1.5^{-1}$	< 1.5 < 1.6
$\boxed{\frac{f_{\Xi_b^0}}{f_d}\mathcal{B}(\Xi_b^0 \to p\overline{K}^0 K^-)}$	LHCb [105] $< 1.0^{-1}$	< 0.99 < 1.10
$\left \begin{array}{c} \frac{f_{\Xi_b^0}}{f_{A_b^0}} \mathcal{B}(\Xi_b^0 \to \Lambda \pi^+ \pi^-) \end{array} \right.$	LHCb $[177] < 1.7$	< 1.7
$\boxed{\frac{f_{\Xi_b^0}}{f_{A_b^0}}\mathcal{B}(\Xi_b^0\to\Lambda K^-\pi^+)}$	LHCb [177] < 0.8	< 0.8
$\boxed{\frac{f_{\Xi_b^0}}{f_{\Lambda_b^0}}\mathcal{B}(\Xi_b^0\to\Lambda K^+K^-)}$	LHCb [177] < 0.3	< 0.3
$\boxed{\frac{f_{\Xi_b^0}}{f_{A_b^0}}\mathcal{B}(\Xi_b^0 \to pK^-\pi^+\pi^-)}$	LHCb [178] ^{2,3}	$\frac{1.91 \substack{+0.41 \\ -0.38}}{1.91 \pm 0.40}$
$\boxed{\frac{f_{\Xi_b^0}}{f_{A_b^0}}\mathcal{B}(\Xi_b^0 \to pK^-K^-\pi^+)}$	LHCb [178] ^{2,4}	$\frac{1.72_{-0.30}^{+0.33}}{1.73\pm0.32}$
$\boxed{\frac{f_{\Xi_b^0}}{f_{A_b^0}}\mathcal{B}(\Xi_b^0 \to pK^+K^-K^-)}$	LHCb [178] ^{2,5}	0.18 ± 0.10

Table 35: Branching fractions of charmless Ξ_b^0 decays.

¹ Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$.

 2 Multiple systematic uncertainties are added in quadrature.

³ Measurement of $\frac{f_{\Xi_b^0}}{f_{A_b^0}} \mathcal{B}(\Xi_b^0 \to pK^-\pi^+\pi^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+))$ used in our fit. ⁴ Measurement of $\frac{f_{\Xi_b^0}}{f_{A_b^0}} \mathcal{B}(\Xi_b^0 \to pK^-K^-\pi^+)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+))$ used in our fit. ⁵ Measurement of $\frac{f_{\Xi_b^0}}{f_{A_b^0}} \mathcal{B}(\Xi_b^0 \to pK^+K^-K^-)/(\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+))$ used in our fit.

Parameter $[10^{-2}]$	Measureme	nts	Average
$\frac{f_{\Xi_b^-}}{f_u} \frac{\mathcal{B}(\Xi_b^- \to pK^-K^-)}{\mathcal{B}(B^- \to K^+K^-K^-)}$	LHCb [180]	$0.2650 \pm 0.0350 \pm 0.0470$	0.265 ± 0.059
$\frac{f_{\Xi_b^-}}{f_u} \frac{\mathcal{B}(\Xi_b^- \to p\pi^-\pi^-)}{\mathcal{B}(B^- \to K^+K^-K^-)}$	LHCb [180]	< 0.1470	< 0.15
$\frac{f_{\Xi_b^-}}{f_u} \frac{\mathcal{B}(\Xi_b^- \to pK^-\pi^-)}{\mathcal{B}(B^- \to K^+K^-K^-)}$	LHCb [180]	$0.2590 \pm 0.0640 \pm 0.0490$	0.259 ± 0.081
$\boxed{\frac{\mathcal{B}(\Xi_b^- \to p\pi^-\pi^-)}{\mathcal{B}(\Xi_b^- \to pK^-K^-)}}$	LHCb [180]	< 56	< 56
$\frac{\mathcal{B}(\Xi_b^- \to pK^-\pi^-)}{\mathcal{B}(\Xi_b^- \to pK^-K^-)}$	LHCb [180]	$98 \pm 27 \pm 9$	98 ± 28

Table 36: Relative branching fractions of charmless \varXi_b^- decays.

Table 37: Branching fractions of charmless \varOmega_b^- decays.

Parameter $[10^{-8}]$	Measurements		Average	
$\frac{f_{\Omega_b^-}}{f_u} \times \mathcal{B}(\Omega_b^- \to pK^-K^-)$	LHCb [180]	$< 0.59^{-1}$	< 0.59	
$\frac{f_{\Omega_b^-}}{f_u} \times \mathcal{B}(\Omega_b^- \to pK^-\pi^-)$	LHCb [180]	$< 1.68^{-1}$	< 1.7	
$\frac{f_{\Omega_b^-}}{f_u} \times \mathcal{B}(\Omega_b^- \to p\pi^-\pi^-)$	LHCb [180]	$< 3.59^{-1}$	< 3.6	
$1 U^{+} \rightarrow \mathcal{D}/\mathcal{D}^{+} \rightarrow U^{+} U^{+} U^{-}$				

¹ Using $\mathcal{B}(B^+ \to K^+ K^+ K^-)$.

Parameter	Measureme	nts	Average
$\frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-)}{\mathcal{B}(\Lambda_b^0 \to pK^-)}$	LHCb [93]	$0.86 \pm 0.08 \pm 0.05$	0.86 ± 0.09
$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \eta)}{\mathcal{B}(B^0 \to \eta' K^0)}$	LHCb [96]	$0.142^{+0.110}_{-0.080}$	$0.14^{+0.11}_{-0.08}$
$\boxed{\frac{f_{A_b^0}}{f_d}\frac{\mathcal{B}(A_b^0\!\rightarrow\!p\pi^-)}{\mathcal{B}(B^0\!\rightarrow\!K^+\pi^-)}}$	CDF [90]	$0.042 \pm 0.007 \pm 0.006$	0.042 ± 0.009
$\frac{f_{A_b^0}}{f_d}\frac{\mathcal{B}(A_b^0\!\rightarrow\!pK^-)}{\mathcal{B}(B^0\!\rightarrow\!K^+\pi^-)}$	CDF [90]	$0.066 \pm 0.009 \pm 0.008$	0.066 ± 0.012
$\frac{f_{A_b^0}}{f_d} \frac{\mathcal{B}(A_b^0 \to \Lambda^0 \phi)}{\mathcal{B}(B^0 \to K_S^0 \phi)}$	LHCb [119]	$0.55 \pm 0.11 \pm 0.04$	0.55 ± 0.12
$\frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-\mu^+\mu^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p\pi^-) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)}$	LHCb [174]	$0.044 \pm 0.012 \pm 0.007$	0.044 ± 0.014
$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \pi^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) \times \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)}$	LHCb [177]	$0.073 \pm 0.019 \pm 0.022$	0.073 ± 0.029
$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 K^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) \times \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)}$	LHCb [177]	$0.089 \pm 0.012 \pm 0.013$	0.089 ± 0.018
$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 K^+ K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) \times \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)}$	LHCb [177]	$0.253 \pm 0.019 \pm 0.019$	0.253 ± 0.027
$\frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-) \times \mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}$	LHCb [178]	$0.0685 \pm 0.0019 \pm 0.0033 \ ^1$	0.0685 ± 0.0038
$\frac{\mathcal{B}(\Lambda_b^0 \to pK^-\pi^+\pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-) \times \mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}$	LHCb [178]	$0.164 \pm 0.003 \pm 0.007 \ ^1$	0.164 ± 0.008
$\frac{\mathcal{B}(\Lambda_b^0 \to pK^-K^+\pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-) \times \mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}$	LHCb [178]	$0.0132 \pm 0.0009 \pm 0.0013^{-1}$	0.0132 ± 0.0016
$\frac{\mathcal{B}(\Lambda_b^0 \to pK^-K^+K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-) \times \mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}$	LHCb [178]	$0.0411 \pm 0.0012 \pm 0.0020^{-1}$	0.0411 ± 0.0023
$\frac{\mathcal{B}(\Lambda_b^0 \to p\overline{K}^0\pi^-)}{\mathcal{B}(B^0 \to K^0\pi^+\pi^-)}$	LHCb [105]	$0.25 \pm 0.04 \pm 0.07 \ ^1$	0.25 ± 0.08
$\frac{\mathcal{B}(\Lambda_b^0 \to p\overline{K}^0 K^-)}{\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)}$	LHCb [105]	< 0.07	< 0.07
$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda^0)}$	LHCb [172]	$0.00154 \pm 0.00030 \pm 0.00020^{-1}$	0.00154 ± 0.00036

Table 38: Relative branching fractions of charmless Λ_b^0 decays.

 1 Multiple systematic uncertainties are added in quadrature.

Parameter $[10^{-2}]$	Measureme	ents	Average
$\boxed{\frac{f_{\Xi_b^0}}{f_d}\times \frac{\mathcal{B}(\Xi_b^0\to p\overline{K^0}\pi^-)}{\mathcal{B}(B^0\to K^0\pi^+\pi^-)}}$	LHCb [105]	< 3	< 3.0
$\frac{f_{\Xi_b^0}}{f_d} \times \frac{\mathcal{B}(\Xi_b^0 \to p\overline{K^0}K^-)}{\mathcal{B}(B^0 \to K^0\pi^+\pi^-)}$	LHCb [105]	< 2	< 2.0
$\left[\begin{array}{c} \frac{f_{\Xi_b^0}}{f_{\Lambda_b^0}} \times \frac{\mathcal{B}(\Xi_b^0 \rightarrow pK^-K^+K^-)}{\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-) \times \mathcal{B}(\Lambda_c^+ \rightarrow pK^-\pi^+)} \right]$	LHCb [178]	$0.057 \pm 0.028 \pm 0.013$ 1	0.057 ± 0.031
$\boxed{\frac{f_{\Xi_b^0}}{f_{\Lambda_b^0}} \times \frac{\mathcal{B}(\Xi_b^0 \rightarrow pK^-\pi^+\pi^-)}{\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-) \times \mathcal{B}(\Lambda_c^+ \rightarrow pK^-\pi^+)}}$	LHCb [178]	$0.62\pm 0.08\pm 0.08^{-1}$	0.62 ± 0.11
$\boxed{\frac{f_{\Xi_b^0}}{f_{A_b^0}}\times\frac{\mathcal{B}(\Xi_b^0\to pK^-\pi^+K^-)}{\mathcal{B}(A_b^0\to A_c^+\pi^-)\times\mathcal{B}(A_c^+\to pK^-\pi^+)}}$	LHCb [178]	$0.56 \pm 0.06 \pm 0.06$ ¹	0.560 ± 0.088

Table 39: Relative branching fractions of charmless \varXi^0_b decays.

¹ Multiple systematic uncertainties are added in quadrature.

Table 40: Relative branching fractions of charmless \varOmega_b^- decays.

Parameter $[10^{-3}]$	Measureme	Average	
$\boxed{\frac{f_{\Omega_b^-}}{f_u}\frac{\mathcal{B}(\Omega_b^-{\rightarrow}pK^-K^-)}{\mathcal{B}(B^-{\rightarrow}K^+K^-K^-)}}$	LHCb [180]	< 0.180	< 0.18
$\frac{f_{\Omega_b^-}}{f_u} \frac{\mathcal{B}(\Omega_b^- \to p\pi^-\pi^-)}{\mathcal{B}(B^- \to K^+K^-K^-)}$	LHCb [180]	< 1.090	< 1.1
$\frac{f_{\Omega_b^-}}{f_u} \frac{\mathcal{B}(\Omega_b^- \to pK^-\pi^-)}{\mathcal{B}(B^- \to K^+K^-K^-)}$	LHCb [180]	< 0.510	< 0.51

Figure 4: Branching fractions of charmless Λ_b^0 decays.

Measurements that are not included in the tables:

- In Ref. [181], LHCb measures angular observables of the decay $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$, including the lepton-side, hadron-side and combined forward-backward asymmetries of the decay in the low recoil region $15 < m^2(\ell \ell) < 20 \text{ GeV}^2/c^4$.
- In Ref. [182], LHCb performs a search for baryon-number-violating Ξ_b^0 oscillations and set an upper limit of $\omega < 0.08 \text{ ps}^{-1}$ on the oscillation rate.

4 Decays of B_s^0 mesons

Tables 41 to 44 and 45 to 46 detail branching fractions and relative branching fractions of B_s^0 meson decays, respectively. Figures 5 and 6 show graphic representations of a selection of results given in this section.

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0_s \to \pi^+\pi^-)$	Belle [183] CDF [91] ¹ LHCb [94] ¹	< 12	$\begin{array}{c} 0.72 {}^{+0.11}_{-0.10} \\ 0.70 \pm 0.10 \end{array}$
$\mathcal{B}(B^0_s \to \pi^0 \pi^0)$	L3 [184]	< 210	< 210
$\mathcal{B}(B^0_s \to \eta \pi^0)$	L3 [184]	< 1000	< 1000
$\mathcal{B}(B^0_s \to \eta\eta)$	L3 [184]	< 1500	< 1500
$\mathcal{B}(B^0_s \to \rho^0(770)\rho^0(770))$	SLD [185]	< 320	< 320
${\cal B}(B^0_s o \eta' \eta')$	LHCb [15]	$32.4 \pm 6.2 \pm 3.0^{-2}$	$\begin{array}{c} 32\pm7\\ 33\pm7 \end{array}$
$\mathcal{B}(B^0_s \to \eta' \phi(1020))$	LHCb [186]	< 0.82	< 0.82
$\mathcal{B}(B^0_s \to \phi(1020)f_0(980)) >$	$\times \mathcal{B}(f_0(980) \rightarrow$	$\pi^+\pi^-$)	
	LHCb [137]	$1.12 \pm 0.16 \pm 0.14^{-3}$	1.12 ± 0.21
$\mathcal{B}(B^0_s \to f_2(1270)\phi(1020))$	$\times \mathcal{B}(f_2(1270))$	$\rightarrow \pi^+\pi^-)$	
	LHCb [137]	$0.61\pm0.13^{+0.13}_{-0.08}{}^3$	$\begin{array}{c} 0.61 {}^{+0.19}_{-0.15} \\ 0.61 {}^{+0.18}_{-0.15} \end{array}$
$\mathcal{B}(B^0_s \to \phi(1020)\rho^0(770))$	LHCb [137]	$0.27 \pm 0.07 \pm 0.03^{-3}$	0.27 ± 0.08
$\mathcal{B}(B^0_s \to \phi(1020)\pi^+\pi^-)$	LHCb [137]	$3.48 \pm 0.23 \pm 0.39$ ^{4,3}	3.48 ± 0.45
$\mathcal{B}(B^0 \rightarrow \phi(1020)\phi(1020))$	LHCb [126]	$18.6 \pm 0.5 \pm 1.6^{-3.5}$	$18.7^{+1.5}_{-1.4}$
$\mathcal{D}(D_s \to \psi(1020)\psi(1020))$	CDF [187]	$19.1 \pm 1.5 \pm 2.5^{-6}$	18.7 ± 1.5
$\mathcal{B}(B^0_s \to K^- \pi^+)$	Belle [183] CDF [90] ⁷ LHCb [93] ⁷	< 26	$\begin{array}{c} 5.9 {}^{+0.9}_{-0.8} \\ 5.8 \pm 0.7 \end{array}$
$\mathcal{B}(B^0_s \to K^+ K^-)$	Belle [183] CDF [92] ⁸ LHCb [93] ⁸	$38^{+10}_{-9} \pm 7^{-3}_{-9}$	$26.6^{+3.2}_{-2.7}\\26.6\pm2.2$
$\mathcal{B}(B^0_s \to K^0 \overline{K}^0)$	LHCb [120] Belle [188]	$16.7 \pm 2.9 \pm 2.1^{-3,9} \\ 19.6^{+5.8}_{-5.1} \pm 2.2^{-3}$	$\begin{array}{c} 17.4 \pm 3.1 \\ 17.6 {}^{+3.2}_{-3.1} \end{array}$

Table 41: Branching fractions of charmless B_s^0 decays (part 1).

¹ Measurement of $(\mathcal{B}(B^0_s \to \pi^+\pi^-)/\mathcal{B}(B^0 \to K^+\pi^-))\frac{f_s}{f_d}$ used in our fit.

¹ Measurement of $(\mathcal{B}(B_s^0 \to \pi^+\pi^-)/\mathcal{B}(B^0 \to K^+\pi^-))\frac{f_s}{f_d}$ used in our fit. ² Using $\mathcal{B}(B^+ \to \eta' K^+)$. ³ Multiple systematic uncertainties are added in quadrature. ⁴ 400 < $M(\pi^+\pi^-)$ < 1600 MeV/c². ⁵ Using $\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)$. ⁶ Using $\mathcal{B}(B_s^0 \to J/\psi\phi(1020))$. ⁷ Measurement of $(\mathcal{B}(B_s^0 \to K^-\pi^+)/\mathcal{B}(B^0 \to K^+\pi^-))\frac{f_s}{f_d}$ used in our fit. ⁸ Measurement of $(\mathcal{B}(B_s^0 \to K^+K^-)/\mathcal{B}(B^0 \to K^+\pi^-))\frac{f_s}{f_d}$ used in our fit. ⁹ Using $\mathcal{B}(B^0 \to \phi(1020)K^0)$.

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0_s \to K^0 \pi^+ \pi^-)$	LHCb [107]	$9.49 \pm 1.34 \pm 1.67$ ^{1,2}	9.5 ± 2.1
$\mathcal{B}(B^0_s \to K^0 K^+ \pi^- + \text{c.c.})$	LHCb [107]	$84.5 \pm 3.5 \pm 8.0^{-1,2}$	84.5 ± 8.7 84.5 ± 8.8
$\mathcal{B}(B^0_s \to K^*(892)^-\pi^+)$	LHCb [109]	$2.98 \pm 0.99 \pm 0.42$ ³	3.0 ± 1.1 $_{p=1.6\%}$ 2.9 ± 1.1
$\mathcal{B}(B^0_s \to K^*(892)^+ K^- + \text{c.c.})$	LHCb [189]	$18.6 \pm 1.2 \pm 4.5$ ^{4,5}	18.6 ± 4.7
$\mathcal{B}(B^0_s \to (K\pi)^{*+}_0 K^- + \text{c.c.})$	LHCb [189]	$24.9 \pm 1.8 \pm 20.2$ ^{4,5}	25 ± 20 none
$\mathcal{B}(B_s^0 \to K_0^*(1430)^+ K^- + \text{c.c.})$	LHCb [189]	$31.3 \pm 2.3 \pm 25.3$ ^{4,5}	31 ± 25
$\mathcal{B}(B_s^0 \to K_2^*(1430)^+ K^- + \text{c.c.})$	LHCb [189]	$10.3 \pm 2.5 \pm 16.4$ ^{4,5}	10 ± 17
$\mathcal{B}(B^0_s \to K^*(892)^0 \overline{K}^0 + \text{c.c.})$	LHCb [189]	$19.8 \pm 2.8 \pm 5.0$ 4,5	19.8 ± 5.7
$\mathcal{B}(B^0_s \to (K\pi)^{*0}_0 \overline{K}^0 + \text{c.c.})$	LHCb [189]	$26.2 \pm 2.0 \pm 7.8$ ^{4,5}	26.2 ± 8.1 none
$\mathcal{B}(B^0_s \to K^*_0(1430)^0 \overline{K}^0 + \text{c.c.})$	LHCb [189]	$33.0 \pm 2.5 \pm 9.8$ 4,5	33 ± 10
$\mathcal{B}(B_s^0 \to K_2^*(1430)^0 \overline{K}^0 + \text{c.c.})$	LHCb [189]	$16.8 \pm 4.5 \pm 21.3$ ^{4,5}	17 ± 22
$\mathcal{B}(B^0_s \to K^0_S K^*(892)^0 + \text{c.c.})$	LHCb [106]	$17.1 \pm 3.6 \pm 2.4$ ^{5,6}	17.1 ± 4.3 _{p=1.6‰} 16.4 ± 4.1

Table 42: Branching fractions of charmless B_s^0 decays (part 2).

¹ Regions corresponding to D, Λ_c^+ and charmonium resonances are vetoed in this analysis. ² Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$. ³ Using $\mathcal{B}(B^0 \to K^*(892)^+ \pi^-)$. ⁴ Result extracted from Dalitz-plot analysis of $B_s^0 \to K_S^0 K^+ \pi^-$ decays. ⁵ Multiple systematic uncertainties are added in quadrature. ⁶ Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0_s \to K^0 K^+ K^-)$	LHCb [107]	$1.29 \pm 0.55 \pm 0.36$ ^{1,2}	1.29 ± 0.66 1.29 ± 0.65
$\mathcal{B}(B^0_s \to \overline{K}^*(892)^0 \rho^0(770))$	SLD [185]	< 767	< 767
$\mathcal{B}(B^0_s \to K^*(892)^0 \overline{K}^*(892)^0)$	LHCb [127] LHCb [130] ³	$11.2 \pm 2.2 \pm 1.5^{-3,4}$	11.0 ± 2.0 11.1 ± 2.7
$\mathcal{B}(B^0_s \to \phi(1020)\overline{K}^*(892)^0)$	LHCb [125]	$1.14 \pm 0.24 \pm 0.17^{-3,4}$	1.14 ± 0.29 1.14 ± 0.30
$\mathcal{B}(B^0_s \to p\overline{p})$	LHCb [165]	< 0.015	< 0.015
$\mathcal{B}(B^0_s \to p\overline{p}K^+K^-)$	LHCb [167]	$4.2 \pm 0.3 \pm 0.4$ ^{6,3}	4.2 ± 0.5 4.5 ± 0.5
$\mathcal{B}(B^0_s \to p\overline{p}K^+\pi^-)$	LHCb [167]	$1.3 \pm 0.2 \pm 0.2$ ^{6,3}	1.3 ± 0.3 1.4 ± 0.3
$\mathcal{B}(B^0_s \to p\overline{p}\pi^+\pi^-)$	LHCb [167]	$< 0.66^{-6}$	< 0.66 0.43 ± 0.20
$\mathcal{B}(B^0_s \to p\overline{\Lambda}^0 K^- + \text{c.c.})$	LHCb [190]	$5.46 \pm 0.61 \pm 0.82^{-3}$	5.5 ± 1.0

Table 43: Branching fractions of charmless B_s^0 decays (part 3).

 1 Regions corresponding to $D,\,\Lambda_c^+$ and charmonium resonances are vetoed in this analysis.

² Using $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$.

³ Multiple systematic uncertainties are added in quadrature. ⁴ Using $\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)$. ⁵ Measurement of $\mathcal{B}(B^0 \to K^*(892)^0\overline{K}^*(892)^0)/\mathcal{B}(B_s^0 \to K^*(892)^0\overline{K}^*(892)^0)$ used in our fit. ⁶ $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2$.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0_s \to \gamma \gamma)$	Belle [191]	< 3.1	< 3.1
$\mathcal{B}(B^0 \to \phi(1020)_{2})$	LHCb [192]	$33.9 \pm 1.7 \pm 3.1^{-1}$	34.1 ± 3.2
$\mathcal{D}(D_s \to \phi(1020)^{\circ}\gamma)$	Belle [191]	$36.0 \pm 5.0 \pm 7.0$	34.2 ± 3.6
	ATLAS [193]	$0.0028 {}^{+0.0008}_{-0.0007}$	
$\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)^2$	LHCb [194]	$0.0030 \pm 0.0006 {}^{+0.0003}_{-0.0002}$	0.00295 ± 0.00041
$D(D_s \rightarrow \mu^- \mu^-)$	CMS [195]	$0.0029 \pm 0.0007 \pm 0.0002$	$0.00294 {}^{+0.00042}_{-0.00039}$
	CDF [196]	$0.013 {}^{+0.009}_{-0.007}$	
$\mathcal{B}(B^0 \rightarrow e^+e^-)$	LHCb [197]	< 0.0094	< 0.0004
$D(D_s \rightarrow e e)$	CDF [198]	< 0.28	< 0.0094
$\mathcal{B}(B^0 \rightarrow \tau^+ \tau^-)^3$	LHCb [100]	~ 5200.0	< 5200
$\mathcal{D}(B_s^{\circ} \to \tau^+ \tau^-)^{\circ}$	LIIO0 [199]	< 5200.0	< 6800
$\mathcal{B}(B^0_s \to \mu^+ \mu^- \mu^+ \mu^-)$	LHCb [200]	< 0.0025 ⁴	< 0.0025
$\mathcal{B}(\mathcal{D}^0) \to \phi(1020) \mu^+ \mu^-)5.6$	LHCb [201]	$0.859 \pm 0.023 \pm 0.061$ ^{7,8}	$0.865^{+0.066}_{-0.064}$
$\mathcal{D}(D_s \to \phi(1020)\mu^+\mu^-)^+$	CDF [173]	$1.21 \pm 0.20 \pm 0.11^{-8}$	$0.823^{+0.119}_{-0.116}$
$\mathcal{B}(B^0_s \to \overline{K}^*(892)^0 \mu^+ \mu^-)$	LHCb [202]	$0.029 \pm 0.010 \pm 0.004$ 7	0.029 ± 0.011
$\mathcal{B}(B^0 \rightarrow \pi^+\pi^-\mu^+\mu^-)$	LHCb [150] ^{9,1}	.0	0.084 ± 0.016
$\mathcal{D}(\mathcal{D}_s \land \land \land \mu \mu)$			0.084 ± 0.017
$\mathcal{B}(B^0_* \to \phi(1020)\nu\overline{\nu})$	DELPHI	< 5400	< 5400
	[110]		
$\mathcal{B}(B^0_{\circ} \to e^+\mu^-+\text{c.c.})$	LHCb [203]	< 0.0054	< 0.0054
	CDF [198]	< 0.2	
$\mathcal{B}(B^0_{\cdot} \to \tau^+ \mu^- + \text{c.c.})^3$	LHCb [204]	< 34.0	< 34
			< 42
$\mathcal{B}(B^0_* \to n'n)$	Belle [205]	< 65	< 65
	[]		none
$\mathcal{B}(B^0_{\cdot} \rightarrow f_2^{\prime}(1525)\mu^+\mu^-)$	LHCb [201]	$0.166 \pm 0.020 \pm 0.015$ ^{7,8}	$0.166^{+0.026}_{-0.024}$
$\mathcal{L}(D_s \rightarrow f_2(1020)\mu^{-}\mu^{-})$		0.100 - 0.020 - 0.010	none

Table 44: Branching fractions of charmless B_s^0 decays (part 4).

¹ Using $\mathcal{B}(B^0 \to K^*(892)^0 \gamma)$.

² The ATLAS measurement is correlated with $\mathcal{B}(B^0 \to \mu^+ \mu^-)$. This correlation is not taken into account in our average. For more information see Ref. [206].

 3 PDG shows the result obtained at 95% CL.

- ⁴ At CL=95%.
- ⁵ The PDG uncertainty includes a scale factor.
- ⁶ Treatment of charmonium intermediate components differs between the results.
- ⁷ Multiple systematic uncertainties are added in quadrature.
- ⁸ Using $\mathcal{B}(B_s^0 \to J/\psi\phi(1020))$. ⁹ 0.5 < $m_{\pi^+\pi^-}$ < 1.3 GeV/c².

¹⁰ Measurement of $\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)/(\mathcal{B}(B^0 \to J/\psi K^*(892)^0)\mathcal{B}(J/\psi \to \mu^+\mu^-)\mathcal{B}(K^*(892)^0 \to K\pi)2/3)$ used in our fit.

Parameter $[10^{-2}]$	Measureme	ents	Average
$\boxed{\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)}}$	LHCb [94] CDF [91]	$\begin{array}{c} 0.915 \pm 0.071 \pm 0.083 \\ 0.8 \pm 0.2 \pm 0.1 \end{array}$	0.893 ± 0.098
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0 \to \pi^+ \pi^-)}$	LHCb [93]	$5.0^{+1.1}_{-0.9} \pm 0.4$	$5.0^{+1.2}_{-1.0}$
$\boxed{\frac{\mathcal{B}(B_s^0 \to \phi(1020)\phi(1020))}{\mathcal{B}(B_s^0 \to J/\psi\phi(1020))}^1}$	CDF [187]	$1.78 \pm 0.14 \pm 0.20$	1.78 ± 0.24
$\boxed{\frac{\mathcal{B}(B_s^0 \to \phi(1020)\phi(1020))}{\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)}}$	LHCb [126]	$184 \pm 5 \pm 13^{-2}$	184 ± 14
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to K^+ \pi^-)}{\mathcal{B}(B_d^0 \to K^+ \pi^-)}$	LHCb [93] CDF [90]	$\begin{array}{c} 7.4 \pm 0.6 \pm 0.6 \\ 7.1 \pm 1.0 \pm 0.7 \end{array}$	7.30 ± 0.70
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to K^+ K^-)}{\mathcal{B}(B_d^0 \to K^+ \pi^-)}$	LHCb [93] CDF [92]	$\begin{array}{c} 31.6 \pm 0.9 \pm 1.9 \\ 34.7 \pm 2.0 \pm 2.1 \end{array}$	32.7 ± 1.7
$\frac{\mathcal{B}(B^0_s \to K^0 \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)}$	LHCb [107]	$19.1 \pm 2.7 \pm 3.3$ ^{3,2}	19.1 ± 4.3
$\frac{\mathcal{B}(B^0_s \to K^0 K^+ \pi^- + \text{c.c.})}{\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)}$	LHCb [107]	$170 \pm 7 \pm 15^{-3,2}$	170 ± 16
$\frac{\mathcal{B}(B^0_s \to K^0 K^+ K^-)}{\mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)}$	LHCb [107]	$< 5.1^{-3}$	< 5.1
$\frac{\mathcal{B}(B^0_s \to K^*(892)^- \pi^+)}{\mathcal{B}(B^0 \to K^*(892)^+ \pi^-)}$	LHCb [109]	$39 \pm 13 \pm 5$	39 ± 14
$\boxed{\frac{\mathcal{B}(B^0_s \to K^*(892)^0 \overline{K}^*(892)^0)}{\mathcal{B}(B^0 \to \phi(1020) K^*(892)^0)}}$	LHCb [127]	$111 \pm 22 \pm 13^{-2}$	111 ± 26
$\boxed{\frac{\mathcal{B}(B^0_s \to \phi(1020)\overline{K}^*(892)^0)}{\mathcal{B}(B^0 \to \phi(1020)K^*(892)^0)}}$	LHCb [125]	$11.3 \pm 2.4 \pm 1.6^{-2}$	11.3 ± 2.9
$\frac{\mathcal{B}(B^0_s \to \phi(1020)\mu^+\mu^-)}{\mathcal{B}(B^0_s \to J/\psi\phi(1020))}$	LHCb [201] CDF [173]	$\begin{array}{c} 0.0800 \pm 0.0021 \pm 0.0016 \ ^2 \\ 0.113 \pm 0.019 \pm 0.007 \end{array}$	0.0806 ± 0.0026

Table 45: Relative branching fractions of charmless B_s^0 decays (part 1).

¹ The PDG average is a result of a fit including input from other measurements. ² Multiple systematic uncertainties are added in quadrature. ³ Regions corresponding to D, Λ_c^+ and charmonium resonances are vetoed in this analysis.

Parameter $[10^{-2}]$	Measureme	ents	Average	
$\frac{\mathcal{B}(B^0_s \to p\overline{p}K^+\pi^-)}{\mathcal{B}(B^0 \to p\overline{p}K^+\pi^-)}$	LHCb [167]	$22 \pm 4 \pm 2$ ^{1,2}	22 ± 5	
$\frac{\mathcal{B}(B^0_s \to p\overline{p}K^+\pi^-)}{\mathcal{B}(B^0_s \to p\overline{p}K^+K^-)}$	LHCb [167]	$31 \pm 5 \pm 2$ ¹	31 ± 5	
$\frac{\mathcal{B}(B^0_s \to \overline{K}^*(892)^0 \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to J/\psi \overline{K}^*(892)^0) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)}$	LHCb [202]	$1.4 \pm 0.4 \pm 0.1$ 2	1.4 ± 0.4	
$\frac{\mathcal{B}(B^0_s \to \overline{K}^*(892)^0 \mu^+ \mu^-)}{\mathcal{B}(\overline{B}^0 \to \overline{K}^*(892)^0 \mu^+ \mu^-)}$	LHCb [202]	$3.3 \pm 1.1 \pm 0.4$ ²	3.3 ± 1.2	
$\boxed{\frac{\mathcal{B}(B_s^0 \to \phi(1020)\phi(1020)\phi(1020))}{\mathcal{B}(B_s^0 \to \phi(1020)\phi(1020))}}$	LHCb [207]	$11.7 \pm 3.0 \pm 1.5$	11.7 ± 3.4	
$\boxed{\frac{\mathcal{B}(B^0_s \to K^0 \overline{K}^0)}{\mathcal{B}(B^0 \to \phi(1020)K^0)}}$	LHCb [120]	$230 \pm 40 \pm 22^{-2}$	230 ± 46	
$\frac{\mathcal{B}(B^0_s \to K^0_S K^*(892)^0 + \text{c.c.})}{\mathcal{B}(B^0 \to K^0_S \pi^+ \pi^-)}$	LHCb [106]	$33 \pm 7 \pm 4^{-2}$	33 ± 8	
$\boxed{\frac{\mathcal{B}(B_s^0 \to f_2'(1525)\mu^+\mu^-)}{\mathcal{B}(B_s^0 \to J/\psi\phi(1020))}}$	LHCb [201]	$0.0155 \pm 0.0019 \pm 0.0008$ ²	0.0155 ± 0.0021	
$\frac{\mathcal{B}(B_s^0 \to \pi^+ \pi^- \mu^+ \mu^-)}{\mathcal{B}(B^0 \to J/\psi K^{*0}) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \times \mathcal{B}(K^{*0} \to K^+ \pi^-)}$				
	LHCb [150]	$0.167 \pm 0.029 \pm 0.013^{-3}$	0.167 ± 0.032	

Table 46: Relative branching fractions of charmless B_s^0 decays (part 2).

¹ $m_{p\bar{p}} < 2.85 \text{ GeV/c}^2$. ² Multiple systematic uncertainties are added in quadrature. ³ $0.5 < m_{\pi^+\pi^-} < 1.3 \text{ GeV/c}^2$.

Measurements that are not included in the tables (the definitions of observables can be found in the corresponding experimental papers):

- In Ref. [201], LHCb reports the differential $B_s^0 \to \phi \mu^+ \mu^-$ branching fraction in bins of $m^2(\mu^+\mu^-)$.
- In Ref. [208], LHCb performs an angular analysis of $B_s^0 \to \phi \mu^+ \mu^-$ decays and reports the differential branching fractions, F_L , S_3 , S_4 , S_7 , A_5 , A_6 , A_8 and A_9 in bins of $m^2(\mu^+\mu^-)$.
- In Ref. [209], LHCb reports the photon polarization in $B^0_s \to \phi \gamma$ decays.

Figure 5: Branching fractions of charmless leptonic B^0_s decays.

Figure 6: Branching fractions of charmless non-leptonic B_s^0 decays.

5 Decays of B_c^+ mesons

Table 47 details branching fractions and ratios of branching fractions of B_c^+ meson decays to charmless hadronic final states.

Parameter	Measureme	ents	Average
$\mathcal{B}(B_c^+ \to p\overline{p}\pi^+) \times \frac{f_c}{f_u} \ [10^{-8}]$	LHCb [210]	< 2.8 ¹	< 2.8
$\frac{\mathcal{B}(B_c^+ \to K^+ K_S^0)}{\mathcal{B}(B^+ \to K_S^0 \pi^+)} \times \frac{f_c}{f_u} \left[10^{-2}\right]$	LHCb $[7]$	< 5.8	< 5.8
$\mathcal{B}(B_c^+ \to K^+ \overline{K}^0)^2 \ [10^{-4}]$	LHCb [7]	< 4.6	< 4.6
$\mathcal{B}(B_c^+ \to K^+ K^- \pi^+) \times \frac{f_c}{f_u} [10^{-7}]$	LHCb [211]	$< 1.50^{-3}$	< 1.5
$\mathcal{B}(B_c^+ \to B_s^0 \pi^+) \times \frac{f_c}{f_s} [10^{-3}]$	LHCb [212]	$2.37 \pm 0.31 \substack{+0.20 \\ -0.17} \substack{4,5}$	2.37 ± 0.36

Table 47: Branching fractions and relative branching fractions of B_c^+ decays.

 1 Measured in the region $m(p\overline{p}) < 2.85~{\rm GeV/c^2},~p_T(B) < 20~{\rm GeV/c}$ and 2.0 < y(B) < 4.5.

² Derived from the ratio in the previous entry using $\mathcal{B}(B^+ \to K^0 \pi^+) = (23.97 \pm 0.53 \pm 0.71) \times 10^{-6}$, $f_u = 0.33$ and $f_c = 0.001$.

³ Measured in the annihilation region $m_{K^+\pi^+} < 1.834 \text{ GeV/c}^2$, and in the fiducial region $p_T(B) < 20 \text{ GeV/c}$ and 2.0 < y(B) < 4.5

⁴ In the pseudorapidity range $2 < \eta(B) < 5$.

⁵ Multiple systematic uncertainties are added in quadrature.

6 Rare decays of B^0 and B^+ mesons with photons and/or leptons

This section reports different observables for radiative decays, lepton-flavour/number-violating (LFV/LNV) decays and flavour-changing-neutral-current (FCNC) decays with leptons of B^0 and B^+ mesons. In all decays listed in this section, charmonium intermediate states are vetoed. Tables 48 to 50, 51 to 54 and 55 to 57 provide compilations of branching fractions of radiative and FCNC decays with leptons of B^+ mesons, B^0 mesons and their admixture, respectively. Tables 54 and 57 also include LFV/LNV decays. Tables 58 and 59 contain branching fractions of leptonic and radiative-leptonic B^+ and B^0 decays. These are followed by Tables 60 and 61, which give relative branching fractions of B^+ and B^0 decays, then Table 62, which gives a compilation of inclusive decays. In the modes listed in Table 62, the radiated particle is a gluon, which is an exception in this section. Table 63 contains isospin asymmetry measurements. Finally, Tables 64 to 65 and 66 provide compilations of branching fractions of B^+ and B^0 mesons to lepton-flavour/number-violating final states, respectively. Figures 7 to 12 show graphic representations of a selection of results given in this section.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$	
	Belle [213]	$37.6 \pm 1.0 \pm 1.2$	20.9 ± 1.9	
$\mathcal{B}(B^+ \to K^*(892)^+ \gamma)^1$	BaBar [214]	$42.2 \pm 1.4 \pm 1.6$	39.2 ± 1.2	
	CLEO [215]	$37.6^{+8.9}_{-8.3}\pm2.8$	59.2 ± 2.2	
$\mathcal{B}(B^+ \rightarrow K(1270)^+ \gamma)$	BaBar [216]	$44.1^{+6.3}_{-4.4} \pm 5.8^{-2}$	$43.8^{+7.0}_{-6.3}$	
$D(D \to R_1(1270) \to \gamma)$	Belle $[217]$	$43.0 \pm 9.0 \pm 9.0$ ³	$43.8^{+7.1}_{-6.3}$	
$\mathcal{B}(B^+ \rightarrow nK^+ \gamma)$	BaBar $[218]$	$7.7 \pm 1.0 \pm 0.4$ ⁴	7.89 ± 0.92	
$D(D \rightarrow \eta R \gamma)$	Belle $[219]$	$8.4 \pm 1.5 {}^{+1.2}_{-0.9} {}^{5}_{-0.9}$	$7.88 \substack{+0.94 \\ -0.92}$	
$\mathcal{B}(B^+ \rightarrow n' K^+ \gamma)$	Belle [220]	$3.6 \pm 1.2 \pm 0.4$ ⁶	2.9 ± 1.0	
$D(D \rightarrow \eta K \gamma)$	BaBar $[221]$	$1.9^{+1.5}_{-1.2}\pm 0.1$ ⁴	$2.9^{+1.0}_{-0.9}$	
$\mathcal{B}(B^+ \rightarrow \phi(1020) K^+ \gamma)^1$	Belle $[222]$	$2.48 \pm 0.30 \pm 0.24$	2.71 ± 0.34	
$D(D \rightarrow \psi(1020)K \gamma)$	BaBar $[223]$	$3.5 \pm 0.6 \pm 0.4$ ⁷	2.71 ± 0.42	
$\mathcal{B}(B^+ \rightarrow K^+ \pi^- \pi^+ \gamma)^1$	BaBar $[216]$	$24.5 \pm 0.9 \pm 1.2$ ⁸	24.6 ± 1.3	
$D(D \rightarrow K \land \land \land \uparrow)$	Belle [217]	$25.0 \pm 1.8 \pm 2.2$ ³	25.8 ± 1.5	
$\mathcal{B}(B^+ \rightarrow K^*(802)^0 \pi^+ \gamma)$	BaBar [216]	$23.4 \pm 0.9 +0.8 & 8 \\ -0.7 & -0.7$	23.3 ± 1.2	
	Belle $[224]$	$20.0^{+7.0}_{-6.0} \pm 2.0^{-9}$	$23.3^{+1.2}_{-1.1}$	
$\mathcal{B}(B^+ \rightarrow K^+ o^0(770) \gamma)$	BaBar [216]	$8.2 \pm 0.4 \pm 0.8$ ⁸	8.2 ± 0.9	
$D(D^+ \to K^+ \rho^-(110)\gamma)$	Belle $[224]$	$< 20.0^{-9}$	0.2 ± 0.5	
$\mathcal{B}(B^+ \to (K\pi)_0^{*0}\pi^+\gamma) \times \mathcal{B}((K\pi)_0^{*0} \to K^+\pi^-)^{10}$				
	BaBar [916]	$10.2 \pm 0.7 \pm 1.5.8$	$10.3^{+1.7}_{-2.2}$	
	DaDai [210]	10.0 - 0.8 - 2.0	none	
$\mathcal{B}(B^+ \rightarrow K^+ \pi^- \pi^+ \gamma (\text{ND}))$	BaBar $[216]$	$9.9 \pm 0.7 {}^{+1.5}_{-1.9} {}^{8,11}_{-1.9}$	$0.0^{+1.7}$	
$D(D^+ \to K^+ \pi^- \pi^+ \gamma(NK))$	Belle $[224]$	< 9.2 ¹²	$9.9_{-2.0}$	

Table 48: Branching fractions of charmless radiative and FCNC decays with leptons of B^+ mesons (part 1).

¹ The PDG uncertainty includes a scale factor.

² Multiple systematic uncertainties are added in quadrature.

 $^{3} 1 < M_{K\pi\pi} < 2 \text{ GeV}/c^{2}.$ ${}^{4} M_{K\eta^{(\prime)}} < 3.25 \text{ GeV}/c^{2}.$ ${}^{5} M_{K\eta} < 2.4 \text{ GeV}/c^{2}.$

- $^{6}M_{K\eta'} < 3.4 \text{ GeV}/c^{2}$ $^{7}M_{\phi K} < 3.0 \text{ GeV}/c^{2}$.
- $^{8} M_{K\pi\pi} < 1.8 \text{ GeV}/c^{2}.$ $^{9} M_{K\pi\pi} < 2.4 \text{ GeV}/c^{2}.$

¹⁰ This corresponds to the $(K\pi)$ S-wave obtained with LASS parameterisation [225]. ¹¹ $M_{K\pi} < 1.6 \text{ GeV}/c^2$.

¹² $1.25 < M_{K\pi} < 1.6 \text{ GeV}/c^2$ and $M_{K\pi\pi} < 2.4 \text{ GeV}/c^2$.

Parameter $[10^{-6}]$	Measuremen	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to K^0 \pi^+ \pi^0 \gamma)$	BaBar [226]	$45.6 \pm 4.2 \pm 3.1^{-1}$	45.6 ± 5.2
$\mathcal{B}(B^+ \to K_1(1400)^+ \gamma)$	BaBar [216] Belle [217]	$9.7^{+4.6}_{-2.9}{}^{+2.9}_{-2.4}{}^{1,2}_{-2.9}_{-2.4}$ < 15.0	$9.7^{+5.4}_{-3.8}$
$\mathcal{B}(B^+ \to K^*(1410)^+ \gamma)$	BaBar [216]	$27.1_{-4.8}^{+5.4}{}^{+5.9}_{-3.7}{}^{1,2}$	$27.1^{+8.0}_{-6.1}$
$\mathcal{B}(B^+ \to K_0^* (1430)^0 \pi^+ \gamma)$	BaBar [216]	$1.32^{+0.09}_{-0.10}{}^{+0.24}_{-0.30}{}^{1,2}$	$\begin{array}{r} 1.32 \substack{+0.26 \\ -0.31 \\ 1.32 \substack{+0.26 \\ -0.32 \end{array}} \end{array}$
$\mathcal{B}(B^+ \to K_2^*(1430)^+ \gamma)$	BaBar [227] BaBar [216]	$\begin{array}{c} 14.5 \pm 4.0 \pm 1.5 \\ 8.7 \substack{+7.0 \\ -5.3 \ -10.4} \end{array}$	13.8 ± 4.0
$\mathcal{B}(B^+ \to K^*(1680)^+ \gamma)$	BaBar $[216]$	$66.7^{+9.3}_{-7.8}{}^{+14.4}_{-11.4}{}^{1,2}_{-11.4}$	67^{+17}_{-14}
$\mathcal{B}(B^+ \to K_3^*(1780)^+ \gamma)$	Belle [219]	< 9.7	< 9.7 < 39.0
$\mathcal{B}(B^+ \to K_4^*(2045)^+ \gamma)$	ARGUS [228]	< 9900	< 9900
$\mathcal{B}(B^+ \to \rho^+(770)\gamma)$	Belle [229] BaBar [230]	$\begin{array}{c} 0.87 \substack{+0.29 \\ -0.27 \ -0.11} \\ 1.2 \pm 0.4 \pm 0.2 \end{array}$	$\begin{array}{c} 0.98 \pm 0.24 \\ 0.98 \substack{+0.25 \\ -0.24} \end{array}$
$\mathcal{B}(B^+ \to p\overline{\Lambda}^0 \gamma)$	Belle [161]	$2.45^{+0.44}_{-0.38}\pm0.22$	$2.45^{+0.49}_{-0.44}$
$\mathcal{B}(B^+ \to p\overline{\Sigma}^0 \gamma)$	Belle [231]	< 4.6	< 4.6
$\mathcal{B}(B^+ \to \pi^+ \ell^+ \ell^-)^3$	Belle [232] BaBar [233]	< 0.049 < 0.066	< 0.049
$\mathcal{B}(B^+ \to \pi^+ e^+ e^-)^3$	Belle [232] BaBar [233]	< 0.08 < 0.125	< 0.08
$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)^3$	BaBar [233] Belle [232] LHCb [234] ^{4,5}	< 0.055 < 0.069	0.0178 ± 0.0023
$\mathcal{B}(B^+ \to \pi^+ \nu \overline{\nu})$	Belle [235] BaBar [236]	< 14.0 < 100.0	< 14

Table 49: Branching fractions of charmless radiative and FCNC decays with leptons of B^+ mesons (part 2).

 $^1~M_{K\pi\pi} < 1.8~{\rm GeV}/c^2.$ 2 Multiple systematic uncertainties are added in quadrature.

³ Treatment of charmonium intermediate components differs between the results.

⁴ LHCb also reports the branching fraction in bins of $m_{\ell^+\ell^-}^2$. ⁵ Measurement of $\mathcal{B}(B^+ \to \pi^+\mu^+\mu^-)/(\mathcal{B}(B^+ \to J/\psi K^+)\mathcal{B}(J/\psi \to \mu^+\mu^-))$ used in our fit.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
	LHCb [237]	$0.429 \pm 0.007 \pm 0.021$ ²	0.463 ± 0.019
$\mathcal{B}(B^+ \to K^+ \ell^+ \ell^-)^1$	Belle [238]	$0.599^{+0.045}_{-0.043} \pm 0.014$	p=3.3‰
	BaBar $[239]$	$0.476^{+0.092}_{-0.086} \pm 0.022$	0.471 ± 0.046
$\mathcal{P}(D^+ \to U^+ e^+ e^-)$	Belle [238]	$0.575^{+0.064}_{-0.061} \pm 0.015$	0.561 ± 0.056
$\mathcal{D}(B^+ \to K^+ e^+ e^-)^2$	BaBar $[239]$	$0.51^{+0.12}_{-0.11} \pm 0.02$	$0.560 {}^{+0.058}_{-0.055}$
	LHCb [237]	$0.429 \pm 0.007 \pm 0.021$	0.450 + 0.001
$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)^{3,1}$	Belle [238]	$0.624^{+0.065}_{-0.061} \pm 0.016$	0.450 ± 0.021
	BaBar $[239]$	$0.41^{+0.16}_{-0.15} \pm 0.02$	0.453 ± 0.035
$\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-)$	BaBar $[240]$	< 2250.0	< 2250
	BaBar $[241]$	< 16.0	
$\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})$	Belle [235]	< 19.0	< 16
	Belle II [242]	< 41.0	
$\mathcal{B}(B^+ \to \rho^+(770)\nu\overline{\nu})$	Belle [235]	< 30.0	< 30
	LHCb [237]	$0.924 \pm 0.093 \pm 0.067^{-2}$	1.010 ± 0.000
$\mathcal{B}(B^+ \to K^*(892)^+ \ell^+ \ell^-)^{3,1}$	Belle $[243]$	$1.24^{+0.23}_{-0.21} \pm 0.13$	1.010 ± 0.099 1 000 ± 0.113
	BaBar $[239]$	$1.40^{+0.40}_{-0.37} \pm 0.09$	$1.009_{-0.112}$
$\mathcal{P}(D^+ \to U^*(909) + c^+ c^-)$	BaBar [239]	$1.38^{+0.47}_{-0.42} \pm 0.08$	1.55 ± 0.33
$\mathcal{D}(B^+ \to K^+(892)^+e^+e^-)^-$	Belle [243]	$1.73^{+0.50}_{-0.42} \pm 0.20$	$1.55^{+0.36}_{-0.31}$
	LHCb [237]	$0.924 \pm 0.093 \pm 0.067$	0.02
$\mathcal{B}(B^+ \to K^*(892)^+ \mu^+ \mu^-)^1$	Belle [243]	$1.11^{+0.32}_{-0.27} \pm 0.10$	0.96 ± 0.10
	BaBar $[239]$	$1.46^{+0.79}_{-0.75} \pm 0.12$	
	Belle [244]	< 40.0	
$\mathcal{B}(B^+ \to K^*(892)^+ \nu \overline{\nu})$	Belle [235]	< 61.0	< 40
	BaBar $[241]$	< 64.0	
$\mathcal{B}(D^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-)$	I HCb [245]	$0.4237 \pm 0.0287 \pm 0.0254$ 4	0.434 ± 0.038
$\mathcal{B}(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-)$	LIIO0 [243]	$0.4337_{-0.0268} \pm 0.0234$	$0.433^{+0.038}_{-0.037}$
$\mathcal{B}(B^+ \to \phi(1020) K^+ +)$	LHCb [245]	$0.0700 \pm 0.0180 \pm 0.0114$ 5	$0.079^{+0.022}_{-0.017}$
$\mathcal{D}(\mathcal{D} \to \psi(1020)K^+\mu^+\mu^-)$	11100 [240]	0.0130 -0.0160 -0.0072	$0.079 {}^{+0.021}_{-0.017}$
$\left \mathcal{B}(B^+ \to \overline{\Lambda}^0 p \nu \overline{\nu}) \right.$	BaBar $[246]$	< 30.0	< 30

Table 50: Branching fractions of charmless radiative and FCNC decays with leptons of B^+ mesons (part 3).

¹ Treatment of charmonium intermediate components differs between the results.

 2 Only muons are used.

³ The PDG uncertainty includes a scale factor. ⁴ Using $\mathcal{B}(B^+ \to \psi(2S)K^+)$. ⁵ Using $\mathcal{B}(B^+ \to J/\psi\phi(1020)K^+)$.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(D^0 \to \pi K^0 \alpha)$	BaBar $[218]$	$7.1^{+2.1}_{-2.0} \pm 0.4^{-1}$	7.6 ± 1.8
$D(D \to \eta K \gamma)$	Belle $[219]$	$8.7^{+3.1}_{-2.7}{}^{+1.9}_{-1.6}{}^{2}$	$7.6^{+1.8}_{-1.7}$
$\mathcal{B}(\mathbb{R}^0 \setminus \mathbb{R}^{\prime} \mathbb{K}^0_{2})$	Belle [220]	$< 6.4^{-3}$	< 6.4
$D(D \rightarrow \eta \Lambda \gamma)$	BaBar $[221]$	$< 6.6^{-1}$	< 0.4
$\mathcal{B}(\mathbb{R}^0 \setminus \phi(1020) K^0 \alpha)$	Belle $[222]$	$2.74 \pm 0.60 \pm 0.32$	2.74 ± 0.68
$D(D \rightarrow \phi(1020)K^{-\gamma})$	BaBar $[223]$	<27 4	2.14 ± 0.00
$\mathcal{B}(B^0 \to K^+ \pi^- \gamma)$	Belle $[224]$	$4.6^{+1.3}_{-1.2}{}^{+0.5}_{-0.7}{}^{5}_{-0.7}$	4.6 ± 1.4
	Belle [213]	$39.6 \pm 0.7 \pm 1.4$	
$\mathcal{B}(\mathcal{D}^0 \setminus \mathcal{K}^*(\mathfrak{g}_0\mathfrak{I}))^0$	BaBar $[214]$	$44.7 \pm 1.0 \pm 1.6$	41.8 ± 1.2
$\mathcal{D}(B^\circ \to K^*(892)^\circ \gamma)^\circ$	CLEO [215]	$45.5^{+7.2}_{-6.8} \pm 3.4$	41.8 ± 2.5
	LHCb [192] ⁷	$, [176]^8$	
$\mathcal{B}(B^0 \to K^*(1410)^0 \gamma)$	Belle $[224]$	$< 130.0^{-5}$	< 130
$\mathcal{B}(B^0 \to K^+ \pi^- \gamma(\mathrm{NR}))$	Belle $[224]$	< 2.6 ⁵	< 2.6
$\mathcal{B}(K^{*0}X(214)) \times \mathcal{B}(X(214))$	$214) \rightarrow \mu^+ \mu^-)$		
	Belle $[247]$	$< 0.0226^{-9}$	< 0.023
	BaBar $[216]$	$20.5 \pm 2.0 {}^{+2.6}_{-2.2}$ 10	
$\mathcal{B}(B^0 \to K^0 \pi^+ \pi^- \gamma)$	BaBar $[226]$	$18.5 \pm 2.1 \pm 1.2$ ¹⁰	19.9 ± 1.8
	Belle $[217]$	$24.0 \pm 4.0 \pm 3.0^{-11}$	
$\mathcal{B}(B^0 \to K^+ \pi^- \pi^0 \gamma)$	BaBar $[226]$	$40.7 \pm 2.2 \pm 3.1$ ¹⁰	40.7 ± 3.8
$\mathcal{B}(B^0 \to K_1(1270)^0 \gamma)$	Belle [217]	< 58.0	< 58

Table 51: Branching fractions of charmless radiative and FCNC decays with leptons of B^0 mesons (part 1).

- ¹ $M_{K\eta^{(l)}} < 3.25 \text{ GeV}/c^2$. ² $M_{K\eta} < 2.4 \text{ GeV}/c^2$. ³ $M_{K\eta'} < 3.4 \text{ GeV}/c^2$ ⁴ $M_{\phi K} < 3.0 \text{ GeV}/c^2$. ⁵ $1.25 < M_{K\pi} < 1.6 \text{ GeV}/c^2$. ⁶ The DDC enserts into inclusion.
- ⁶ The PDG uncertainty includes a scale factor.

⁷ Measurement of $\mathcal{B}(B_s^0 \to \phi(1020)\gamma)/\mathcal{B}(B^0 \to K^*(892)^0\gamma)$ used in our fit. ⁸ Measurement of $(\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \gamma) / \mathcal{B}(B^0 \to K^*(892)^0 \gamma)) \frac{f_{\Lambda_b^0}}{f_d}$ used in our fit. ⁹ X(214) is searched in the mass range [212, 300] MeV/ c^2 .

¹⁰ $\dot{M}_{K\pi\pi} < 1.8 \text{ GeV}/c^2$. ¹¹ $1 < M_{K\pi\pi} < 2 \text{ GeV}/c^2$.

Parameter $[10^{-6}]$	Measureme	ents	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0 \to K_1(1400)^0 \gamma)$	Belle [217]	< 12.0	< 12
$\mathcal{B}(\mathcal{D}^0 \to \mathcal{K}^*(1/20)^0 \bullet)$	BaBar $[227]$	$12.2 \pm 2.5 \pm 1.0$	12.4 ± 2.4
$\mathcal{D}(D \to K_2(1430)^{-\gamma})$	Belle $[224]$	$13.0\pm5.0\pm1.0$	12.4 ± 2.4
$\mathcal{B}(B^0 \to K^*(1780)^0 \gamma)$	Belle [219]	< 21	< 21
	Dene [219]	< 21	< 83
$\mathcal{B}(B^0 \rightarrow a^0(770) \alpha)$	Belle [229]	$0.78 {}^{+0.17}_{-0.16} {}^{+0.09}_{-0.10}$	0.86 ± 0.15
$D(D \to p((110)^{\circ}))$	BaBar $[230]$	$0.97^{+0.24}_{-0.22}\pm 0.06$	0.00 ± 0.10
$\mathcal{B}(\rho^0 X(214)) \times \mathcal{B}(X(214) \to \mu^+ \mu^-)$	Belle [247]	< 0.0173 ¹	< 0.017
$\mathcal{B}(\mathbb{R}^0 \to ((782)))$	Belle [229]	$0.40^{+0.19}_{-0.17} \pm 0.13$	0.44 ± 0.17
$D(D \to \omega(102)\gamma)$	BaBar [230]	$0.50^{+0.27}_{-0.23}\pm 0.09$	$0.44 {}^{+0.18}_{-0.16}$
$\mathcal{B}(\mathbb{R}^0 \to \phi(1020)_{2})$	Belle [248]	< 0.1	< 0.1
$\mathcal{B}(D \to \phi(1020)^{\circ}\gamma)$	BaBar $[249]$	< 0.85	< 0.1
$\mathcal{B}(B^0 \to p\overline{\Lambda}^0 \pi^- \gamma)$	Belle [250]	< 0.65	< 0.65
$\mathcal{B}(\mathbb{R}^0 \to \pi^0 \ell^+ \ell^-)^2$	BaBar [233]	< 0.053	< 0.053
$D(D \to \pi \ell^+ \ell^-)$	Belle $[232]$	< 0.154	< 0.000
$\mathcal{B}(\mathbb{R}^0 \to \pi^0 e^+ e^-)^2$	BaBar $[233]$	< 0.084	< 0.084
$D(D \rightarrow h \ e \ e \)$	Belle $[232]$	< 0.227	< 0.064
$\mathcal{B}(\mathbb{R}^0 \to \pi^0 \mu^+ \mu^-)^2$	BaBar [233]	< 0.069	< 0.060
$\mathcal{B}(B^{\circ} \to \pi^{\circ} \mu^{+} \mu^{-})^{2}$	Belle $[232]$	< 0.184	< 0.009

Table 52: Branching fractions of charmless radiative and FCNC decays with leptons of B^0 mesons (part 2).

 1 X(214) is searched in the mass range [212, 300] MeV/ c^{2} . ² Treatment of charmonium intermediate components differs between the results.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0 \to \eta \ell^+ \ell^-)$	BaBar $[233]$	< 0.064	< 0.064
$\mathcal{B}(B^0 \to \eta e^+ e^-)$	BaBar $[233]$	< 0.108	< 0.11
$\mathcal{B}(B^0 \to \eta \mu^+ \mu^-)$	BaBar $[233]$	< 0.112	< 0.11
$\mathcal{B}(B^0 \to \pi^0 \nu \overline{\nu})$	Belle $[235]$	< 9.0	< 9.0
$\mathcal{B}(B^0 \to K^0 \ell^+ \ell^-)^1$	LHCb [237] Belle [238] BaBar [239]	$\begin{array}{c} 0.327 \pm 0.034 \pm 0.017 \ ^2 \\ 0.351 \ ^{+0.069}_{-0.060} \pm 0.010 \\ 0.21 \ ^{+0.15}_{-0.13} \pm 0.02 \end{array}$	$\begin{array}{c} 0.328 \pm 0.032 \\ 0.329 {}^{+0.063}_{-0.055} \end{array}$
$\mathcal{B}(B^0 \to K^0 e^+ e^-)^1$	Belle [238] BaBar [239]	$\begin{array}{c} 0.306 {}^{+0.098}_{-0.086} \pm 0.008 \\ 0.08 {}^{+0.15}_{-0.12} \pm 0.01 \end{array}$	$\begin{array}{c} 0.249 \pm 0.072 \\ 0.247 {}^{+0.109}_{-0.094} \end{array}$
$\mathcal{B}(B^0 \to K^0 \mu^+ \mu^-)^1$	LHCb [237] Belle [238] BaBar [239]	$\begin{array}{c} 0.327 \pm 0.034 \pm 0.017 \\ 0.394 {}^{+0.096}_{-0.084} \pm 0.012 \\ 0.49 {}^{+0.29}_{-0.25} \pm 0.03 \end{array}$	$\begin{array}{c} 0.341 \pm 0.034 \\ 0.339 \pm 0.035 \end{array}$
$\mathcal{B}(B^0 \to K^0 \nu \overline{\nu})$	Belle [235] BaBar [241]	< 26.0 < 49.0	< 26
$\mathcal{B}(B^0 \to \rho^0(770)\nu\overline{\nu})$	Belle $[235]$	< 40.0	< 40
$\mathcal{B}(B^0 \to K^*(892)^0 \ell^+ \ell^-)^1$	Belle [243] BaBar [239]	$\begin{array}{c} 0.97 \substack{+0.13 \\ -0.11} \pm 0.07 \\ 1.03 \substack{+0.22 \\ -0.21} \pm 0.07 \end{array}$	$\begin{array}{c} 0.99 \pm 0.12 \\ 0.99 {}^{+0.12}_{-0.11} \end{array}$
$\mathcal{B}(B^0 \to K^*(892)^0 e^+ e^-)^1$	Belle [243] BaBar [239]	$\frac{1.18 + 0.27}{-0.22} \pm 0.09}{0.86 + 0.26} \pm 0.05}$	$\frac{1.04\pm0.17}{1.03^{+0.19}_{-0.17}}$
$\mathcal{B}(B^0 \to K^*(892)^0 \mu^+ \mu^-)^1$	LHCb [251] Belle [243] BaBar [239]	$\begin{array}{c} 0.904 {}^{+0.016}_{-0.015} \pm 0.062 {}^{3} \\ 1.06 {}^{+0.19}_{-0.14} \pm 0.07 \\ 1.35 {}^{+0.40}_{-0.37} \pm 0.10 \end{array}$	0.94 ± 0.06 0.94 ± 0.05

Table 53: Branching fractions of charmless radiative and FCNC decays with leptons of B^0 mesons (part 3).

 1 Treatment of charmonium intermediate components differs between the results.

 2 Only muons are used.

³ Multiple systematic uncertainties are added in quadrature.

Parameter [10 ⁻⁶]	Measurements		Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0 \to \pi^+ \pi^- \mu^+ \mu^-)$	LHCb [150] ^{1,2}	,3	0.021 ± 0.005
	Belle [235]	< 18.0	
$\mathcal{B}(B^0 \to K^*(892)^0 \nu \overline{\nu})$	Belle [244]	< 55.0	< 18
	BaBar [241]	< 120.0	
$\mathcal{B}(B^0 \to \phi(1020)\nu\overline{\nu})$	Belle $[244]$	< 127.0	< 127
$\mathcal{B}(B^0 \to \pi^0 e^+ \mu^- + \text{c.c.})$	BaBar $[252]$	< 0.14	< 0.14
$\mathcal{B}(B^0 \to K^0 e^+ \mu^- + \text{c.c.})$	Belle [238]	< 0.038	< 0.028
	BaBar $[253]$	< 0.27	< 0.038
$\mathcal{B}(\mathbb{R}^0 \longrightarrow K^*(802)^0 e^+ \mu^-)$	Belle [254]	< 0.16	< 0.16
$\mathcal{B}(D \to K (892) e^{-\mu})$	BaBar $[253]$	< 0.53	< 0.10
$\mathcal{B}(\mathbb{R}^0 \longrightarrow K^*(802)^0 e^- \mu^+)$	Belle [254]	< 0.12	< 0.12
$\mathcal{B}(D \to K (0.52) \in \mu)$	BaBar $[253]$	< 0.34	< 0.12
$\mathcal{B}(\mathbb{R}^0 \longrightarrow K^*(802)^0 e^+ \mu^- + c.c.)$	Belle [254]	< 0.18	< 0.18
$\mathcal{D}(D^* \to K \ (892)^* e^* \mu \ +\text{c.c.})$	BaBar $[253]$	< 0.58	< 0.10
$\mathcal{B}(B^0 \to \Lambda_c^+ \mu^-)$	BaBar $[255]$	< 1.4	< 1.4
$\mathcal{B}(B^0 \to \Lambda_c^+ e^-)$	BaBar $[255]$	< 4.0	< 4.0

Table 54: Branching fractions of charmless radiative and FCNC decays with leptons of B^0 mesons (part 4).

 1 The mass windows corresponding to ϕ and charmonium resonances decaying to $\mu\mu$ are vetoed.

² 0.5 < $m_{\pi^+\pi^-}$ < 1.3 GeV/c². ³ Measurement of $\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)/(\mathcal{B}(B^0 \to J/\psi K^*(892)^0)\mathcal{B}(J/\psi \to \mu^+\mu^-)\mathcal{B}(K^*(892)^0 \to K\pi)2/3)$ used in our fit.

Parameter $[10^{-6}]$	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B \to K\eta\gamma)$	Belle [219]	$8.5 \pm 1.3 {}^{+1.2}_{-0.9} {}^{1}_{-0.9}$	$8.5^{+1.8}_{-1.6}$
$\mathcal{B}(B \to K_1(1400)\gamma)$	CLEO [215]	< 127	< 127
$\mathcal{B}(B \to K_2^*(1430)\gamma)$	CLEO [215]	$16.6^{+5.9}_{-5.3}\pm1.3$	$16.6^{+6.0}_{-5.5}$
$\mathcal{B}(B \to K_3^*(1780)\gamma)$	Belle [219]	< 9.3	< 9.3 < 37.0
	Belle [256]	$347 \pm 15 \pm 40^{-2}$	
	BaBar $[257]$	$332 \pm 16 \pm 31^{-2}$	
$\mathcal{B}(B \to Y_{\alpha})$	Belle [258]	$375 \pm 18 \pm 35^{-2}$	240 ± 10
$\mathcal{D}(D \to \Lambda_s \gamma)$	BaBar $[259]$	$352\pm20\pm51$ 2	349 ± 19
	CLEO [260]	$329 \pm 44 \pm 29^{-2}$	
	BaBar [261]	$390\pm91\pm64$ 2	
$\mathcal{B}(B \to X_d \gamma)$	BaBar $[262]$	$9.2 \pm 2.0 \pm 2.3$	9.2 ± 3.0
$\mathcal{B}(D) \rightarrow \mathcal{D}^{3}$	Belle [229]	$1.21^{+0.24}_{-0.22} \pm 0.12$	1.40 ± 0.22
$D(D \rightarrow p\gamma)$	BaBar [230]	$1.73^{+0.34}_{-0.32}\pm 0.17$	$1.39 {}^{+0.25}_{-0.24}$
$\mathcal{B}(D) = (1, 2)^3$	Belle [229]	$1.14 \pm 0.20 {}^{+0.10}_{-0.12}$	1.30 ± 0.18
$D(D \to \rho/\omega,\gamma)^{*}$	BaBar [230]	$1.63^{+0.30}_{-0.28} \pm 0.16$	$1.30 {}^{+0.23}_{-0.24}$
$\mathcal{P}(D \rightarrow V_{o} + e^{-})3.4.5$	BaBar [263]	$7.69^{+0.82}_{-0.77}{}^{+0.71}_{-0.60}{}^{6}$	6.67 ± 0.83
$\mathcal{D}(D \to \Lambda_s e^+ e^-)^{\circ, \circ, \circ}$	Belle [264]	$4.04 \pm 1.30 {}^{+0.87}_{-0.83}$	$6.67^{+1.76}_{-1.63}$
$\mathcal{R}(D \rightarrow V \mu + \mu -)4.5$	Belle [264]	$4.13 \pm 1.05 {}^{+0.85}_{-0.81}$	4.27 ± 0.95
$D(D \to \Lambda_s \mu^+ \mu^-)^{**}$	BaBar [263]	$4.41^{+1.31}_{-1.17}{}^{+0.63}_{-0.50}{}^{6}$	$4.27^{+0.99}_{-0.92}$
$\mathcal{P}(D \rightarrow V \ \ell + \ell -)4.3.5$	BaBar [263]	$6.73^{+0.70}_{-0.64}{}^{+0.60}_{-0.56}{}^{6}_{-0.56}$	5.84 ± 0.69
$D(D \to \Lambda_s \ell^+ \ell^-)^{-,\circ,\circ}$	Belle [264]	$4.11 \pm 0.83 \substack{+0.85 \\ -0.81}$	$5.84^{+1.31}_{-1.23}$

Table 55: Branching fractions of charmless radiative, FCNC decays with leptons and LFV/LNV decays of B^{\pm}/B^0 admixture (part 1).

 $^1~M_{K\eta}<2.4~{\rm GeV}/c^2.$ 2 Measurement extrapolated to $E_{\gamma}~>~1.6~{\rm GeV}$ using the method from Ref. [265].

³ The PDG uncertainty includes a scale factor.

⁴ Belle uses $m_{\ell^+\ell^-} > 0.2 \text{ GeV}/c^2$, Babar uses $m_{\ell^+\ell^-} > 0.1 \text{ GeV}/c^2$.

⁵ Treatment of charmonium intermediate components differs between the results.

⁶ Multiple systematic uncertainties are added in quadrature.

Parameter $[10^{-6}]$	Measureme	Measurements	
$\mathcal{P}(D \to -\ell^+ \ell^-)$	BaBar [233]	< 0.059	< 0.050
$D(D \to \pi \ell^+ \ell^-)$	Belle $[232]$	< 0.062	< 0.059
$\mathcal{B}(B \to \pi e^+ e^-)$	BaBar $[233]$	< 0.11	< 0.11
$\mathcal{B}(B \to \pi \mu^+ \mu^-)$	BaBar $[233]$	< 0.05	< 0.05
$\mathcal{B}(B \to K_{c}^{+}c^{-})^{1}$	Belle $[243]$	$0.48^{+0.08}_{-0.07} \pm 0.03$	0.44 ± 0.06
$D(D \rightarrow Ke^+e^-)$	BaBar $[239]$	$0.388^{+0.090}_{-0.083} \pm 0.020$	0.44 ± 0.00
$\mathcal{B}(R \to K^* c^+ c^-)^{2,1}$	Belle [243]	$1.39^{+0.23}_{-0.20} \pm 0.12$	1.20 ± 0.16
$D(D \to K e^+e^-)^+$	BaBar $[239]$	$0.99^{+0.23}_{-0.21} \pm 0.06$	$1.19^{+0.21}_{-0.19}$
	CDF [173]	$0.42 \pm 0.04 \pm 0.02$	
$\mathcal{B}(B \to K \mu^+ \mu^-)^1$	Belle $[243]$	$0.50 \pm 0.06 \pm 0.03$	0.442 ± 0.036
	BaBar $[239]$	$0.41^{+0.13}_{-0.12} \pm 0.02$	
	CDF [173]	$1.01 \pm 0.10 \pm 0.05$	
$\mathcal{B}(B \to K^* \mu^+ \mu^-)^1$	Belle $[243]$	$1.10^{+0.16}_{-0.14}\pm 0.08$	1.06 ± 0.09
	BaBar $[239]$	$1.35^{+0.35}_{-0.33} \pm 0.10$	
$\mathcal{B}(P \setminus K\ell + \ell -)1$	Belle $[243]$	$0.48^{+0.05}_{-0.04} \pm 0.03$	0.48 ± 0.04
$D(D \to K\ell^+\ell^-)$	BaBar $[266]$	$0.47 \pm 0.06 \pm 0.02$	0.40 ± 0.04
$\mathcal{B}(P \to K^* \ell + \ell - 1)$	Belle [243]	$1.07^{+0.11}_{-0.10} \pm 0.09$	1.05 ± 0.10
$D(D \to K^{-}\ell^{+}\ell^{-})^{-}$	BaBar $[266]$	$1.02^{+0.14}_{-0.13} \pm 0.05$	1.00 ± 0.10

Table 56: Branching fractions of charmless radiative, FCNC decays with leptons and LFV/LNV decays of B^{\pm}/B^0 admixture (part 2).

 1 Treatment of charmonium intermediate components differs between the results.

 2 The PDG uncertainty includes a scale factor.

Parameter $[10^{-6}]$	Measurements		Average $_{PDG}^{HFLAV}$
$\mathcal{B}(D \to K_{1}\overline{u})$	Belle [235]	< 16.0	< 16
$\mathcal{D}(D \to K \nu \nu)$	BaBar [241]	< 17.0	< 10
$\mathcal{B}(D \setminus K^*, \overline{u})$	Belle [235]	< 27.0	< 97
$\mathcal{B}(B \to K^* \nu \nu)$	BaBar $[241]$	< 76.0	< 21
$\mathcal{B}(B \to \pi \nu \overline{\nu})$	Belle [235]	< 8.0	< 8.0
$\mathcal{B}(B \to \rho \nu \overline{\nu})$	Belle [235]	< 28.0	< 28
$\mathcal{B}(B \to \pi e^{\pm} \mu^{\mp})$	BaBar $[252]$	< 0.092	< 0.092
$\mathcal{B}(B \to \rho e^{\pm} \mu^{\mp})$	CLEO [267]	< 3.2	< 3.2
$\mathcal{B}(B \to K e^{\pm} \mu^{\mp})$	BaBar $[253]$	< 0.038	< 0.038
$\mathcal{B}(B \to K^* e^{\pm} \mu^{\mp})$	BaBar $[253]$	< 0.51	< 0.51

Table 57: Branching fractions of charmless radiative, FCNC decays with leptons and LFV/LNV decays of B^{\pm}/B^0 admixture (part 3).

Parameter $[10^{-7}]$	Measuremen	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{P}(D+, +)$	Belle [268]	< 9.8	< 0.0
$\mathcal{D}(B^+ \to e^+ \nu_e)$	BaBar [269]	< 19	< 9.8
	Belle [270]	< 8.6	
$\mathcal{B}(B^+ \to \mu^+ \nu_\mu)$	BaBar [269]	< 10	< 8.6
	Belle [271]	< 10.7	
	Belle [272]	$720^{+270}_{-250} \pm 110$	
$\mathcal{B}(D^+ \to \sigma^+ \mu)^1$	Belle [273]	$1250 \pm 280 \pm 270$	1094 ± 208
$\mathcal{D}(D^+ \to T^+ \nu_{\tau})$	BaBar [274]	$1830^{+530}_{-490}\pm240$	1094^{+247}_{-236}
	BaBar $[275]$	$1700\pm800\pm200$	
$\mathcal{B}(\mathbb{R}^+ \to \ell^+ \mu_0)$	Belle [276]	$< 30^{-2}$	< 20
$D(D^+ \to \ell^+ \nu_{\ell^+}\gamma)$	BaBar $[277]$	< 156	< 30
$\mathcal{P}(D^+)$	Belle [276]	$< 43^{2}$	< 12
$\mathcal{D}(D^+ \to e^+ \nu_e \gamma)$	BaBar $[277]$	< 170	< 40
$\mathcal{B}(D^+ \rightarrow \mu^+ \mu^- \mu^-)$	Belle [276]	$< 34^{-2}$	< 21
$D(D^+ \to \mu^+ \nu_{\mu'} \gamma)$	BaBar $[277]$	< 260	< 34
$\mathcal{B}(\mathbb{R}^0 \to \alpha(\alpha))$	BaBar $[278]$	< 3.3	< 3.3
$D(D \rightarrow \gamma\gamma\gamma)$	Belle [279]	< 6.2	< 3.2
	LHCb [197]	< 0.025	
$\mathcal{B}(B^0 \rightarrow e^+ e^-)$	CDF [198]	< 0.83	< 0.025
$D(D \rightarrow c c)$	BaBar [280]	< 1.13	< 0.025
	Belle [281]	< 1.9	
$\mathcal{B}(B^0 \to e^+ e^- \gamma)$	BaBar $[282]$	< 1.2	< 1.2
	ATLAS [193]	$< 0.0021^{-3}$	
${\cal B}(B^0\to\mu^+\mu^-)$	LHCb [194]	$< 0.0034^{-3}$	
	CMS [195]	$< 0.0036^{-3}$	< 0.0021
	CDF [196]	< 0.038	$0.0005 {}^{+0.0017}_{-0.0015}$
	BaBar [280]	< 0.52	
	Belle [281]	< 1.6	

Table 58: Branching fractions of charmless leptonic and radiative-leptonic B^+ and B^0 decays (part 1).

 1 The PDG uncertainty includes a scale factor. 2 $E_{\gamma} > 1$ GeV. 3 At CL=95 %.

Parameter [10 ⁻⁷]	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\mathcal{B}(\mathbb{R}^0 \rightarrow \mu^+ \mu^- \gamma)$	BaBar [989]	< 1.5	< 1.5
$\mathcal{D}(D \rightarrow \mu \ \mu \ \gamma)$	DaDar [202]	< 1.0	< 1.6
$\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-)$	LHCb [200]	$< 0.0069^{-1.2}$	< 0.0069
$\mathcal{B}(B^0 \to SP) \times \mathcal{B}(S -$	$\rightarrow \mu^+ \mu^-) \times \mathcal{B}(I)$	$P \to \mu^+ \mu^-)$	
	LHCb [200]	$< 0.006^{-1.2}$	< 0.0060
$\mathcal{B}(B^0 \rightarrow \tau^+ \tau^-)$	LHCb [199]	$< 21000^{-2}$	< 21000
$D(D \rightarrow T^{*}T)$	BaBar $[283]$	< 41000	< 21000
$\mathcal{B}(B^0 \to \nu \overline{\nu})$	BaBar $[284]$	< 240	< 240
	Belle $[285]$	< 780	< 240
$\mathcal{B}(B^0 \to \nu \overline{\nu} \gamma)$	Belle $[285]$	$< 160^{-3}$	< 160
	BaBar $[284]$	$< 170^{-4}$	< 100
$\mathcal{B}(B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu)$	LHCb [286]	< 0.16 2	< 0.16

Table 59: Branching fractions of charmless leptonic and radiative-leptonic B^+ and B^0 decays (part 2).

¹ The mass windows corresponding to ϕ and charmonium resonances decaying to $\mu\mu$ are vetoed.

 2 At CL=95 %.

 ${}^{3}E_{\gamma} > 0.5 \text{ GeV.}$ ${}^{4}E_{\gamma} > 1.2 \text{ GeV.}$

Parameter	Measureme	Average			
$\frac{\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}, \ 1.0 < m_{\ell^+ \ell^-}^2 < 6.0 \ \text{GeV}^2/\text{c}^4$					
	LHCb [234]	$0.038 \pm 0.009 \pm 0.001$	0.038 ± 0.009		
$\boxed{\frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}, \text{ Full } \mathbf{m}^2_{\ell^+ \ell^-} \text{ range}}$	Belle [238]	$1.08{}^{+0.16}_{-0.15}\pm 0.02$	1.08 ± 0.16		
$\frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}, \ 1.1 < m_{\ell^+ \ell^-}^2 < 6.0$) $\mathrm{GeV}^2/\mathrm{c}^4$				
	LHCb [287]	$0.846^{+0.042}_{-0.039}{}^{+0.013}_{-0.012}{}^{1}$	0.846 ± 0.042		
$\boxed{\frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}, \ 0.10 < m_{\ell^+ \ell^-}^2 < 8}$	$.12 \text{ GeV}^2/c^4$ ar	nd $m_{\ell^+\ell^-}^2 > 10.11 \text{ GeV}^2/c^4$	L		
	BaBar $[266]$	$1.00^{+0.31}_{-0.25}\pm 0.07$	$1.00 {}^{+0.32}_{-0.26}$		
$\left[\frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}, \ 1.0 < m_{\ell^+ \ell^-}^2 < 6.0 \right]$	$0 { m GeV^2/c^{4-2}}$				
	Belle [238]	$1.39^{+0.36}_{-0.33}\pm 0.02$	1.39 ± 0.35		
$\boxed{\begin{array}{c} \frac{\mathcal{B}(B^0 \to K^0_S \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^0_S e^+ e^-)}, \text{ Full } m^2_{\ell^+ \ell^-} \text{ range}}$	Belle [238]	$1.29^{+0.52}_{-0.45}\pm 0.01$	$1.29^{+0.52}_{-0.45}$		
$\frac{\mathcal{B}(B^0 \to K_S^0 \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K_S^0 e^+ e^-)}, \ 1.0 < m_{\ell^+ \ell^-}^2 < 6.0 \ \mathrm{GeV^2/c^{4-2}}$					
	Belle [238]	$0.55{}^{+0.46}_{-0.34}\pm 0.01$	$0.55{}^{+0.46}_{-0.34}$		
$\boxed{\frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)}, \text{ Full } m_{\ell^+\ell^-}^2 \text{ range}}$	Belle [238]	$1.10_{-0.15}^{+0.16} \pm 0.02$	1.10 ± 0.16		
$\frac{\mathcal{B}(B \to K \mu^+ \mu^-)}{\mathcal{B}(B \to K e^+ e^-)}, \ 1.0 < m_{\ell^+ \ell^-}^2 < 6.0 \ \text{GeV}^2/\text{c}^{4-2}$					
	Belle [238]	$1.03^{+0.28}_{-0.24} \pm 0.01$	$1.03^{+0.28}_{-0.24}$		

Table 60: Relative branching fractions of charmless radiative and FCNC decays with leptons of B^+ and B^0 mesons (part 1).

¹ LHCb has also measured the branching fraction of $B^+ \to K^+ e^+ e^-$ in the $m_{\ell^+\ell^-}^2$ bin [1.1, 6.0] GeV²/c⁴. ² For the other bins see the article.

Table 61: Relative branching fractions of charmless radiative and FCNC decays with leptons of B^+ and B^0 mesons (part 2).

$ \begin{array}{ c c c c c c c c c } \hline & \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ \mathrm{Full} \ \mathrm{m}^2_{\ell^+ \ell^-} \ \mathrm{range} \ \ \mathrm{Belle} \ [243] & 0.83 \pm 0.17 \pm 0.08 & 0.83 \pm 0.19 \\ \hline & \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 0.10 < m^2_{\ell^+ \ell^-} < 8.12 \ \mathrm{GeV}^2/\mathrm{c}^4 \ \ \mathrm{BaBar} \ [266] & 1.13 \overset{+0.34}{_{-0.26}} \pm 0.10 & 1.13 \overset{+0.35}{_{-0.28}} \\ \hline & \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 0.045 < m^2_{\ell^+ \ell^-} < 1.1 \ \mathrm{GeV}^2/\mathrm{c}^4 \\ & \mathrm{Belle} \ [288] & 0.52 \overset{+0.36}{_{-0.26}} \pm 0.06 & 0.52 \overset{+0.36}{_{-0.27}} \\ \hline & \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 1.1 < m^2_{\ell^+ \ell^-} < 6.0 \ \mathrm{GeV}^2/\mathrm{c}^4 \end{array} $	9			
$\begin{array}{ c c c c c c c c } \hline & \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 0.10 < m_{\ell^+ \ell^-}^2 < 8.12 \ \mathrm{GeV}^2/\mathrm{c}^4 \ & \mathrm{BaBar} \ [266] & 1.13 \stackrel{+0.34}{_{-0.26}} \pm 0.10 \ & 1.13 \stackrel{+0.35}{_{-0.28}} \\ \hline & \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 0.045 < m_{\ell^+ \ell^-}^2 < 1.1 \ \mathrm{GeV}^2/\mathrm{c}^4 \\ & \mathrm{Belle} \ [288] \ & 0.52 \stackrel{+0.36}{_{-0.26}} \pm 0.06 \ & 0.52 \stackrel{+0.36}{_{-0.27}} \\ \hline & \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 1.1 < m_{\ell^+ \ell^-}^2 < 6.0 \ \mathrm{GeV}^2/\mathrm{c}^4 \end{array}$				
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$				
$\begin{array}{c c} \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 0.045 < m_{\ell^+ \ell^-}^2 < 1.1 \ \mathrm{GeV}^2/\mathrm{c}^4 \\ & \qquad \qquad$				
$\begin{array}{c c} & \text{Belle [288]} & 0.52 \substack{+0.36 \\ -0.26 \pm 0.06 \end{array} & 0.52 \substack{+0.36 \\ -0.27 \end{array}} \\ \hline \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* a^+ a^-)}, \ 1.1 < m_{\ell^+ \ell^-}^2 < 6.0 \text{ GeV}^2/c^4 \end{array}$				
$\left \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* c^+ c^-)}, 1.1 < m_{\ell^+ \ell^-}^2 < 6.0 \text{ GeV}^2/c^4 \right $				
Belle [288] $0.96^{+0.45}_{-0.29} \pm 0.11$ $0.96^{+0.46}_{-0.31}$				
$\left \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}, \ 15 < m_{\ell^+ \ell^-}^2 < 19 \ \text{GeV}^2/\text{c}^4 \right.$				
Belle [288] $1.18 \substack{+0.52 \\ -0.32} \pm 0.11$ $1.18 \substack{+0.53 \\ -0.34}$				
$\left \begin{array}{c} \frac{\mathcal{B}(B^0 \to K^*(892)^0 \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^*(892)^0 e^+ e^-)}, \ 0.045 < m_{\ell^+ \ell^-}^2 < 1.1 \ \mathrm{GeV}^2/\mathrm{c}^4 \end{array} \right.$				
LHCb [289] $0.66^{+0.11}_{-0.07} \pm 0.03$ Belle [288] $0.46^{+0.55}_{-0.27} \pm 0.13$ $0.65^{+0.11}_{-0.07}$				
$\frac{\mathcal{B}(B^0 \to K^*(892)^0 \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^*(892)^0 e^+ e^-)}, \ 1.1 < m_{\ell^+ \ell^-}^2 < 6.0 \ \mathrm{GeV}^2/\mathrm{c}^4$				
LHCb [289] $0.69 \stackrel{+0.11}{_{-0.07}} \pm 0.05$ $0.72 \stackrel{+0.12}{_{-0.09}}$ Belle [288] $1.06 \stackrel{+0.63}{_{-0.38}} \pm 0.14$ $0.72 \stackrel{+0.12}{_{-0.09}}$				
$ \frac{\mathcal{B}(B^0 \to K^*(892)^0 \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^*(892)^0 e^+ e^-)}, \ 15 < m_{\ell^+ \ell^-}^2 < 19 \ \mathrm{GeV}^2/\mathrm{c}^4 $				
Belle [288] $1.12^{+0.61}_{-0.36} \pm 0.10$ $1.12^{+0.62}_{-0.37}$				
$ \frac{\mathcal{B}(B^+ \to K^*(892)^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^*(892)^+ e^+ e^-)}, \ 0.045 < m_{\ell^+ \ell^-}^2 < 1.1 \ \mathrm{GeV}^2/\mathrm{c}^4 $				
Belle [288] $0.62^{+0.60}_{-0.36} \pm 0.09$ $0.62^{+0.61}_{-0.37}$				
$\left \begin{array}{c} \frac{\mathcal{B}(B^+ \to K^*(892)^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^*(892)^+ e^+ e^-)}, \ 1.1 < m_{\ell^+ \ell^-}^2 < 6.0 \ \mathrm{GeV}^2/\mathrm{c}^4 \end{array} \right.$				
Belle [288] $0.72^{+0.99}_{-0.44} \pm 0.15$ $0.7^{+1.0}_{-0.5}$				
$\left \begin{array}{c} \frac{\mathcal{B}(B^+ \to K^*(892)^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^*(892)^+ e^+ e^-)}, \ 15 < m_{\ell^+ \ell^-}^2 < 19 \ \mathrm{GeV}^2/\mathrm{c}^4 \end{array} \right.$				
Belle [288] $1.40^{+1.99}_{-0.68} \pm 0.12$ $1.4^{+2.0}_{-0.7}$				
$\begin{vmatrix} \mathcal{B}(B^{0} \to K^{*}(892)^{0}\gamma) \\ \mathcal{B}(B^{0} \to \phi(1020)\gamma) \end{matrix}$ LHCb [192] $1.23 \pm 0.06 \pm 0.11^{-1}$ Belle [213] $1.10 \pm 0.16 \pm 0.20^{-1}$ 1.21 ± 0.12	1			

 1 Multiple systematic uncertainties are added in quadrature.

Average HFLAV Parameter $[10^{-4}]$ Measurements $2.610 \pm 0.300 \, {}^{+0.440}_{-0.740} \, {}^{1}$ Belle [290] $2.61^{\,+0.53}_{\,-0.80}$ $\mathcal{B}(B \to \eta X)$ CLEO [291] $< 4.400^{-2}$ $3.90 \pm 0.80 \pm 0.90^{-3}$ BaBar [292] $\mathcal{B}(B \to \eta' X)$ 4.24 ± 0.87 $4.60 \pm 1.10 \pm 0.60$ 3 CLEO [293] $\mathcal{B}(B \to K^+ X)$ BaBar [294] $< 1.87^{-4}$ < 1.9 1.95 ± 0.69 $1.95\,{}^{+0.51}_{-0.45}\pm 0.50\,\,{}^{4}$ $\mathcal{B}(B \to K^0 X)$ BaBar [294] $1.95 \, {}^{+0.71}_{-0.67}$ 3.72 ± 0.76 $3.72^{\,+0.50}_{\,-0.47} \pm 0.59^{-5}$ $\mathcal{B}(B \to \pi^+ X)$ BaBar [294] $3.72^{+0.77}_{-0.75}$

Table 62: Branching fractions of $B^+/B^0 \to \overline{q}$ gluon decays.

 1 0.4 < m_X < 2.6 GeV/ c^2 .

² 2.1 < p_{η} < 2.7 GeV/c. ³ 2.0 < $p^*(\eta')$ < 2.7 GeV/c.

 $^{4} p^{*}(K) < 2.34 \text{ GeV}/c.$

 $^{5} p^{*}(\pi^{+}) < 2.36 \text{ GeV}/c.$

Table 63: Isospin asymmetry in radiative and FCNC decays with leptons of B mesons. In some of the *B*-factory results it is assumed that $\mathcal{B}(\Upsilon(4S) \to B^+B^-) = \mathcal{B}(\Upsilon(4S) \to B^0\overline{B}^0)$, and in others a measured value of the ratio of branching fractions is used. See original papers for details. The averages quoted here are computed naively and should be treated with caution.

Parameter	Measureme	nts	Average $_{PDG}^{HFLAV}$
$\Delta_{0^-}(B \to X_s \gamma)$	Belle [295] BaBar [296]	$\begin{array}{c} -0.0048 \pm 0.0149 \pm 0.0150 \ ^{1,2} \\ -0.006 \pm 0.058 \pm 0.026 \ ^{1,2} \end{array}$	-0.005 ± 0.020
$\Delta_{0^-}(B \to X_{s+d}\gamma)$	BaBar $[261]$	$-0.06 \pm 0.15 \pm 0.07^{-3}$	-0.06 ± 0.17
$\Delta_{0^+}(B \to K^* \gamma)$	Belle [213] BaBar [214]	$\begin{array}{c} 0.062 \pm 0.015 \pm 0.013 \ ^2 \\ 0.066 \pm 0.021 \pm 0.022 \end{array}$	0.063 ± 0.017
$\frac{\Gamma(B^+ \to \rho^+ \gamma)}{2\Gamma(B^0 \to \rho^0 \gamma)} - 1$	Belle [229] BaBar [230]	$\begin{array}{c} -0.48 {}^{+0.21}_{-0.19} {}^{+0.08}_{-0.09} \\ -0.43 {}^{+0.25}_{-0.22} \pm 0.10 \end{array}$	-0.46 ± 0.17
$\Delta_{0-}(B \to K\ell^+\ell^-)^4$	LHCb [237] Belle [238] BaBar [266]	$\begin{array}{c} -0.10 {}^{+0.08}_{-0.09} \pm 0.02 {}^{5} \\ -0.31 {}^{+0.13}_{-0.11} \pm 0.01 {}^{6} \\ -0.41 \pm 0.25 \pm 0.01 {}^{6} \end{array}$	$\begin{array}{c} -0.191 \substack{+0.073 \\ -0.071 \\ -0.150 \pm 0.060 \end{array}$
$\Delta_{0-}(B \to K^* \ell^+ \ell^-)^4$	BaBar [266] Belle [243] LHCb [237]	$\begin{array}{c} -0.20 {}^{+0.30}_{-0.23} \pm 0.03 {}^{6} \\ 0.33 {}^{+0.37}_{-0.43} \pm 0.08 {}^{6} \\ 0.00 {}^{+0.12}_{-0.10} \pm 0.02 {}^{5} \end{array}$	$\begin{array}{c} -0.01 \substack{+0.11 \\ -0.09 \\ -0.03 \substack{+0.08 \\ -0.07 \end{array}}$
$\Delta_{0^-}(B \to K^{(*)}\ell^+\ell^-)^4$	Belle [243] BaBar [239]	$\begin{array}{c} -0.30 {}^{+0.12}_{-0.11} \pm 0.08 {}^7 \\ -0.64 {}^{+0.15}_{-0.14} \pm 0.03 {}^8 \end{array}$	$-0.45 \pm 0.10 \\ -0.45 \pm 0.17$

- $^1~M_{X_s} < 2.8~{\rm GeV}/c^2.$ 2 Multiple systematic uncertainties are added in quadrature.
- $^{3}E_{\gamma} > 2.2$ GeV.
- ⁴ The PDG uncertainty includes a scale factor.
- ⁵ Only muons are used, $1.1 < m_{\ell^+\ell^-}^2 < 6.0 \text{ GeV}^2/\text{c}^4$.

⁶
$$1.0 < m_{\ell^+\ell^-}^2 < 6.0 \text{ GeV}^2/c^4$$

$$^7 m_{\ell^+\ell^-}^2 < 8.68 \text{ GeV}^2/\text{c}^4.$$

 $^{8} 0.1 < m_{\ell^+\ell^-}^2 < 7.02 \text{ GeV}^2/c^4.$

Parameter $[10^{-6}]$	Measurements		Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to \pi^+ e^+ \mu^- + \text{c.c.})$	BaBar $[252]$	< 0.17	< 0.17
$\mathcal{B}(B^+ \to \pi^+ e^+ \tau^-)$	BaBar [297]	< 74.0	< 74
$\mathcal{B}(B^+ \to \pi^+ e^- \tau^+)$	BaBar [297]	< 20.0	< 20
$\mathcal{B}(B^+ \to \pi^+ e^+ \tau^- + \text{c.c.})$	BaBar [297]	< 75.0	< 75
$\mathcal{B}(B^+ \to \pi^+ \mu^+ \tau^-)$	BaBar [297]	< 62.0	< 62
$\mathcal{B}(B^+ \to \pi^+ \mu^- \tau^+)$	BaBar [297]	< 45.0	< 45
$\mathcal{B}(B^+ \to \pi^+ \mu^+ \tau^- + \text{c.c.})$	BaBar [297]	< 72.0	< 72
	LHCb [298]	< 0.0070	
$\mathcal{B}(B^+ \to K^+ e^+ \mu^-)$	Belle $[238]$	< 0.03	< 0.007
	BaBar $[253]$	< 0.091	
	LHCb [298]	< 0.0064	
$\mathcal{B}(B^+ \to K^+ e^- \mu^+)$	Belle $[238]$	< 0.085	< 0.0064
	BaBar $[253]$	< 0.13	
$\mathcal{B}(B^+ \to K^+ e^+ \mu^- + \text{c.c.})$	BaBar $[253]$	< 0.091	< 0.091
$\mathcal{B}(B^+ \to K^+ e^+ \tau^-)$	BaBar $[297]$	< 43.0	< 43
$\mathcal{B}(B^+ \to K^+ e^- \tau^+)$	BaBar $[297]$	< 15.0	< 15
$\mathcal{B}(B^+ \to K^+ e^+ \tau^- + \text{c.c.})$	BaBar $[297]$	< 30.0	< 30
$\mathcal{B}(B^+ \to K^+ \mu^+ \tau^-)$	BaBar $[297]$	< 45.0	< 45
$\mathcal{B}(B^+ \to K^+ \mu^- \sigma^+)$	BaBar [297]	< 28.0	< 28
$D(D^* \to K^* \mu^* T^*)$	LHCb [299]	< 39.0	< 20
$\mathcal{B}(B^+ \to K^+ \mu^+ \tau^- + \text{c.c.})$	BaBar $[297]$	< 48.0	< 48
$\mathcal{B}(B^+ \to K^*(892)^+ e^+ \mu^-)$	BaBar $[253]$	< 1.30	< 1.3
$\mathcal{B}(B^+ \to K^*(892)^+ e^- \mu^+)$	BaBar $[253]$	< 0.99	< 0.99
$\mathcal{B}(B^+ \to K^*(892)^+ e^+ \mu^- + \text{c.c.})$	BaBar $[253]$	< 1.40	< 1.4
$\mathcal{B}(B^+ \to \pi^- e^+ e^+)$	BaBar $[300]$	< 0.023	< 0.023
$\mathcal{B}(B^+ \rightarrow \pi^- \mu^+ \mu^+)$	LHCb [301]	$< 0.0040^{-1}$	< 0.004
$\mathcal{D}(\mathcal{D} \to \pi^{-}\mu^{-}\mu^{-})$	BaBar $[300]$	< 0.107	< 0.004
$\mathcal{B}(B^+ \to \pi^- e^+ \mu^+)$	BaBar $[302]$	< 0.15	< 0.15
$\mathcal{B}(B^+ \to \rho^-(770)e^+e^+)$	BaBar $[302]$	< 0.17	< 0.17
$\mathcal{B}(B^+ \to \rho^-(770)\mu^+\mu^+)$	BaBar $[302]$	< 0.42	< 0.42
$\mathcal{B}(B^+ \to \rho^-(770)e^+\mu^+)$	BaBar $[302]$	< 0.47	< 0.47

Table 64: Branching fractions of charmless semileptonic B^+ decays to LFV and LNV final states (part 1).

¹ At CL=95%.

Parameter $[10^{-6}]$	Measurements		Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^+ \to K^- e^+ e^+)$	BaBar $[300]$	< 0.030	< 0.030
$\mathcal{B}(B^+ \to K^- \mu^+ \mu^+)$	LHCb [303] BaBar [300]	< 0.041 < 0.067	< 0.041
$\mathcal{B}(B^+ \to K^- e^+ \mu^+)$	BaBar $[302]$	< 0.16	< 0.16
$\mathcal{B}(B^+ \to K^*(892)^- e^+ e^+)$	BaBar $[302]$	< 0.40	< 0.40
$\mathcal{B}(B^+ \to K^*(892)^- \mu^+ \mu^+)$	BaBar $[302]$	< 0.59	< 0.59
$\mathcal{B}(B^+ \to K^*(892)^- e^+ \mu^+)$	BaBar [302]	< 0.30	< 0.30
$\mathcal{B}(B^+ \to D^- e^+ e^+)$	BaBar [302] BELLE [304]	< 2.6 < 2.6	< 2.6
$\mathcal{B}(B^+ \to D^- e^+ \mu^+)$	BELLE [304] BaBar [302]	< 1.8 < 2.1	< 1.8
$\mathcal{B}(B^+ \to D^- \mu^+ \mu^+)$	LHCb [305] BELLE [304] BaBar [302]	$< 0.69^{-1}$ < 1.0 < 1.7	< 0.69
$\mathcal{B}(B^+ \to D^*(2010)^- \mu^+ \mu^+)$	LHCb [305]	$< 2.4^{-1}$	< 2.4
$\mathcal{B}(B^+ \to D_s^- \mu^+ \mu^+)$	LHCb [305]	$< 0.58^{-1}$	< 0.58
$\mathcal{B}(B^+ \to \overline{D}{}^0 \pi^- \mu^+ \mu^+)$	LHCb [305]	$< 1.5^{-1}$	< 1.5
$\mathcal{B}(B^+ \to \Lambda^0 \mu^+)$	BaBar [255]	< 0.061	< 0.061 < 0.060
$\mathcal{B}(B^+ \to \Lambda^0 e^+)$	BaBar $[255]$	< 0.032	< 0.032
$\mathcal{B}(B^+ \to \overline{\Lambda}^0 \mu^+)$	BaBar [255]	< 0.062	< 0.062 < 0.060
$\mathcal{B}(B^+ \to \overline{\Lambda}^0 e^+)$	BaBar [255]	< 0.081	< 0.081 < 0.080

Table 65: Branching fractions of charmless semileptonic B^+ decays to LFV and LNV final states (part 2).

 1 At CL=95 %.

Parameter [10 ⁻⁶]	Measurements		Average $_{PDG}^{HFLAV}$
$\mathcal{B}(B^0 \to K^*(892)^0 e^- \mu^+)$	Belle $[254]$	< 0.12	< 0.12
	BaBar $[253]$	< 0.34	< 0.12
$\mathcal{B}(B^0 \to K^*(892)^0 e^+ \mu^-)$	Belle $[254]$	< 0.16	< 0.16
	BaBar $[253]$	< 0.53	< 0.10
$\mathcal{B}(B^0 \to K^0 e^+ \mu^- + \text{c.c.})$	Belle [238]	< 0.038	< 0.038
	BaBar $[253]$	< 0.27	< 0.030
$\mathcal{B}(B^0 \to \pi^0 e^+ \mu^- + \text{c.c.})$	BaBar $[252]$	< 0.14	< 0.14
$\mathcal{B}(B^0 \to e^+ \mu^- + \text{c.c.})$	LHCb [203]	< 0.0010	
	CDF [198]	< 0.064	< 0.001
	BaBar [280]	< 0.092	< 0.001
	Belle $[281]$	< 0.17	
$\mathcal{B}(B^0 \to e^+ \tau^- + \text{c.c.})$	BaBar $[306]$	< 28.0	< 28
$\mathcal{B}(B^0 \to \mu^+ \tau^- + \text{c.c.})$	LHCb [204]	< 12.0	< 12
	BaBar $[306]$	< 22.0	< 14

Table 66: Branching fractions of charmless semileptonic B^0 decays to LFV and LNV final states.

Measurements that are not included in the tables (the definitions of observables can be found in the corresponding experimental papers):

- In Ref. [307], LHCb reports the up-down asymmetries in bins of the $K\pi\pi\gamma$ mass of the $B^+ \to K^+\pi^-\pi^+\gamma$ decay.
- For the $B \to K\ell^-\ell^+$ channel, LHCb measures F_H and $A_{\rm FB}$ in 17 (5) bins of $m^2(\ell^+\ell^-)$ for the K^+ (K_s^0) final state [308]. Belle measures F_L and $A_{\rm FB}$ in 6 $m^2(\ell^+\ell^-)$ [243].
- For the $B \to K^* \ell^- \ell^+$ analyses, partial branching fractions and angular observables in bins of $m^2(\ell^+ \ell^-)$ are also available:
 - $-B^0 \rightarrow K^{*0}e^-e^+$: LHCb reports F_L , $A_T^{(2)}$, A_T^{Im} , A_T^{Re} in the [0.0008, 0.257] GeV²/c⁴ bin of $m^2(\ell^+\ell^-)$ putting constraints on the $B \rightarrow K^{*0}\gamma$ photon polarization [309]. In Ref. [310], LHCb determines the branching fraction in the dilepton mass region [0.0009, 1.0] GeV²/c⁴.
 - $B \rightarrow K^* \ell^- \ell^+$: Belle measures F_L , $A_{\rm FB}$, isospin asymmetry in 6 $m^2(\ell^+ \ell^-)$ bins [243] and P'_4 , P'_5 , P'_6 , P'_8 in 4 $m^2(\ell^+ \ell^-)$ bins [311]. In a more recent paper [312], they report measurements of P'_4 and P'_5 , separately for $\ell = \mu$ or e, in 4 $m^2(\ell^+ \ell^-)$ bins and in the region [1,6] GeV²/c⁴. The measurements use both B^0 and B^+ decays. They also measure the LFU observables $Q_i = P^{\mu}_i - P^e_i$, for i = 4, 5. BABAR reports F_L , $A_{\rm FB}$, P_2 in 5 $m^2(\ell^+ \ell^-)$ bins [313].
 - $B^0 \rightarrow K^{*0}\mu^-\mu^+$: LHCb measures F_L , $A_{\rm FB}$, $S_3 S_9$, $A_3 A_9$, $P_1 P_3$, $P'_4 P'_8$ in 8 $m^2(\ell^+\ell^-)$ bins [314]. An updated measurement of the *CP*-averaged observables is presented in Ref. [315]. CMS measures F_L and $A_{\rm FB}$ in 7 $m^2(\ell^+\ell^-)$ bins [316], as well as P_1, P'_5 [317]. ATLAS measures F_L , $S_{3,4,5,7,8}$ and $P'_{1,4,5,6,8}$ in 6 $m^2(\ell^+\ell^-)$ bins [318].
 - $-B^+ \rightarrow K^{*+}\mu^-\mu^+$: LHCb reports the full set of *CP*-averaged angular observables in 8 $m^2(\ell^+\ell^-)$ bins [319]. CMS measures F_L and $A_{\rm FB}$ in 3 $m^2(\ell^+\ell^-)$ bins [320].
- $B \to X_s \ell^- \ell^+$ (where X_s is a hadronic system with an *s* quark): Belle measures $A_{\rm FB}$ in bins of $m^2(\ell^+ \ell^-)$ with a sum of 10 exclusive final states [321].
- $B^0 \to K^+ \pi^- \mu^+ \mu^-$, with 1330 < $m(K^+ \pi^-)$ < 1530 GeV/ c^2 : LHCb measures the partial branching fraction in bins of $m^2(\mu^+ \mu^-)$ in the range [0.1, 8.0] GeV²/ c^4 , and reports angular moments [322].
- In Ref. [323], LHCb measures the phase difference between the short- and long-distance contributions to the B⁺ → K⁺μ⁺μ⁻ decay. The measurement is based on the analysis of the dimuon mass distribution in the regions of the J/ψ and ψ(2S) resonances and far from their poles, to probe long and short distance effects, respectively.
- In Ref. [324], CMS performs the study of the angular distribution of the $B^+ \to K^+ \mu^+ \mu^$ channel and measures, in 7 $m^2(\mu^+\mu^-)$ bins, $A_{\rm FB}$ and the contribution $F_{\rm H}$ from the pseudoscalar, scalar and tensor amplitudes to the decay.
- In Ref. [325], LHCb performs a search for a hidden-sector boson χ decaying into two muons in $B^0 \to K^{*0} \mu^+ \mu^-$ decays. Results are given as function of mass and lifetime in the range 214 < $m(\chi) < 4350 \text{ MeV}/c^2$ and $0 < \tau(\chi) < 1000 \text{ ps.}$

• In Ref. [326], LHCb performs a search for a hypothetical new scalar particle χ , assumed to have a narrow width, through the decay $B^+ \to K^+ \chi(\mu^+ \mu^-)$ in the ranges of mass $250 < m(\chi) < 4700 \text{ MeV}/c^2$ and lifetime $0.1 < \tau(\chi) < 1000 \text{ ps.}$ Upper limits are given as a function of $m(\chi)$ and $\tau(\chi)$.

Figure 7: Branching fractions of B^+ and B^0 decays of the type $b \to s\ell^+\ell^-$.

Figure 8: Branching fractions of B^+ and B^0 decays of the type $b \to u\ell^+\ell^-$, purely leptonic and leptonic radiative.

Figure 9: Compilation of $R_K^{(*)}$ ratios in the low dilepton invariant-mass region. These are ratios between branching fractions of *B*-meson decays to $K^{(*)}\mu^+\mu^-$ and $K^{(*)}e^+e^-$, which provide information on lepton universality.

Figure 10: Limits on branching fractions of lepton-flavour-violating B^+ and B^0 decays.

Figure 11: Limits on branching fractions of lepton-number-violating B^+ and B^0 decays.

Figure 12: Branching fractions of charmless B decays with neutrinos.

7 Charge asymmetries in *b*-hadron decays

This section contains, in Tables 67 to 78, compilations of CP asymmetries in decays of various *b*-hadrons: B^+ , B^0 mesons, B^{\pm}/B^0 admixtures, B_s^0 mesons and finally Λ_b^0 baryons. The CP asymmetry is defined as

$$A_{CP} = \frac{N_b - N_{\overline{b}}}{N_b + N_{\overline{b}}},\tag{1}$$

where N_b $(N_{\overline{b}})$ is the number of hadrons containing a b (\overline{b}) quark decaying into a specific final state (the *CP*-conjugate state). This definition is consistent with that of Eq. (??) in Sec. ??. Measurements of time-dependent *CP* asymmetries are not listed here but are discussed in Sec. ??. Figure 13 shows a graphic representation of a selection of results given in this section.

Parameter	Measureme	nts	Average	
	Belle [3]	$-0.011 \pm 0.021 \pm 0.006$		
	LHCb [7]	$-0.022\pm0.025\pm0.010$		
$A_{\rm CP}(B^+ \to K^0_S \pi^+)$	BaBar [4]	$-0.029 \pm 0.039 \pm 0.010$	-0.016 ± 0.015	
	Belle II [5]	$-0.01 \pm 0.08 \pm 0.05$		
	CLEO [327]	$0.18 \pm 0.24 \pm 0.02$		
	LHCb [328]	$0.025 \pm 0.015 \pm 0.007^{-1}$		
	Belle [3]	$0.043 \pm 0.024 \pm 0.002$		
$A_{\rm CP}(B^+ \to K^+ \pi^0)$	BaBar [8]	$0.030 \pm 0.039 \pm 0.010$	0.027 ± 0.013	
	Belle II [9]	$-0.09 \pm 0.09 \pm 0.03$		
	CLEO [327]	$-0.29 \pm 0.23 \pm 0.02$		
	LHCb [15]	$-0.002 \pm 0.012 \pm 0.006$ ¹		
$A (D^+ \rightarrow m'K^+)$	BaBar [10]	$0.008 {}^{+0.017}_{-0.018} \pm 0.009$	0.004 ± 0.011	
$A_{\rm CP}(D^+ \to \eta K^+)$	Belle $[11]$	$0.028 \pm 0.028 \pm 0.021$	0.004 ± 0.011	
	CLEO [327]	$0.03 \pm 0.12 \pm 0.02$		
$A_{\rm CP}(B^+ \to \eta' K^*(892)^+)$	BaBar $[16]$	$-0.26 \pm 0.27 \pm 0.02$	-0.26 ± 0.27	
$A_{\rm CP}(B^+ \to \eta'(K\pi)_0^{*+})$	BaBar [16]	$0.06 \pm 0.20 \pm 0.02$	0.06 ± 0.20	
$A_{\rm CP}(B^+ \to \eta' K_2^*(1430)^+)$	BaBar [16]	$0.15 \pm 0.13 \pm 0.02$	0.15 ± 0.13	
$A = (D^+ \rightarrow z V^+)$	BaBar [10]	$-0.36 \pm 0.11 \pm 0.03$	0.27 ± 0.09	
$A_{\rm CP}(D^+ \to \eta K^+)$	Belle [18]	$-0.38 \pm 0.11 \pm 0.01$	-0.37 ± 0.08	
$A = (D^+ \to m V^* (902)^+)$	BaBar [19]	$0.01 \pm 0.08 \pm 0.02$	0.02 ± 0.06	
$A_{\rm CP}(D^+ \to \eta K^-(892)^+)$	Belle $[20]$	$0.03 \pm 0.10 \pm 0.01$	0.02 ± 0.00	
$A_{\rm CP}(B^+ \to \eta (K\pi)_0^{*+})$	BaBar [19]	$0.05 \pm 0.13 \pm 0.02$	0.05 ± 0.13	
$A_{\rm CP}(B^+ \to \eta K_2^*(1430)^+)$	BaBar [19]	$-0.45 \pm 0.30 \pm 0.02$	-0.45 ± 0.30	
$A = (D^+ \to (782) K^+)$	Belle [23]	$-0.03 \pm 0.04 \pm 0.01$	0.025 ± 0.026	
$A_{\rm CP}(B^+ \to \omega(182)K^+)$	BaBar [24]	$-0.01 \pm 0.07 \pm 0.01$	-0.025 ± 0.030	
$A_{\rm CP}(B^+ \to \omega(782)K^*(892)^+)$	BaBar [26]	$0.29 \pm 0.35 \pm 0.02$	0.29 ± 0.35	
$A_{\rm CP}(B^+ \to \omega(782)(K\pi)_0^{*+})$	BaBar [26]	$-0.10 \pm 0.09 \pm 0.02$	-0.10 ± 0.09	
$A_{\rm CP}(B^+ \to \omega(782)K_2^*(1430)^+)$	BaBar [26]	$0.14 \pm 0.15 \pm 0.02$	0.14 ± 0.15	
	BaBar [28]	$0.032 \pm 0.052 {}^{+0.016}_{-0.013}$ ^{2,1}		
$A_{\rm CP}(B^+ \to K^*(892)^0 \pi^+)$	Belle [29]	$-0.149 \pm 0.064 \pm 0.022^{-2,1}$	-0.04 ± 0.04	
	BaBar $[30]$	$-0.12 \pm 0.21 {}^{+0.08}_{-0.14} {}^{3,1}_{3,1}$		
$A = (D^+ + V^*(000) + -0)$	BaBar [30]	$-0.52 \pm 0.14 {}^{+0.06}_{-0.04} {}^{3,1}_{3,1}$	0.20 ± 0.12	
$A_{\rm CP}(B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +}(892)^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0})$	BaBar [31]	$-0.06 \pm 0.24 \pm 0.04$	-0.59 ± 0.13	

Table 67: CP asymmetries of charmless hadronic B^+ decays (part 1).

¹ Multiple systematic uncertainties are added in quadrature. ² Result extracted from Dalitz-plot analysis of $B^+ \to K^+ \pi^+ \pi^-$ decays. ³ Result extracted from Dalitz-plot analysis of $B^+ \to K^0_S \pi^+ \pi^0$ decays.

Parameter	Measureme	ents	Average
	LHCb [329]	$0.025 \pm 0.004 \pm 0.008^{-2}$	
$A_{\rm CP}(B^+ \to K^+ \pi^+ \pi^-)^1$	BaBar $[28]$	$0.028 \pm 0.020 \pm 0.023^{-3,2}$	0.0268 ± 0.0084
	Belle $[29]$	$0.049 \pm 0.026 \pm 0.020$ 3	
$A_{\rm CP}(B^+ \to K^+ K^+ K^- (\rm NR))$	BaBar $[22]$	$0.060 \pm 0.044 \pm 0.019$ 4	0.06 ± 0.05
	BaBar [28]	$-0.106 \pm 0.050 {}^{+0.036}_{-0.015} {}^{3,2}_{3,2}$	
$A_{\rm err}(B^+ \rightarrow f_{\rm c}(980) K^+)$	Belle $[29]$	$-0.077 \pm 0.065 {}^{+0.046}_{-0.026} {}^{3,2}_{3,2}$	-0.08 ± 0.04
$ACP(D \rightarrow f_0(500)M)$	BaBar [22]	$-0.08 \pm 0.08 \pm 0.04$ ⁵	-0.00 ± 0.04
	BaBar [31]	$0.18 \pm 0.18 \pm 0.04$	
$A_{\rm CP}(B^+ \rightarrow f_{\rm s}(1270)K^+)$	BaBar [28]	$-0.85 \pm 0.22 \substack{+0.26 \\ -0.13} \stackrel{3.2}{}_{-0.13}$	-0.67 ± 0.19
	Belle [29]	$-0.59 \pm 0.22 \pm 0.04^{-3,2}$	0.01 ± 0.15
$A_{\rm CP}(B^+ \to f_2'(1525)K^+)$	BaBar $[22]$	$0.14 \pm 0.10 \pm 0.04$ ⁵	0.14 ± 0.11
$A_{\rm CP}(B^+ \rightarrow a^0(770)K^+)$	BaBar $[28]$	$0.44 \pm 0.10 \stackrel{+0.06}{_{-0.14}} \stackrel{_{3,2}}{_{-0.14}}$	0.37 ± 0.12
	Belle [29]	$0.30 \pm 0.11 \substack{+0.11 \\ -0.04}^{+0.11} \ {}^{3,2}$	0.01 ± 0.12
$A_{\rm CP}(B^+ \to K^0 \pi^+ \pi^0)$	BaBar $[30]$	$0.07 \pm 0.05 \pm 0.04^{-6,2}$	0.07 ± 0.06
$A_{\rm CP}(B^+ \to K_0^*(1430)^0 \pi^+)$	Belle [29]	$0.076 \pm 0.038 \substack{+0.028 \ -0.022}^{+0.028 \ 3,2}$	0.084 ± 0.043
	BaBar $[30]$	$0.14 \pm 0.10 \substack{+0.14 \\ -0.06}^{+0.14} \ ^{6,2}$	0.004 ± 0.040
$A_{\rm CP}(B^+ \to (K\pi)_0^{*0}\pi^+)$	BaBar $[28]$	$0.032 \pm 0.035 {}^{+0.034}_{-0.028} {}^{3,2}_{-0.028}$	0.032 ± 0.046
$A_{\rm CP}(B^+ \to K_0^*(1430)^+ \pi^0)$	BaBar [30]	$0.26 \pm 0.12 {}^{+0.14}_{-0.08} {}^{6,2}_{-0.08}$	$0.26 {}^{+0.19}_{-0.14}$
$A_{\rm CP}(B^+ \to K_2^*(1430)^0 \pi^+)$	BaBar $[28]$	$0.05 \pm 0.23 {}^{+0.18}_{-0.08} {}^{3,2}_{-0.08}$	$0.05 {}^{+0.29}_{-0.24}$
$A_{\rm CP}(B^+ \to K^+ \pi^0 \pi^0)$	BaBar [31]	$-0.06 \pm 0.06 \pm 0.04$	-0.06 ± 0.07
$A_{\rm CP}(B^+ \to \rho^+(770)K^0)$	BaBar [30]	$0.21 \pm 0.19 {}^{+0.24}_{-0.20} {}^{6,2}_{-0.20}$	$0.21^{+0.31}_{-0.28}$
$A_{\rm CP}(B^+ \to K^*(892)^+ \pi^+ \pi^-)$	BaBar [41]	$0.07 \pm 0.07 \pm 0.04$	0.07 ± 0.08
$A_{\rm CP}(B^+ \to K^*(892)^+ \rho^0(770))$	BaBar $[42]$	$0.31 \pm 0.13 \pm 0.03$	0.31 ± 0.13
$A_{\rm CP}(B^+ \to f_0(980)K^*(892)^+)$	BaBar $[42]$	$-0.15 \pm 0.12 \pm 0.03$	-0.15 ± 0.12
$A_{\rm CP}(B^+ \to a_1(1260)^+ K^0)$	BaBar $[43]$	$0.12 \pm 0.11 \pm 0.02$	0.12 ± 0.11
$A_{\rm CP}(B^+ \to b_1(1235)^+ K^0)$	BaBar [47]	$-0.03 \pm 0.15 \pm 0.02$	-0.03 ± 0.15
$A_{\rm CP}(B^+ \to K^*(892)^0 \rho^+(770))$	BaBar [44]	$-0.01 \pm 0.16 \pm 0.02$	-0.01 ± 0.16
$A_{\rm CP}(B^+ \to b_1(1235)^0 K^+)$	BaBar [48]	$-0.46 \pm 0.20 \pm 0.02$	-0.46 ± 0.20

Table 68: *CP* asymmetries of charmless hadronic B^+ decays (part 2).

¹ Treatment of charmonium intermediate components differs between the results.
² Multiple systematic uncertainties are added in quadrature.

³ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ \pi^+ \pi^-$ decays.

⁴ The nonresonant amplitude is modelled using a polynomial function including S-wave and P-wave terms.

⁵ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^+ K^-$ decays. ⁶ Result extracted from Dalitz-plot analysis of $B^+ \to K^0_S \pi^+ \pi^0$ decays.

Parameter	Measureme	nts	Average
	LHCb [7]	$-0.21 \pm 0.14 \pm 0.01$	
$A_{\rm CP}(B^+ \to K^+ K_S^0)$	Belle [3]	$0.014 \pm 0.168 \pm 0.002$	-0.086 ± 0.100
	BaBar [4]	$0.10 \pm 0.26 \pm 0.03$	
$A = (D^+ \rightarrow U^+ V^0 V^0)^1$	Belle [51]	$0.016 \pm 0.039 \pm 0.009^{-2}$	0.025 0.022
$A_{\rm CP}(B^+ \to K^+ K_S^* K_S^*)^{-1}$	BaBar [22]	$0.04^{+0.04}_{-0.05} \pm 0.02^{-3}$	0.023 ± 0.032
	LHCb [329]	$-0.123 \pm 0.017 \pm 0.014 \ ^4$	
$A_{\rm CP}(B^+ \to K^+ K^- \pi^+)^1$	Belle [53]	$-0.170\pm 0.073\pm 0.017\ ^5$	-0.122 ± 0.021
	BaBar $[54]$	$0.00 \pm 0.10 \pm 0.03$	
$A_{\rm CP}(B^+ \to K^+ K^- \pi^+ (\rm NR))$	LHCb [55]	$-0.107 \pm 0.053 \pm 0.035^{-6}$	-0.107 ± 0.064
$A_{\rm CP}(B^+ \to \overline{K}^*(892)^0 K^+)$	LHCb $[55]$	$0.123 \pm 0.087 \pm 0.045 \ ^7$	0.123 ± 0.098
$A_{\rm CP}(B^+ \to \overline{K}_0^*(1430)^0 K^+)$	LHCb [55]	$0.104 \pm 0.149 \pm 0.088 \ ^7$	0.10 ± 0.17
$A_{\rm CP}(B^+ \to \phi(1020)\pi^+)$	LHCb [55]	$0.098 \pm 0.436 \pm 0.266$ ⁷	0.10 ± 0.51
$A_{CP}(B^+ \to K^+ K^- \pi^+) \ \pi\pi \leftrightarrow$	KK rescatter	ing	
	LHCb [55]	$-0.664 \pm 0.038 \pm 0.019$ 7	-0.664 ± 0.042
	LHCb [329]	$-0.036 \pm 0.004 \pm 0.007 \ ^4$	
$A_{\rm CP}(B^+ \to K^+ K^+ K^-)$	BaBar [22]	$-0.017^{+0.019}_{-0.014}\pm 0.014^{-8}$	-0.033 ± 0.007
	Belle II [60]	$-0.049 \pm 0.063 \pm 0.022$	
	LHCb [15]	$0.017 \pm 0.011 \pm 0.006$ ⁴	
$A_{\rm CP}(B^+ \to \phi(1020)K^+)$	BaBar $[22]$	$0.128 \pm 0.044 \pm 0.013$ ⁸	0.024 ± 0.012
	Belle [65]	$0.01 \pm 0.12 \pm 0.05$	0.024 ± 0.012
	CDF [62]	$-0.07 \pm 0.17 {}^{+0.03}_{-0.02}$	

Table 69: CP asymmetries of charmless hadronic B^+ decays (part 3).

¹ Treatment of charmonium intermediate components differs between the results.

 2 A_{CP} is also measured in bins of $m_{K^{0}_{S}K^{0}_{S}}$

³ Result extracted from Dalitz-plot analysis of $B^0 \to K_S^0 K^+ K^-$ decays.

⁴ Multiple systematic uncertainties are added in quadrature.

⁵ Also measured in bins of $m_{K^+K^-}$.

⁶ LHCb uses a model of non-resonant obtained from a phenomenological description of the partonic interaction that produces the final state. This contribution is called single pole in the paper, see Ref. [55] for details.

⁷ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^- \pi^+$ decays.

⁸ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^+ K^-$ decays.

Parameter	Measureme	nts	Average	
$A_{\rm CP}(B^+ \to K^*(892)^+ K^+ K^-)$	BaBar [41]	$0.11 \pm 0.08 \pm 0.03$	0.11 ± 0.09	
$A_{ap}(B^+ \rightarrow \phi(1020) K^*(802)^+)$	Belle [330]	$-0.02 \pm 0.14 \pm 0.03$	-0.01 ± 0.08	
$\operatorname{ACP}(D \to \psi(1020)K(092))$	BaBar [64]	$0.00 \pm 0.09 \pm 0.04^{-1}$	-0.01 ± 0.00	
$A_{\rm CP}(B^+ \to (K\pi)_0^{*+}\phi(1020))$	BaBar $[66]$	$0.04 \pm 0.15 \pm 0.04$	0.04 ± 0.16	
$A_{\rm CP}(B^+ \to K_1(1270)^+ \phi(1020))$	BaBar [66]	$0.15 \pm 0.19 \pm 0.05$	0.15 ± 0.20	
$A_{\rm CP}(B^+ \to K_2^*(1430)^+ \phi(1020))$	BaBar [66]	$-0.23 \pm 0.19 \pm 0.06$	-0.23 ± 0.20	
$A_{\rm CP}(B^+ \to \phi(1020)\phi(1020)K^+)$	BaBar $[68]$	$-0.10 \pm 0.08 \pm 0.02$ ²	-0.10 ± 0.08	
$A_{\rm en}(B^+ \rightarrow K^*(802)^+ \gamma)$	Belle [213]	$0.011 \pm 0.023 \pm 0.003$	0.014 ± 0.018	
$ACP(D \rightarrow K (0.52) \gamma)$	BaBar $[214]$	$0.018 \pm 0.028 \pm 0.007$	0.014 ± 0.010	
$A_{CP}(B^+ \to X_s \gamma)$	Belle $[295]$	$0.0275 \pm 0.0184 \pm 0.0032$ 3	0.028 ± 0.019	
$A = (R^+ \rightarrow mK^+ \alpha)$	Belle [219]	$-0.16 \pm 0.09 \pm 0.06$ ⁴	0.12 ± 0.07	
$A_{\rm CP}(D^* \rightarrow \eta K^* \gamma)$	BaBar [218]	$-0.090^{+0.104}_{-0.098}\pm 0.014^{5}$	-0.12 ± 0.07	
$A_{\rm CP}(B^+ \to \phi(1020)K^+\gamma)$	Belle [222]	$-0.03 \pm 0.11 \pm 0.08^{-6}$	0.13 ± 0.10	
	BaBar $[223]$	$-0.26 \pm 0.14 \pm 0.05$ ⁷	-0.13 ± 0.10	
$A_{\rm CP}(B^+ \to \rho^+(770)\gamma)$	Belle $[229]$	$-0.11 \pm 0.32 \pm 0.09$	-0.11 ± 0.33	

Table 70: CP asymmetries of charmless hadronic B^+ decays (part 4).

¹ Combination of two final states of the $K^*(892)^{\pm}$, $K_S^0 \pi^{\pm}$ and $K^{\pm} \pi^0$. In addition to the combined results, the paper reports separately the results for each individual final state.

² Measured in the $\phi\phi$ invariant mass range below the η_c resonance $(M_{\phi\phi} < 2.85 \text{ GeV}/c^2)$.

³ $M_{X_s} < 2.8 \text{ GeV}/c^2$. ⁴ $M_{K\eta} < 2.4 \text{ GeV}/c^2$. ⁵ $M_{K\eta^{(\prime)}} < 3.25 \text{ GeV}/c^2$. ⁶ $1.4 \le E_{\gamma}^* \le 3.4 \text{ GeV}/c^2$, where E_{γ}^* is the photon energy in the center-of-mass frame. ⁷ $M_{\phi K} < 3.0 \text{ GeV}/c^2$.

Parameter	Measureme	ents	Average		
	Belle [3]	$0.025 \pm 0.043 \pm 0.007$			
$A_{\rm CP}(B^+ \to \pi^+ \pi^0)$	BaBar [8]	$0.03 \pm 0.08 \pm 0.01$	0.02 ± 0.04		
	Belle II [9]	$-0.04 \pm 0.17 \pm 0.06$			
A = (D + 1) + (D + 1)	LHCb [329]	$0.058 \pm 0.008 \pm 0.011^{-2}$	0.057 0.014		
$A_{\rm CP}(B^+ \to \pi^+\pi^+\pi^-)^2$	BaBar [73]	$0.032 \pm 0.044 {}^{+0.040}_{-0.037}$ 3,2	0.057 ± 0.014		
$A = (D^+ \rightarrow 0(770)^{-+})$	LHCb [74]	$0.007 \pm 0.011 \pm 0.040^{-3,4,2}$	0.016 ± 0.041		
$A_{\rm CP}(B^+ \to \rho^{\circ}(770)\pi^+)$	BaBar [73]	$0.18 \pm 0.07 {}^{+0.05}_{-0.15} {}^{3,2}_{-0.15}$	0.010 + 0.039		
	LHCb [74]	$0.468 \pm 0.061 \pm 0.103^{-3,4,2}$			
$A_{\rm CP}(B^+ \to f_2(1270)\pi^+)$	LHCb [55]	$0.267 \pm 0.102 \pm 0.048 \ ^5$	0.365 ± 0.079		
	BaBar [73]	$0.41 \pm 0.25 {}^{+0.18}_{-0.15}$ 3,2			
	LHCb [74]	$-0.129 \pm 0.033 \pm 0.421^{-3,4,2}$			
$A_{\rm CP}(B^+ \to \rho (1450)^0 \pi^+)$	LHCb [55]	$-0.109 \pm 0.044 \pm 0.024 \ ^5$	-0.109 ± 0.049		
	BaBar [73]	$-0.06\pm0.28^{+0.23}_{-0.40}{}^{3,2}$			
$A_{\rm CP}(B^+ \to \rho_3(1690)^0 \pi^+)$	LHCb [74]	$-0.801 \pm 0.114 \pm 0.511 \ {}^{3,4,2}$	-0.80 ± 0.52		
$A_{\rm CP}(B^+ \to f_0(1370)\pi^+)$	BaBar [73]	$0.72 \pm 0.15 \pm 0.16^{-3,2}$	0.72 ± 0.22		
$A_{CP}(B^+ \to \pi^+ \pi^+ \pi^-), S - \text{wave}$					
	LHCb [74]	$0.144 \pm 0.018 \pm 0.026$ ^{3,4,2}	0.144 ± 0.032		
$A_{\rm CP}(B^+ \to \pi^+ \pi^+ \pi^- (\rm NR))$	BaBar [73]	$-0.14 \pm 0.14 \substack{+0.18 & 6,2 \\ -0.08 & \end{array}$	$-0.14^{+0.23}_{-0.16}$		
$A = (D^+ \to a^+ (770) - 0)$	BaBar [78]	$-0.01 \pm 0.13 \pm 0.02$	0.01 ± 0.11		
$A_{\rm CP}(D^+ \to \rho^+(770)\pi^+)$	Belle [79]	$0.06 \pm 0.19 {}^{+0.04}_{-0.06}$	0.01 ± 0.11		
$A = (P^+ \rightarrow e^+(770)e^0(770))$	BaBar [80]	$-0.054 \pm 0.055 \pm 0.010$	0.051 ± 0.054		
$A_{\rm CP}(B^+ \to \rho^+(110)\rho^*(110))$	Belle $[81]$	$0.00 \pm 0.22 \pm 0.03$	-0.031 ± 0.034		
	LHCb [74]	$-0.048 \pm 0.065 \pm 0.049^{-3,4,2}$			
$A_{\rm CP}(B^+ \to \omega(782)\pi^+)$	BaBar [24]	$-0.02 \pm 0.08 \pm 0.01$	0.041 ± 0.048		
	Belle $[83]$	$-0.02 \pm 0.09 \pm 0.01$	-0.041 ± 0.040		
	CLEO [327]	$-0.34 \pm 0.25 \pm 0.02$			
$A_{\rm CP}(B^+ \to \omega(782)\rho^+(770))$	BaBar [26]	$-0.20 \pm 0.09 \pm 0.02$	-0.20 ± 0.09		

Table 71: CP asymmetries of charmless hadronic B^+ decays (part 5).

¹ Treatment of charmonium intermediate components differs between the results.

² Multiple systematic uncertainties are added in quadrature.

³ Result extracted from Dalitz-plot analysis of $B^+ \to \pi^+ \pi^- \text{ decays}$.

⁴ This analysis uses three different approaches: isobar, K-matrix and quasi-modelindependent, to describe the S-wave component. The A_{CP} results are taken from the isobar model with an additional error accounting for the different S-wave methods as reported in Appendix D of Ref. [76].

⁵ Result extracted from Dalitz-plot analysis of $B^+ \to K^+ K^- \pi^+$ decays.

⁶ The nonresonant amplitude is modelled using a sum of exponential functions.

Parameter	Measureme	nts	Average
$A_{\rm CP}(B^+ \to \eta \pi^+)$	Belle [18]	$-0.19 \pm 0.06 \pm 0.01$	-0.14 ± 0.05
	$\frac{\text{BaBar}\left[10\right]}{\text{D}\left[0.4\right]}$	$-0.03 \pm 0.09 \pm 0.03$	
$A_{\rm CP}(B^+ \to \eta \rho^+(770))$	BaBar [84]	$0.13 \pm 0.11 \pm 0.02$	0.11 ± 0.11
	Belle [20]	$-0.04 + 0.01 \pm 0.01$	
$A_{\rm CP}(B^+ \to \eta' \pi^+)$	BaBar [10]	$0.03 \pm 0.17 \pm 0.02$	0.06 ± 0.15
	Belle [11]	$0.20^{+0.37}_{-0.36} \pm 0.04$	
$A_{\rm CP}(B^+ \to \eta' \rho^+(770))$	BaBar [16]	$0.26 \pm 0.17 \pm 0.02$	0.26 ± 0.17
$A_{\rm CP}(B^+ \to b_1(1235)^0 \pi^+)$	BaBar [48]	$0.05 \pm 0.16 \pm 0.02$	0.05 ± 0.16
$A_{\rm CP}(B^+ \to p\overline{p}\pi^+)$	BaBar $[152]$	$0.04 \pm 0.07 \pm 0.04$	0.04 ± 0.08
$A_{CP}(B^+ \to p\overline{p}\pi^+), m_{p\overline{p}} < 2.8$	5 GeV/c^2		
	LHCb [153]	$-0.041 \pm 0.039 \pm 0.005$	0.058 ± 0.027
	Belle $[151]$	$-0.17 \pm 0.10 \pm 0.02$	-0.058 ± 0.057
$A_{CP}(B^+ \to p\overline{p}K^+), m_{p\overline{p}} < 2.8$	85 GeV/c^2		
	LHCb [153]	$0.021 \pm 0.020 \pm 0.004$	
	Belle $[151]$	$-0.02\pm 0.05\pm 0.02$	0.007 ± 0.019
	BaBar $[156]$	$-0.16^{+0.07}_{-0.08}\pm 0.04$	
$A_{n-1}(B^+ \to m K^*(802)^+)^1$	BaBar $[152]$	$0.32 \pm 0.13 \pm 0.05$	0.21 ± 0.11
$A_{CP}(D \rightarrow ppK (0.92))$	Belle $[158]$	$-0.01 \pm 0.19 \pm 0.02$	0.21 ± 0.11
$A_{\rm CP}(B^+ \to p\overline{\Lambda}^0 \gamma)$	Belle [161]	$0.17 \pm 0.16 \pm 0.05$	0.17 ± 0.17
$A_{\rm CP}(B^+ \to p\overline{\Lambda}^0 \pi^0)$	Belle [161]	$0.01 \pm 0.17 \pm 0.04$	0.01 ± 0.17
$A_{\rm GD}(B^+ \to K^+ \ell^+ \ell^-)$	Belle $[243]$	$0.04 \pm 0.10 \pm 0.02$	0.02 ± 0.08
$\operatorname{ACP}(D \to H \to L)$	BaBar [266]	$-0.03 \pm 0.14 \pm 0.01$	0.02 ± 0.00
$A_{\rm CP}(B^+ \to K^+ e^+ e^-)$	Belle $[243]$	$0.14 \pm 0.14 \pm 0.03$	0.14 ± 0.14
$A_{ap}(B^+ \rightarrow K^+ \mu^+ \mu^-)$	LHCb [331]	$0.012 \pm 0.017 \pm 0.001^{-2.3}$	0.011 ± 0.017
$A_{\rm CP}(D^+ \to K^+ \mu^+ \mu^-)$	Belle $[243]$	$-0.05 \pm 0.13 \pm 0.03$ ⁴	0.011 ± 0.017
$A_{\rm CP}(B^+ \to \pi^+ \mu^+ \mu^-)$	LHCb [234]	$-0.11 \pm 0.12 \pm 0.01$	-0.11 ± 0.12
$A_{\rm CD}(B^+ \to K^*(892)^+ \ell^+ \ell^-)$	Belle $[243]$	$-0.13^{+0.17}_{-0.16} \pm 0.01$	-0.09 ± 0.14
TICP(D / II (052) t t)	BaBar $[239]$	$0.01^{+0.26}_{-0.24}\pm 0.02$	0.00 ± 0.14
$A_{\rm CP}(B^+ \to K^*(892)^+ e^+ e^-)$	Belle $[243]$	$-0.14^{+0.23}_{-0.22}\pm 0.02$	-0.14 ± 0.23
$A_{\rm CP}(B^+ \to K^*(892)^+ \mu^+ \mu^-)$	Belle [243]	$-0.12 \pm 0.24 \pm 0.02$	-0.12 ± 0.24

Table 72: CP asymmetries of charmless hadronic B^+ decays (part 6).

¹ Treatment of charmonium intermediate components differs between the results. ² A_{CP} is also measured in bins of $m_{\mu^+\mu^-}$ ³ Mass regions corresponding to ϕ , J/ψ and $\psi(2S)$ are vetoed. ⁴ Mass regions corresponding to J/ψ and $\psi(2S)$ are vetoed.

Parameter	Measureme	nts	Average
	LHCb [332]	-0.0831 ± 0.0034 ¹	
$A_{\rm CP}(B^0 \to K^+ \pi^-)$	CDF [333]	$-0.083 \pm 0.013 \pm 0.004$	
	Belle [3]	$-0.069 \pm 0.014 \pm 0.007$	-0.0836 ± 0.0032
	BaBar [95]	$-0.107 \pm 0.016 {}^{+0.006}_{-0.004}$	
	Belle II [5]	$-0.16 \pm 0.05 \pm 0.01$	
$A_{\rm GD}(B^0 \rightarrow n' K^*(892)^0)$	BaBar [16]	$0.02 \pm 0.23 \pm 0.02$	-0.07 ± 0.18
$\operatorname{ICP}(D \to \eta \Pi (0.052))$	Belle [97]	$-0.22 \pm 0.29 \pm 0.07$	0.07 ± 0.10
$A_{\rm CP}(B^0 \to \eta'(K\pi)^{*0}_0)$	BaBar $[16]$	$-0.19 \pm 0.17 \pm 0.02$	-0.19 ± 0.17
$A_{\rm CP}(B^0 \to \eta' K_2^*(1430)^0)$	BaBar [16]	$0.14 \pm 0.18 \pm 0.02$	0.14 ± 0.18
$A (D^0 \rightarrow \pi K^*(902)^0)$	BaBar [19]	$0.21 \pm 0.06 \pm 0.02$	0.10 ± 0.05
$A_{\rm CP}(B^\circ \to \eta \kappa^\circ (892)^\circ)$	Belle [20]	$0.17 \pm 0.08 \pm 0.01$	0.19 ± 0.00
$A_{\rm CP}(B^0 \to \eta(K\pi)_0^{*0})$	BaBar $[19]$	$0.06 \pm 0.13 \pm 0.02$	0.06 ± 0.13
$A_{\rm CP}(B^0 \to \eta K_2^*(1430)^0)$	BaBar $[19]$	$-0.07 \pm 0.19 \pm 0.02$	-0.07 ± 0.19
$A_{\rm CP}(B^0 \to b_1(1235)^-K^+)$	BaBar [48]	$-0.07 \pm 0.12 \pm 0.02$	-0.07 ± 0.12
$A_{\rm CP}(B^0 \to \omega(782)K^*(892)^0)$	BaBar [26]	$0.45 \pm 0.25 \pm 0.02$	0.45 ± 0.25
$A_{\rm CP}(B^0 \to \omega(782)(K\pi)_0^{*0})$	BaBar [26]	$-0.07 \pm 0.09 \pm 0.02$	-0.07 ± 0.09
$A_{\rm CP}(B^0 \to \omega(782)K_2^*(1430)^0)$	BaBar $[26]$	$-0.37 \pm 0.17 \pm 0.02$	-0.37 ± 0.17
$A (D^0 \rightarrow W^+ \pi^- \pi^0)$	BaBar $[102]$	$-0.030^{+0.045}_{-0.051} \pm 0.055$ ²	0.00 ± 0.06
$A_{\rm CP}(D \to K \land \land \land)$	Belle [101]	$0.07 \pm 0.11 \pm 0.01$	-0.00 ± 0.00
$A_{\rm CD}(B^0 \rightarrow a^-(770)K^+)$	BaBar $[100]$	$0.20 \pm 0.09 \pm 0.08^{-2}$	0.20 ± 0.11
	Belle [101]	$ 0.22 \substack{+0.22 \\ -0.23 } \substack{+0.06 \\ -0.02} \qquad \qquad$	0.20 ± 0.11
$A_{\rm CP}(B^0 \to \rho(1450)^- K^+)$	BaBar $[100]$	$-0.10 \pm 0.32 \pm 0.09^{-2}$	-0.10 ± 0.33
$A_{\rm CP}(B^0 \to \rho(1700)^- K^+)$	BaBar $[100]$	$-0.36 \pm 0.57 \pm 0.23$ ²	-0.36 ± 0.61
$A_{\rm CP}(B^0 \to K^+ \pi^- \pi^0 (\rm NR))$	BaBar $[100]$	$0.10 \pm 0.16 \pm 0.08^{-3}$	0.10 ± 0.18
$A_{\rm CP}(B^0 \to K^0 \pi^+ \pi^-)$	BaBar [103]	$-0.01 \pm 0.05 \pm 0.01$ ⁴	-0.01 ± 0.05
	LHCb [108]	$-0.308 \pm 0.060 \pm 0.016^{-4.5}$	
$A_{\rm CP}(B^0 \to K^*(892)^+\pi^-)$	BaBar $[103]$	$-0.21 \pm 0.10 \pm 0.02$ ^{4,5}	-0.274 ± 0.045
	BaBar $[100]$	$-0.29 \pm 0.11 \pm 0.02^{-2}$	-0.214 ± 0.040
	Belle $[334]$	$-0.21 \pm 0.11 \pm 0.07$ ⁴	

Table 73: CP asymmetries of charmless hadronic B^0 decays (part 1).

¹ LHCb combines results of the 1.9fb^{-1} run 2 data analysis with those based on Run 1 dataset [335]. The full statistical and systematic covariance matrices are used in the combination. ² Result extracted from Dalitz-plot analysis of $B^0 \to K^+ \pi^- \pi^0$ decays.

 3 The nonresonant amplitude is taken to be constant across the Dalitz plane.

⁴ Result extracted from Dalitz-plot analysis of $B^0 \to K_S^0 \pi^+ \pi^-$ decays. ⁵ Multiple systematic uncertainties are added in quadrature.

Parameter	Measureme	nts	Average
	LHCb [108]	$-0.032 \pm 0.047 \pm 0.031^{-1,2}$	0
$A_{CP}(B^0 \to (K\pi)^{*+}_{\circ}\pi^-)$	BaBar [103]	$0.09 \pm 0.07 \pm 0.03^{-1,2}$	0.017 ± 0.043
	BaBar [100]	$0.07 \pm 0.14 \pm 0.01^{-3}$	
$A_{\rm CP}(B^0 \to K_2^*(1430)^+\pi^-)$	LHCb [108]	$-0.29 \pm 0.22 \pm 0.09^{-1,2}$	-0.29 ± 0.24
$A_{\rm CP}(B^0 \to K^*(1680)^+\pi^-)$	LHCb [108]	$-0.07 \pm 0.13 \pm 0.04$ ^{1,2}	-0.07 ± 0.13
$A_{\rm CP}(B^0 \to f_0(980)K_S^0)$	LHCb [108]	$0.28 \pm 0.27 \pm 0.15^{-1,2}$	0.28 ± 0.31
$A_{\rm CP}(B^0 \to (K\pi)_0^{*0}\pi^0)$	BaBar [100]	$-0.15 \pm 0.10 \pm 0.04$ ³	-0.15 ± 0.11
$A_{\rm CP}(B^0 \to K^*(892)^0 \pi^0)$	BaBar $[100]$	$-0.15 \pm 0.12 \pm 0.04$ ³	-0.15 ± 0.13
$A_{\rm CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-)$	BaBar $[112]$	$0.07 \pm 0.04 \pm 0.03$	0.07 ± 0.05
$A_{\rm CP}(B^0 \to K^*(892)^0 \rho^0(770))$	BaBar $[113]$	$-0.06 \pm 0.09 \pm 0.02$	-0.06 ± 0.09
$A_{\rm CP}(B^0 \to f_0(980)K^*(892)^0)$	BaBar $[113]$	$0.07 \pm 0.10 \pm 0.02$	0.07 ± 0.10
$A_{\rm CP}(B^0 \to K^*(892)^+ \rho^-(770))$	BaBar $[113]$	$0.21 \pm 0.15 \pm 0.02$	0.21 ± 0.15
$A_{\rm CP}(B^0 \to K^*(892)^0 K^+ K^-)$	BaBar $[112]$	$0.01 \pm 0.05 \pm 0.02$	0.01 ± 0.05
$A_{\rm CP}(B^0 \to a_1(1260)^- K^+)$	BaBar [43]	$-0.16 \pm 0.12 \pm 0.01$	-0.16 ± 0.12
$A_{\rm CP}(B^0 \to K^0 \overline{K}^0)$	Belle [336]	$-0.58{}^{+0.73}_{-0.66}\pm 0.04{}^{4}$	$-0.58^{+0.73}_{-0.66}$
$A_{\rm cp}(B^0 \rightarrow \phi(1020) K^*(802)^0)$	Belle $[124]$	$-0.007 \pm 0.048 \pm 0.021$	-0.001 ± 0.041
$\operatorname{ACP}(D \to \psi(1020) K (032))$	BaBar $[123]$	$0.01 \pm 0.06 \pm 0.03$	0.001 ± 0.041
$A_{\rm CP}(B^0 \to K^*(892)^0 \pi^+ K^-)$	BaBar $[112]$	$0.22 \pm 0.33 \pm 0.20$	0.22 ± 0.39
$A_{\rm CP}(B^0 \to (K\pi)^{*0}\phi(1020))$	Belle $[124]$	$0.093 \pm 0.094 \pm 0.017$	0.123 ± 0.081
	BaBar [123]	$0.20 \pm 0.14 \pm 0.06$	0.120 ± 0.001
$A_{CP}(B^0 \to K_2^*(1430)^0 \phi(1020))$	BaBar [123]	$-0.08 \pm 0.12 \pm 0.05$	-0.112 ± 0.099
	Belle [124]	$-0.155^{+0.132}_{-0.133} \pm 0.033$	
	LHCb [192]	$0.008 \pm 0.017 \pm 0.009$	0.000 - 0.011
$A_{\rm CP}(B^0 \to K^*(892)^0 \gamma)$	Belle $[213]$	$-0.013 \pm 0.017 \pm 0.004$	-0.006 ± 0.011
	BaBar [214]	$-0.010 \pm 0.022 \pm 0.007$	
$A_{\rm CP}(B^{\rm o} \to K_2^*(1430)^{\rm o}\gamma)$	BaBar [227]	$-0.08 \pm 0.15 \pm 0.01$	-0.08 ± 0.15
$A_{CP}(B^0 \to X_s \gamma)$	Belle $[295]$	$-0.0094 \pm 0.0174 \pm 0.0047$ 5	-0.009 ± 0.018

Table 74: CP asymmetries of charmless hadronic B^0 decays (part 2).

¹ Result extracted from Dalitz-plot analysis of $B^0 \to K_S^0 \pi^+ \pi^-$ decays. ² Multiple systematic uncertainties are added in quadrature. ³ Result extracted from Dalitz-plot analysis of $B^0 \to K^+ \pi^- \pi^0$ decays.

 4 Result extracted from a time-dependent analysis. $^5~M_{X_s} < 2.8~{\rm GeV}/c^2.$

Parameter	Measureme	nts	Average
$A_{\rm CP}(B^0 \to \rho^+(770)\pi^-)$	BaBar [337]	$0.09^{+0.05}_{-0.06} \pm 0.04^{-1}$	0.12 ± 0.05
	Belle [338]	$0.21 \pm 0.08 \pm 0.04^{-1}$	0.13 ± 0.03
$A_{cr}(B^0 \to a^-(770)\pi^+)$	BaBar [337]	$-0.12 \pm 0.08 {}^{+0.04}_{-0.05} {}^{1}_{1}$	-0.08 ± 0.08
$ACP(D \to p (110)\pi)$	Belle [338]	$0.08 \pm 0.16 \pm 0.11^{-1}$	-0.03 ± 0.08
$A_{}(B^0 \to a (1260)^+ \pi^- + c.c.)$	Belle $[144]$	$-0.06 \pm 0.05 \pm 0.07$ ²	0.07 ± 0.06
$A_{\rm CP}(D \to u_1(1200) \ \pi + \text{c.c.})$	BaBar $[339]$	$-0.07 \pm 0.07 \pm 0.02$ ²	-0.07 ± 0.00
$A_{\rm CP}(B^0 \to b_1(1235)^+\pi^-+{\rm c.c.})$	BaBar $[48]$	$-0.05 \pm 0.10 \pm 0.02$	-0.05 ± 0.10
$A = (B^0 \rightarrow m K^* (802)^0)^3$	BaBar $[152]$	$0.11 \pm 0.13 \pm 0.06$	0.05 ± 0.12
$A_{\rm CP}(D \rightarrow ppK (0.92))$	Belle $[158]$	$-0.08 \pm 0.20 \pm 0.02$	0.05 ± 0.12
$A_{\rm cm}(B^0 \rightarrow n\overline{A}^0 \pi^-)$	BaBar $[170]$	$-0.10 \pm 0.10 \pm 0.02$	-0.06 ± 0.07
$ACP(D \rightarrow pA \pi)$	Belle [161]	$-0.02 \pm 0.10 \pm 0.03$	-0.00 ± 0.07
$A_{\rm GD}(B^0 \to K^*(802)^0 \ell^+ \ell^-)$	Belle $[243]$	$-0.08 \pm 0.12 \pm 0.02$	-0.05 ± 0.10
$A_{\rm CP}(D^* \to K^*(892)^*\ell^*\ell^*)$	BaBar $[239]$	$0.02 \pm 0.20 \pm 0.02$	-0.05 ± 0.10
$A_{\rm CP}(B^0 \to K^*(892)^0 e^+ e^-)$	Belle $[243]$	$-0.21 \pm 0.19 \pm 0.02$	-0.21 ± 0.19
$A (D0) V^*(000) 0 \dots + \dots -)$	LHCb [331]	$-0.035 \pm 0.024 \pm 0.003^{-4,5}$	-0.034 ± 0.024
$ACP(D \rightarrow K (092) \mu^{-} \mu^{-})$	Belle $[243]$	$0.00 \pm 0.15 \pm 0.03$ ⁶	-0.004 ± 0.024

Table 75: CP asymmetries of charmless hadronic B^0 decays (part 3).

¹ Result extracted from Dalitz-plot analysis of $B^0 \to \pi^+\pi^-\pi^0$ decays. ² Result extracted from a time-dependent analysis.

³ Treatment of charmonium intermediate components differs between the results.

⁴ A_{CP} is also measured in bins of $m_{\mu^+\mu^-}$ ⁵ Mass regions corresponding to ϕ , J/ψ and $\psi(2S)$ are vetoed. ⁶ Mass regions corresponding to J/ψ and $\psi(2S)$ are vetoed.

Parameter	Measureme	nts	Average
$A (B \rightarrow K^* \gamma)$	Belle [213]	$-0.004 \pm 0.014 \pm 0.003$	0.004 ± 0.011
$A_{\rm CP}(D \to K^+ \gamma)$	BaBar $[214]$	$-0.003 \pm 0.017 \pm 0.007$	-0.004 ± 0.011
$A = (B \rightarrow Y \alpha)$	Belle [295]	$0.0144 \pm 0.0128 \pm 0.0011^{-1}$	0.015 ± 0.011
$A_{CP}(D \rightarrow A_{s}\gamma)$	BaBar $[340]$	$0.017 \pm 0.019 \pm 0.010$ 2	0.015 ± 0.011
$A = (B \rightarrow X = \infty)$	Belle [341]	$0.022 \pm 0.039 \pm 0.009$ ³	0.032 ± 0.034
$A_{CP}(D \to \Lambda_{s+d}\gamma)$	BaBar $[257]$	$0.057 \pm 0.060 \pm 0.018$ 4	0.052 ± 0.054
$A_{CP}(B \to X_s \ell^+ \ell^-)$	BaBar $[263]$	$0.04 \pm 0.11 \pm 0.01$	0.04 ± 0.11
$A_{\rm CP}(B \to K^* e^+ e^-)$	Belle $[243]$	$-0.18 \pm 0.15 \pm 0.01$	-0.18 ± 0.15
$A_{\rm CP}(B \to K^* \mu^+ \mu^-)$	Belle [243]	$-0.03 \pm 0.13 \pm 0.02$	-0.03 ± 0.13
$A = (B \to K^* \ell^+ \ell^-)$	Belle $[243]$	$-0.10 \pm 0.10 \pm 0.01$	0.05 ± 0.08
$ACP(D \to K \ell^{-}\ell^{-})$	BaBar $[266]$	$0.03 \pm 0.13 \pm 0.01$	-0.05 ± 0.08
$A_{CP}(B \to X_s \eta)$	Belle [290]	$-0.13 \pm 0.04 {}^{+0.02}_{-0.03} {}^{5}$	$-0.13^{+0.04}_{-0.05}$
$A_{\rm CP}(B \to K\ell^+\ell^-)$	BaBar $[266]$	$-0.03 \pm 0.14 \pm 0.01$	-0.03 ± 0.14

Table 76: *CP* asymmetries of charmless hadronic decays of B^{\pm}/B^{0} admixture.

¹ $M_{X_s} < 2.8 \text{ GeV}/c^2$. ² $0.6 < M_{X_s} < 2.0 \text{ GeV}/c^2$. ³ $E_{\gamma}^* \ge 2.1 \text{ GeV}$ where E_{γ}^* is the photon energy in the center-of-mass frame. ⁴ $2.1 < E_{\gamma}^* < 2.8 \text{ GeV}$ where E_{γ}^* is the photon energy in the center-of-mass frame. ⁵ $0.4 < m_X < 2.6 \text{ GeV}/c^2$.

Table 77: $C\!P$ asymmetries of charmless hadronic B^0_s decays.

Parameter	Measurements		Average
$A_{CP}(B^0_s \to \pi^+ K^-)$	LHCb [332] CDF [333]	$\begin{array}{c} 0.225 \pm 0.012 \ ^1 \\ 0.22 \pm 0.07 \pm 0.02 \end{array}$	0.225 ± 0.012

¹ LHCb combines results of the 1.9fb⁻¹ run 2 data analysis with those based on Run 1 dataset [335]. The full statistical and systematic covariance matrices are used in the combination.

Parameter	Measureme	ents	Average
$A_{\rm exp}(\Lambda^0 \rightarrow n\pi^-)$	LHCb [342]	$-0.035 \pm 0.017 \pm 0.020$	-0.025 ± 0.025
$ACP(A_b \rightarrow p\pi)$	CDF [333]	$0.06 \pm 0.07 \pm 0.03$	-0.025 ± 0.025
$A_{\rm cm}(\Lambda^0 \rightarrow nK^-)$	LHCb [342]	$-0.020 \pm 0.013 \pm 0.019$	-0.025 ± 0.022
$A_{CP}(\Lambda_b \to p\Lambda)$	CDF [333]	$-0.10 \pm 0.08 \pm 0.04$	0.025 ± 0.022
$A_{\rm CP}(\Lambda_b^0 \to p\overline{K}^0\pi^-)$	LHCb [105]	$0.22 \pm 0.13 \pm 0.03$	0.22 ± 0.13
$A_{\rm CP}(\Lambda_b^0 \to \Lambda^0 K^+ \pi^-)$	LHCb [177]	$-0.53 \pm 0.23 \pm 0.11$	-0.53 ± 0.25
$A_{\rm CP}(\Lambda_b^0 \to \Lambda^0 K^+ K^-)$	LHCb [177]	$-0.28 \pm 0.10 \pm 0.07$	-0.28 ± 0.12

Table 78: $C\!P$ asymmetries of charmless hadronic Λ^0_b decays.

Measurements that are not included in the tables (the definitions of observables can be found in the corresponding experimental papers):

- In Ref. [343], LHCb reports the triple-product asymmetries $(a_{CP}^{\hat{T}-odd}, a_{P}^{\hat{T}-odd})$ for the decays $\Lambda_{b}^{0} \to p\pi^{-}\pi^{+}\pi^{-}$ and $\Lambda_{b}^{0} \to p\pi^{-}K^{+}K^{-}$.
- In Ref. [344], LHCb reports $a_{CP}^{\hat{T}-odd}$, $a_{P}^{\hat{T}-odd}$ and $\Delta(A_{CP}) = A_{CP}(A_b^0 \to pK^-\mu^+\mu^-) A_{CP}(A_b^0 \to pK^-J/\psi)$.
- In Ref. [345], LHCb reports $a_{CP}^{\hat{T}-odd}$ and $a_P^{\hat{T}-odd}$ for the decays $\Lambda_b^0 \to pK^-\pi^+\pi^-$, $\Lambda_b^0 \to pK^-K^+K^-$ and $\Xi_b^0 \to pK^-K^-\pi^+$.
- In Ref. [346] LHCb measures differences of CP asymmetries between Λ_b^0 and Ξ_b^0 charmless decays into a proton and three charged mesons and the decays to the same final states with an intermediate charmed baryon.

Figure 13: A selection among the most precise direct CP asymmetries (A_{CP}) measured in charmless B^+ and B^0 decay modes.

8 Polarization measurements in *b*-hadron decays

In this section, compilations of polarization measurements in *b*-hadron decays are given. Tables 79, 80, and 81 detail measurements of the longitudinal fraction, f_L , in B^+ B^0 , and B_s^0 decays, respectively. They are followed by Tables 82, 83 and 84, which list polarisation fractions and *CP* parameters measured in full angular analyses of B^+ , B^0 and B_s^0 decays. Figures 14 and 15 show graphic representations of a selection of results shown in this section.

Most of the final states considered in the tables are pairs of vector mesons and thus, we detail below the corresponding definitions. For specific definitions, for example regarding vector-tensor final states or vector recoiling against di-spin-half states, please refer to the articles. In the decay of a pseudoscalar meson into two vector mesons, momentum conservation allows for three helicity configurations: $H_0, H_{\pm 1}$. They can be expressed in terms of longitudinal polarisation amplitudes, $A_0 = H_0$, and transverse polarisation amplitudes, $A_{\perp} = (H_{+1} - H_{-1})/\sqrt{2}$ and $A_{\parallel} = (H_{+1} + H_{-1})/\sqrt{2}$ and their charge conjugates: $\overline{A_0}, \overline{A_{\parallel}}$, and $\overline{A_{\perp}}$. Using the definitions:

$$F_{k=0,\parallel,\perp} = \frac{|A_k|^2}{|A_0|^2 + |A_\perp|^2 + |A_\parallel|^2}, \quad \overline{F}_{k=0,\parallel,\perp} = \frac{|\overline{A_k}|^2}{|\overline{A_0}|^2 + |\overline{A_\perp}|^2 + |\overline{A_\parallel}|^2}, \tag{2}$$

the following CP conserving and CP violating observables, which are used in our tables, are defined:

$$f_{k=0,\parallel,\perp} = \frac{1}{2}(F_k + \overline{F_k}), \quad A_{CP}^{k=0,\perp} = \frac{F_k - \overline{F_k}}{F_k + \overline{F_k}}.$$
 (3)

Note that, in the literature, f_0 and f_L are used interchangeably to denote the longitudinal polarization fraction.

Parameter	Measurements		Average $_{PDG}^{HFLAV}$
$f_L(B^+ \to \omega(782)K^*(892)^+)$	BaBar [26]	$0.41 \pm 0.18 \pm 0.05$	0.41 ± 0.19
$f_L(B^+ \to \omega(782)K_2^*(1430)^+)$	BaBar $[26]$	$0.56 \pm 0.10 \pm 0.04$	0.56 ± 0.11
$f_L(B^+ \to K^*(892)^+ \overline{K}^*(892)^0)$	BaBar [59]	$0.75^{+0.16}_{-0.26}\pm 0.03$	$0.82^{+0.13}_{-0.17}$
	Belle [58]	$1.06 \pm 0.30 \pm 0.14$	$0.82^{+0.15}_{-0.21}$
	BaBar [64]	$0.49 \pm 0.05 \pm 0.03^{-1}$	
$f_L(B^+ \to \phi(1020)K^*(892)^+)$	Belle [330]	$0.52 \pm 0.08 \pm 0.03$	0.50 ± 0.05
	Belle II [61]	$0.58 \pm 0.23 \pm 0.02$	
$f_L(B^+ \to \phi(1020)K_1(1270)^+)$	BaBar $[66]$	$0.46^{+0.12}_{-0.13}{}^{+0.06}_{-0.07}$	0.46 ± 0.14
$f_L(B^+ \to \phi(1020)K_2^*(1430)^+)$	BaBar $[66]$	$0.80^{+0.09}_{-0.10}\pm0.03$	0.80 ± 0.10
$f_L(B^+ \to K^*(892)^+ \rho^0(770))$	BaBar $[42]$	$0.78 \pm 0.12 \pm 0.03$	0.78 ± 0.12
$f_L(B^+ \to K^*(892)^0 \rho^+(770))$	BaBar [44]	$0.52 \pm 0.10 \pm 0.04$	0.48 ± 0.08
	Belle $[45]$	$0.43 \pm 0.11 \substack{+0.05 \\ -0.02}{}^2$	
$f_L(B^+ \to \rho^+(770)\rho^0(770))$	BaBar [80]	$0.950 \pm 0.015 \pm 0.006$	0.050 ± 0.016
	Belle [81]	$0.948 \pm 0.106 \pm 0.021$	0.930 ± 0.010
$f_L(B^+ \to \omega(782)\rho^+(770))$	BaBar [26]	$0.90 \pm 0.05 \pm 0.03$	0.90 ± 0.06
$f_L(B^+ \to p\overline{p}K^*(892)^+)$	Belle $[158]$	$0.32 \pm 0.17 \pm 0.09$	0.32 ± 0.19

Table 79: Longitudinal polarization fraction, f_L , in B^+ decays.

¹ Combination of two final states of the $K^*(892)^{\pm}$, $K_S^0\pi^{\pm}$ and $K^{\pm}\pi^0$. In addition to the combined results, the paper reports separately the results for each individual final state. ² See also Ref. [50].

Parameter	Measurements		Average $_{PDG}^{HFLAV}$	
	BaBar [26]	$0.72 \pm 0.14 \pm 0.02$		
$f_L(B^0 \to \omega(782)K^*(892)^0)$	LHCb [347]	$0.68 \pm 0.17 \pm 0.16$	0.69 ± 0.11	
	Belle [98]	$0.56 \pm 0.29 {}^{+0.18}_{-0.08}$		
$f_L(B^0 \to \omega(782)K_2^*(1430)^0)$	BaBar [26]	$0.45 \pm 0.12 \pm 0.02$	0.45 ± 0.12	
$f (D) = K^*(\partial \partial \partial \overline{L^*}(\partial \partial \partial \theta))$	LHCb [130]	$0.724 \pm 0.051 \pm 0.016$	0.73 ± 0.05	
$\int L(D \to K (892) K (892))$	BaBar [131]	$0.80^{+0.10}_{-0.12}\pm 0.06$	0.74 ± 0.05	
	LHCb [348]	$0.497 \pm 0.019 \pm 0.015$		
$f(D0) \to f(1000) V*(900)(0)$	Belle $[124]$	$0.499 \pm 0.030 \pm 0.018$	0.407 ± 0.017	
$\int_{L} (D^{\circ} \to \phi(1020) K^{\circ}(892)^{\circ})$	BaBar [123]	$0.494 \pm 0.034 \pm 0.013$	0.497 ± 0.017	
	Belle II [61]	$0.57 \pm 0.20 \pm 0.04$		
$f(D^0 \to 4(1020) V^*(1420)^0)$	Belle [124]	$0.918^{+0.029}_{-0.060} \pm 0.012$	$0.912^{+0.032}_{-0.046}$	
$f_L(B^0 \to \phi(1020)K_2^*(1430)^0)$	BaBar $[123]$	$0.901 {}^{+0.046}_{-0.058} \pm 0.037$	$0.913 \substack{+0.028 \\ -0.050}$	
$f(D) = K^*(DD) + C^*(DD)$	LHCb [347]	$0.164 \pm 0.015 \pm 0.022$	0.172 0.000	
$J_L(D^* \to K^*(892)^* \rho^*(110))$	BaBar [113]	$0.40 \pm 0.08 \pm 0.11$	0.175 ± 0.020	
$f_L(B^0 \to K^*(892)^+ \rho^-(770))$	BaBar $[113]$	$0.38 \pm 0.13 \pm 0.03$	0.38 ± 0.13	
$f(P^0) \to e^{\pm}(770) e^{-}(770))$	Belle [146]	$0.988 \pm 0.012 \pm 0.023$	0.990 ± 0.020	
$J_L(B^* \to \rho^*(110)\rho^*(110))$	BaBar $[147]$	$0.992 \pm 0.024 {}^{+0.026}_{-0.013}$	$0.990 {}^{+0.021}_{-0.019}$	
	LHCb [128]	$0.745^{+0.048}_{-0.058} \pm 0.034$	0.71 ± 0.06	
$f_L(B^0 \to \rho^0(770)\rho^0(770))^1$	BaBar [143]	$0.75^{+0.11}_{-0.14} \pm 0.04$	0.71 ± 0.00	
	Belle $[142]$	$0.21^{+0.18}_{-0.22} \pm 0.15$	$0.71_{-0.09}$	
$f_L(B^0 \to a_1(1260)^+ a_1(1260)^-)$	BaBar $[149]$	$0.31 \pm 0.22 \pm 0.10$	0.31 ± 0.24	
$f_L(B^0 \to p\overline{p}K^*(892)^0)$	Belle [158]	$1.01 \pm 0.13 \pm 0.03$	1.01 ± 0.13	
$f_L(B^0 \to \Lambda^0 \overline{\Lambda}^0 K^*(892)^0)$	Belle [164]	$0.60 \pm 0.22 \pm 0.08^{-2,3}$	0.60 ± 0.23	
$f_L(B^0 \to K^{*0} \mu^+ \mu^-), 0.04 < q^2 < 6.0 \text{ GeV}^2/c^4$				
	ATLAS [318]	$0.50 \pm 0.06 \pm 0.04$	0.50 ± 0.07	
$f_L(B^0 \to K^{*0}e^+e^-), 0.002 < q^2 < 1.120 \text{ GeV}^2/c^4$				
	LHCb [349]	$0.16 \pm 0.06 \pm 0.03$	0.16 ± 0.07	

Table 80: Longitudinal polarization fraction, f_L , in B^0 decays.

 1 The PDG uncertainty includes a scale factor. 2 The charmonium mass regions are vetoed. 3 $M_{\Lambda^0\overline{\Lambda^0}} < 2.85~{\rm GeV}/c^2.$

Parameter	Measurements		Average $_{PDG}^{HFLAV}$
$f_L(B^0_s \to \phi(1020)\phi(1020))$	LHCb [138] CDF [187]	$\begin{array}{c} 0.381 \pm 0.007 \pm 0.012 \\ 0.348 \pm 0.041 \pm 0.021 \end{array}$	0.378 ± 0.013
$f_L(B^0_s \to K^*(892)^0 \overline{K}^*(892)^0)$	LHCb [130]	$0.240 \pm 0.031 \pm 0.025$	0.24 ± 0.04
$f_L(B^0_s \to \phi(1020)\overline{K}^*(892)^0)$	LHCb [125]	$0.51 \pm 0.15 \pm 0.07$	0.51 ± 0.17
$f_L(B^0_s \to \overline{K}^*_2(1430)^0 K^*(892)^0)$	LHCb [350]	$0.911 \pm 0.020 \pm 0.165$	0.91 ± 0.17
$f_L(B^0_s \to K^*_2(1430)^0 \overline{K}^*(892)^0)$	LHCb [350]	$0.62 \pm 0.16 \pm 0.25$	0.62 ± 0.30
$f_L(B_s^0 \to K_2^*(1430)^0 \overline{K}_2^*(1430)^0)$	LHCb [350]	$0.25 \pm 0.14 \pm 0.18$	0.25 ± 0.23

Table 81: Longitudinal polarization fraction, f_L , in B_s^0 decays.

Table 82: Results of full angular analyses of B^+ decays.

Parameter	Measurements		Average $_{PDG}^{HFLAV}$
$f_{\perp}(B^+ \to \phi(1020)K^*(892)^+)$	BaBar [64]	$0.21 \pm 0.05 \pm 0.02^{-1}$	0.20 ± 0.05
$A^0_{CP} (B^+ \to \phi(1020) K^*(892)^+)$	BaBar [64]	$\begin{array}{c} 0.19 \pm 0.08 \pm 0.02 \\ \hline 0.17 \pm 0.11 \pm 0.02^{-1} \end{array}$	0.17 ± 0.11
$A_{CP}^{\perp} (B^+ \to \phi(1020) K^*(892)^+)$	BaBar [64]	$0.22 \pm 0.24 \pm 0.08 \ ^1$	0.22 ± 0.25

¹ Combination of two final states of the $K^*(892)^{\pm}$, $K_S^0 \pi^{\pm}$ and $K^{\pm} \pi^0$. In addition to the combined results, the paper reports separately the results for each individual final state.

Parameter	Measurements		Average $_{PDG}^{HFLAV}$
	LHCb [348]	$0.221 \pm 0.016 \pm 0.013$	
$f_{\perp}(B^0 \to \phi(1020)K^*(892)^0)$	Belle $[124]$	$0.238 \pm 0.026 \pm 0.008$	0.224 ± 0.015
	BaBar $[123]$	$0.212 \pm 0.032 \pm 0.013$	
	LHCb [348]	$-0.003 \pm 0.038 \pm 0.005$	
$A^0_{CP} (B^0 \to \phi(1020) K^*(892)^0)$	Belle $[124]$	$-0.030 \pm 0.061 \pm 0.007$	-0.007 ± 0.030
	BaBar $[123]$	$0.01 \pm 0.07 \pm 0.02$	
	LHCb [348]	$0.047 \pm 0.074 \pm 0.009$	
$A_{CP}^{\perp}(B^0 \to \phi(1020)K^*(892)^0)$	Belle $[124]$	$-0.14 \pm 0.11 \pm 0.01$	-0.02 ± 0.06
	BaBar $[123]$	$-0.04 \pm 0.15 \pm 0.06$	
$f_{\perp}(B^0 \to \phi(1020)K_2^*(1430)^0)^1$	BaBar $[123]$	$0.002 {}^{+0.018}_{-0.002} \pm 0.031$	$0.029 {}^{+0.024}_{-0.026}$
	Belle $[124]$	$0.056^{+0.050}_{-0.035} \pm 0.009$	$0.027 {}^{+0.031}_{-0.025}$
$A^0_{CP} \left(B^0 \to \phi(1020) K^*_2(1430)^0 \right)$	Belle $[124]$	$-0.016^{+0.066}_{-0.051} \pm 0.008$	-0.03 ± 0.04
	BaBar $[123]$	$-0.05\pm 0.06\pm 0.01$	-0.05 ± 0.04
$A_{CP}^{\perp}(B^0 \to \phi(1020)K_2^*(1430)^0)$	Belle $[124]$	$-0.01^{+0.85}_{-0.67}\pm0.09$	$-0.01^{+0.85}_{-0.68}$

Table 83: Results of full angular analyses of B^0 decays.

 1 The PDG uncertainty includes a scale factor.

Parameter	Measurements		Average $_{PDG}^{HFLAV}$
$f_{\perp}(B_s^0 \to \phi(1020)\phi(1020))$	LHCb [138]	$0.290 \pm 0.008 \pm 0.007$	0.293 ± 0.010
	CDF [187]	$0.365 \pm 0.044 \pm 0.027$	0.292 ± 0.009
$f_{\parallel}(B^0_s \to \phi(1020)\overline{K}^*(892)^0)$	LHCb [125]	$0.21 \pm 0.11 \pm 0.02$	0.21 ± 0.11
$f_{\perp}(B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0)$	LHCb [130]	$0.526 \pm 0.032 \pm 0.019$	0.526 ± 0.037
			0.380 ± 0.120
$f_{\parallel}(B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0)$	LHCb [130]	$0.234 \pm 0.025 \pm 0.010$	0.23 ± 0.03
			0.30 ± 0.05

Table 84: Results of full angular analyses of B_s^0 decays.

Measurements that are not included in the tables (the definitions of observables can be found in the corresponding experimental papers):

- In the angular analysis of $B^0 \to \phi K^*(892)^0$ decays [348], in addition to the results quoted in Table 83, LHCb reports observables related to the *S*-wave component contributing the the final state $K^+K^-K^+\pi^-$: $f_S(K\pi)$, $f_S(KK)$, $\delta_s(K\pi)$, $\delta_s(KK)$, $\mathcal{A}_S(K\pi)^{CP}$, $\mathcal{A}_S(KK)^{CP}$, $\delta_S(K\pi)^{CP}$, $\delta_S(KK)^{CP}$.
- In the amplitude analysis of $B_s^0 \to \phi \phi$ decays, in addition to the results quoted in Table 84, LHCb, in Ref. [351], extracts the *CP*-violating phase $\phi_s^{s\bar{s}s}$ and the *CP*-violating parameter $|\lambda|$ from a decay-time-dependent and polarisation independent fit. The *CP*-violating phases $\phi_{s,\parallel}$ and $\phi_{s,\perp}$ are obtained in a polarisation-dependent fit. A time-integrated fit is performed to extract the triple-product asymmetries A_U and A_V . CDF, in Ref. [187] also reports the triple-product asymmetries A_U and A_V .
- In Ref. [350], LHCb presents a flavour-tagged, decay-time-dependent amplitude analysis of $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ decays in the $K^{\pm}\pi^{\mp}$ mass range from 750 to 1600 MeV/ c^2 . The paper includes measurements of 19 *CP*-averaged amplitude parameters corresponding to scalar, vector and tensor final states as well as the first measurement of the *CP*-violating phase $\phi_s^{d\bar{d}}$.
- Ref. [347] presents an amplitude analysis of $B^0 \to \rho K^*(892)^0$ realised by LHCb. Scalar (S) and vector (V) contributions to the final state $(\pi^+\pi^+)(K^+\pi^-)$ are considered through partial waves sharing the same angular dependence (VV, SS, SV, VS) and the corresponding amplitudes are extracted for each case. Triple product asymmetries are also reported.

Figure 14: Longitudinal polarization fraction in charmless B decays.

Figure 15: Longitudinal polarization fraction in charmless B_s^0 decays.

References

- HFLAV collaboration, Y. S. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C81 (2021) 226, arXiv:1909.12524.
- [2] Particle Data Group, P. A. Zyla et al., Review of Particle Physics, PTEP **2020** (2020) 083C01.
- [3] Belle collaboration, Y.-T. Duh et al., Measurements of branching fractions and direct CP asymmetries for BβKπ, BβππandBβKK decays, Phys. Rev. D 87 (2013) 031103, arXiv:1210.1348.
- [4] BaBar collaboration, B. Aubert *et al.*, Observation of $B^+ \to \overline{K}^0 K^+$ and $B^0 \to \overline{K}^0 \overline{K}^0$, Phys. Rev. Lett. **97** (2006) 171805, arXiv:hep-ex/0608036.
- [5] Belle-II collaboration, F. Abudinén et al., Measurements of branching fractions and direct CP asymmetries in B⁰ → K⁺π⁻, B⁺ → K⁰_Sπ⁺ and B⁰ → π⁺π⁻ using 2019 and 2020 data, arXiv:2106.03766.
- [6] CLEO collaboration, A. Bornheim et al., Measurements of charmless hadronic two body B meson decays and the ratio B(B → DK)/B(B → Dπ), Phys. Rev. D 68 (2003) 052002, arXiv:hep-ex/0302026, [Erratum: Phys.Rev.D 75, 119907 (2007)].
- [7] LHCb collaboration, R. Aaij *et al.*, Branching fraction and CP asymmetry of the decays $B^+ \to K_{\rm S}^0 \pi^+$ and $B^+ \to K_{\rm S}^0 K^+$, Phys. Lett. B **726** (2013) 646, arXiv:1308.1277.
- [8] BaBar collaboration, B. Aubert et al., Study of B⁰ → π⁰π⁰, B[±] → π[±]π⁰, and B[±] → K[±]π⁰ Decays, and Isospin Analysis of B → ππ Decays, Phys. Rev. D 76 (2007) 091102, arXiv:0707.2798.
- [9] Belle-II collaboration, F. Abudinén et al., Measurements of branching fractions and direct CP-violating asymmetries in B⁺ → K⁺π⁰ and π⁺π⁰ decays using 2019 and 2020 Belle II data, arXiv:2105.04111.
- [10] BaBar collaboration, B. Aubert *et al.*, B meson decays to charmless meson pairs containing η or η' mesons, Phys. Rev. D 80 (2009) 112002, arXiv:0907.1743.
- [11] Belle collaboration, J. Schumann *et al.*, Evidence for $B \to \eta' \pi$ and improved measurements for $B \to \eta' K$, Phys. Rev. Lett. **97** (2006) 061802, arXiv:hep-ex/0603001.
- [12] Belle-II collaboration, F. Abudinén et al., Measurement of the branching fractions of $B \to \eta' K$ decays using 2019/2020 Belle II data, arXiv:2104.06224.
- [13] Belle collaboration, I. Adachi *et al.*, Search for resonant $B^{\pm} \to K^{\pm}h \to K^{\pm}\gamma\gamma$ Decays at Belle, Phys. Lett. B **662** (2008) 323, arXiv:hep-ex/0608037.
- [14] CLEO collaboration, S. J. Richichi *et al.*, Two-body B meson decays to η and η' : Observation of $B \to \eta K^*$, Phys. Rev. Lett. **85** (2000) 520, arXiv:hep-ex/9912059.
- [15] LHCb collaboration, R. Aaij *et al.*, Observation of the $B_s^0 \rightarrow \eta' \eta'$ decay, Phys. Rev. Lett. **115** (2015) 051801, arXiv:1503.07483.
- [16] BaBar collaboration, P. del Amo Sanchez *et al.*, *B-meson decays to* $\eta'\rho$, $\eta'f_0$, and $\eta'K^*$, Phys. Rev. D 82 (2010) 011502, arXiv:1004.0240.

- [17] Belle collaboration, J. Schumann *et al.*, Search for B decays into $\eta'\rho$, $\eta'K^*$, $\eta'\varphi$, *eta'* ω and $\eta'\eta'^-$ at Belle, Phys. Rev. D **75** (2007) 092002, arXiv:hep-ex/0701046.
- [18] Belle collaboration, C. T. Hoi *et al.*, Evidence for direct CP violation in $B^{\pm} \rightarrow \eta h^{\pm}$ and observation of $B^0 \rightarrow \eta K^0$, Phys. Rev. Lett. **108** (2012) 031801, arXiv:1110.2000.
- [19] BaBar collaboration, B. Aubert et al., Measurement of branching fractions and charge asymmetries in B decays to an η meson and a K* meson, Phys. Rev. Lett. 97 (2006) 201802, arXiv:hep-ex/0608005.
- [20] Belle collaboration, C. H. Wang *et al.*, Measurement of charmless B Decays to ηK^* and $\eta \rho$, Phys. Rev. D **75** (2007) 092005, arXiv:hep-ex/0701057.
- [21] BaBar collaboration, B. Aubert *et al.*, Study of B Meson Decays with Excited η and η' Mesons, Phys. Rev. Lett. **101** (2008) 091801, arXiv:0804.0411.
- [22] BaBar collaboration, J. P. Lees *et al.*, Study of CP violation in Dalitz-plot analyses of $B^0 \rightarrow K^+K^-K^0_S$, $B^+ \rightarrow K^+K^-K^+$, and $B^+ \rightarrow K^0_S K^0_S K^+$, Phys. Rev. D **85** (2012) 112010, arXiv:1201.5897.
- [23] Belle collaboration, V. Chobanova *et al.*, Measurement of branching fractions and CP violation parameters in $B \to \omega K$ decays with first evidence of CP violation in $B^0 \to \omega K_S^0$, Phys. Rev. D **90** (2014) 012002, arXiv:1311.6666.
- [24] BaBar collaboration, B. Aubert et al., Branching fraction and CP-violation charge asymmetry measurements for B-meson decays to ηK[±], ηπ⁺-, η'K, η'π[±], ωK, and omegapi[±], Phys. Rev. D 76 (2007) 031103, arXiv:0706.3893.
- [25] CLEO collaboration, C. P. Jessop et al., Study of charmless hadronic B meson decays to pseudoscalar vector final states, Phys. Rev. Lett. 85 (2000) 2881, arXiv:hep-ex/0006008.
- [26] BaBar collaboration, B. Aubert *et al.*, Observation of B Meson Decays to ωK^* and Improved Measurements for $\omega \rho$ and ωf_0 , Phys. Rev. D **79** (2009) 052005, arXiv:0901.3703.
- [27] BaBar collaboration, B. Aubert et al., Search for B-meson decays to two-body final states with a₀(980) mesons, Phys. Rev. D 70 (2004) 111102, arXiv:hep-ex/0407013.
- [28] BaBar collaboration, B. Aubert *et al.*, Evidence for Direct CP Violation from Dalitz-plot analysis of $B^{\pm} \to K^{\pm}\pi^{\mp}\pi^{\pm}$, Phys. Rev. D **78** (2008) 012004, arXiv:0803.4451.
- [29] Belle collaboration, A. Garmash et al., Evidence for large direct CP violation in B[±] → ρ(770)⁰K[±] from analysis of the three-body charmless B[±] → K[±]π[±]π[∓] decay, Phys. Rev. Lett. 96 (2006) 251803, arXiv:hep-ex/0512066.
- [30] BaBar collaboration, J. P. Lees et al., Evidence for CP violation in B⁺ → K^{*}(892)⁺π⁰ from a Dalitz plot analysis of B⁺ → K⁰_Sπ⁺π⁰ decays, Phys. Rev. D 96 (2017) 072001, arXiv:1501.00705.
- [31] BaBar collaboration, J. P. Lees et al., Observation of the rare decay B⁺ → K⁺π⁰π⁰ and measurement of the quasi-two body contributions B⁺ → K^{*}(892)⁺π⁰, B⁺ → f₀(980)K⁺ and B⁺ → χ_{c0}K⁺, Phys. Rev. D 84 (2011) 092007, arXiv:1109.0143.
- [32] LHCb collaboration, R. Aaij et al., Measurement of the relative branching fractions of B⁺ → h⁺h'⁺h'⁻ decays, Phys. Rev. D 102 (2020) 112010, arXiv:2010.11802.

- [33] BaBar collaboration, B. Aubert *et al.*, Dalitz-plot analysis of the decays $B^{\pm} \rightarrow K^{\pm}\pi^{\mp}\pi^{\pm}$, Phys. Rev. D **72** (2005) 072003, arXiv:hep-ex/0507004, [Erratum: Phys.Rev.D 74, 099903 (2006)].
- [34] Belle collaboration, A. Garmash *et al.*, Dalitz analysis of the three-body charmless decays $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$, Phys. Rev. D **71** (2005) 092003, arXiv:hep-ex/0412066.
- [35] LHCb collaboration, R. Aaij et al., Search for the suppressed decays $B^+ \to K^+ K^+ \pi^-$ and $B^+ \to \pi^+ \pi^+ K^-$, Phys. Lett. B **765** (2017) 307, arXiv:1608.01478.
- [36] BaBar collaboration, B. Aubert *et al.*, Search for the highly suppressed decays $B^- \to K^+\pi^-\pi^$ and $B^- \to K^-K^-\pi^+$, Phys. Rev. D 78 (2008) 091102, arXiv:0808.0900.
- [37] Belle collaboration, A. Garmash et al., Study of B meson decays to three body charmless hadronic final states, Phys. Rev. D 69 (2004) 012001, arXiv:hep-ex/0307082.
- [38] CLEO collaboration, T. Bergfeld *et al.*, A search for nonresonant $B^+ \to h^+ h^- h^+$ decays, Phys. Rev. Lett. **77** (1996) 4503.
- [39] BaBar collaboration, B. Aubert et al., Measurement of branching fractions of B decays to K(1)(1270)π and K(1)(1400)π and determination of the CKM angle alpha from B⁰ → a(1)(1260)[±]pi[∓], Phys. Rev. D 81 (2010) 052009, arXiv:0909.2171.
- [40] CLEO collaboration, E. Eckhart *et al.*, Observation of $B \to K_S^0 \pi^+ \pi^-$ and evidence for $B \to K^{*\pm}\pi^{\mp}$, Phys. Rev. Lett. **89** (2002) 251801, arXiv:hep-ex/0206024.
- [41] BaBar collaboration, B. Aubert et al., Branching fraction measurements of charged B decays to K*+K+K⁻, K*+π+K⁻, K*+K+π⁻ and K*+π+π⁻ final states, Phys. Rev. D 74 (2006) 051104, arXiv:hep-ex/0607113.
- [42] BaBar collaboration, P. del Amo Sanchez et al., Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B⁺ → ρ⁰K^{*+} and B⁺ → f⁰(980)K^{*+} decays, Phys. Rev. D 83 (2011) 051101, arXiv:1012.4044.
- [43] BaBar collaboration, B. Aubert *et al.*, Observation of $B^+ \to a(1)^+(1260)K^0$ and $B^0 \to a(1) (1260)K^+$, Phys. Rev. Lett. **100** (2008) 051803, arXiv:0709.4165.
- [44] BaBar collaboration, B. Aubert et al., Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B → ρK* and B → f0(980) K* decays, Phys. Rev. Lett. 97 (2006) 201801, arXiv:hep-ex/0607057.
- [45] Belle collaboration, J. Zhang *et al.*, Measurements of branching fractions and polarization in $B \to K^* \rho$ decays, Phys. Rev. Lett. **95** (2005) 141801, arXiv:hep-ex/0408102.
- [46] ARGUS collaboration, H. Albrecht et al., Search for $b \rightarrow s$ gluon in B meson decays, Phys. Lett. B 254 (1991) 288.
- [47] BaBar collaboration, B. Aubert *et al.*, Observation of $B^+ \to b(1)^+ K^0$ and search for B-meson decays to $b(1)^0 K^0$ and $b(1)\pi^0$, Phys. Rev. D **78** (2008) 011104, arXiv:0805.1217.
- [48] BaBar collaboration, B. Aubert *et al.*, Observation of B-meson decays to $b(1)\pi$ and b(1)K, Phys. Rev. Lett. **99** (2007) 241803, arXiv:0707.4561.
- [49] BaBar collaboration, B. Aubert *et al.*, Search for B-meson decays to b(1)ρ and b(1)K*, Phys. Rev. D 80 (2009) 051101, arXiv:0907.3485.

- [50] Belle collaboration, J. Zhang et al., Measurements of branching fraction and polarization in $B^+ \to \rho^+ K^{*0}$ decay, arXiv:hep-ex/0505039.
- [51] Belle collaboration, A. B. Kaliyar *et al.*, Measurements of branching fraction and direct CP asymmetry in $B^{\pm} \to K_S^0 K_S^0 K^{\pm}$ and a search for $B^{\pm} \to K_S^0 K_S^0 \pi^{\pm}$, Phys. Rev. D **99** (2019) 031102, arXiv:1812.10221.
- [52] BaBar collaboration, B. Aubert *et al.*, Search for the decay $B^+ \to K_S^0 K_S^0 \pi^+$, Phys. Rev. D **79** (2009) 051101, arXiv:0811.1979.
- [53] Belle collaboration, C.-L. Hsu *et al.*, Measurement of branching fraction and direct CP asymmetry in charmless $B^+ \to K^+ K^- \pi^+$ decays at Belle, Phys. Rev. D **96** (2017) 031101, arXiv:1705.02640.
- [54] BaBar collaboration, B. Aubert *et al.*, Observation of the decay $B^+ \to K^+ K^- \pi^+$, Phys. Rev. Lett. **99** (2007) 221801, arXiv:0708.0376.
- [55] LHCb collaboration, R. Aaij *et al.*, Amplitude analysis of $B^{\pm} \to \pi^{\pm} K^{+} K^{-}$ decays, Phys. Rev. Lett. **123** (2019) 231802, arXiv:1905.09244.
- [56] BaBar collaboration, B. Aubert *et al.*, Search for the decay $B^+ \to \overline{K}^* \ 0(892) \ K^+$, Phys. Rev. D **76** (2007) 071103, arXiv:0706.1059.
- [57] Belle collaboration, M.-Z. Wang et al., Study of the baryon-antibaryon low-mass enhancements in charmless three-body baryonic B decays, Phys. Lett. B 617 (2005) 141, arXiv:hep-ex/0503047.
- [58] Belle collaboration, Y. M. Goh *et al.*, Search for the decay $B^+ \to \overline{K}^{*0}K^{*+}$ at Belle, Phys. Rev. D **91** (2015) 071101, arXiv:1502.00381.
- [59] BaBar collaboration, B. Aubert *et al.*, *Evidence for* $B^+ \to \overline{K}^{*0}K^{*+}$, Phys. Rev. D **79** (2009) 051102, arXiv:0901.1223.
- [60] Belle-II collaboration, F. Abudinén et al., Measurements of branching fractions and CP-violating charge asymmetries in charmless B decays reconstructed in 2019–2020 Belle II data, arXiv:2009.09452.
- [61] Belle-II collaboration, F. Abudinén et al., Rediscovery of $B \to \phi K^{(*)}$ decays and measurement of the longitudinal polarization fraction f_L in $B \to \phi K^*$ decays using the Summer 2020 Belle II dataset, arXiv:2008.03873.
- [62] CDF collaboration, D. Acosta et al., First evidence for B⁰_s → φφ decay and measurements of branching ratio and A_{CP} for B⁺ → φK⁺, Phys. Rev. Lett. **95** (2005) 031801, arXiv:hep-ex/0502044.
- [63] CLEO collaboration, R. A. Briere *et al.*, Observation of $B \rightarrow phiK$ and $B \rightarrow phiK^*$, Phys. Rev. Lett. **86** (2001) 3718, arXiv:hep-ex/0101032.
- [64] BaBar collaboration, B. Aubert *et al.*, Amplitude Analysis of the $B^{\pm} \rightarrow \phi K * (892)^{\pm}$ Decay, Phys. Rev. Lett. **99** (2007) 201802, arXiv:0705.1798.
- [65] Belle collaboration, K. F. Chen *et al.*, Measurement of branching fractions and polarization in $B \rightarrow phiK^{(*)}$ decays, Phys. Rev. Lett. **91** (2003) 201801, arXiv:hep-ex/0307014.

- [66] BaBar collaboration, B. Aubert *et al.*, Observation and Polarization Measurements of $B^{\pm} \rightarrow \phi K_1^{\pm}$ and $B^{\pm} \rightarrow \phi K_2^{*\pm}$, Phys. Rev. Lett. **101** (2008) 161801, arXiv:0806.4419.
- [67] BaBar collaboration, P. del Amo Sanchez *et al.*, Search for B^+ meson decay to $a_1^+(1260)K^{*0}(892)$, Phys. Rev. D 82 (2010) 091101, arXiv:1007.2732.
- [68] BaBar collaboration, J. P. Lees et al., Measurements of branching fractions and CP asymmetries and studies of angular distributions for B → φφK decays, Phys. Rev. D 84 (2011) 012001, arXiv:1105.5159.
- [69] Belle collaboration, H.-C. Huang *et al.*, Evidence for $B \to \phi \phi K$, Phys. Rev. Lett. **91** (2003) 241802, arXiv:hep-ex/0305068.
- [70] BaBar collaboration, B. Aubert *et al.*, Search for B meson decays to $\eta'\eta' K$, Phys. Rev. D 74 (2006) 031105, arXiv:hep-ex/0605008.
- [71] Belle collaboration, C. Liu *et al.*, Search for the X(1812) in $B^{\pm} \to K^{\pm}\omega\phi$, Phys. Rev. D **79** (2009) 071102, arXiv:0902.4757.
- [72] CLEO collaboration, R. Ammar *et al.*, Search for the familon via $B^{\pm} \to \pi^{\pm} X_0$, $B^{\pm} \to K^{\pm} X_0$, and $B^0 \to K^0_S X_0$ decays, Phys. Rev. Lett. 87 (2001) 271801, arXiv:hep-ex/0106038.
- [73] BaBar collaboration, B. Aubert *et al.*, Dalitz plot analysis of $B^{\pm} \to \pi^{\pm}\pi^{\pm}\pi^{\mp}$ decays, Phys. Rev. D **79** (2009) 072006, arXiv:0902.2051.
- [74] LHCb collaboration, R. Aaij et al., Observation of Several Sources of CP Violation in $B^+ \to \pi^+ \pi^- Decays$, Phys. Rev. Lett. **124** (2020) 031801, arXiv:1909.05211.
- [75] Belle collaboration, A. Gordon *et al.*, Study of $B \rightarrow \rho \pi$ decays at BELLE, Phys. Lett. B **542** (2002) 183, arXiv:hep-ex/0207007.
- [76] LHCb collaboration, R. Aaij *et al.*, Amplitude analysis of the $B^+ \to \pi^+\pi^+\pi^-$ decay, Phys. Rev. D 101 (2020) 012006, arXiv:1909.05212.
- [77] ARGUS collaboration, H. Albrecht *et al.*, Search for hadronic $b \rightarrow u$ decays, Phys. Lett. B 241 (1990) 278.
- [78] BaBar collaboration, B. Aubert et al., Measurement of the B[±] → ρ[±]π⁰ Branching Fraction and Direct CP Asymmetry, Phys. Rev. D 75 (2007) 091103, arXiv:hep-ex/0701035.
- [79] Belle collaboration, J. Zhang et al., Measurement of branching fraction and CP asymmetry in $B^+ \to \rho^+ \pi^0$, Phys. Rev. Lett. **94** (2005) 031801, arXiv:hep-ex/0406006.
- [80] BaBar collaboration, B. Aubert et al., Improved Measurement of B⁺ → ρ⁺ρ⁰ and Determination of the Quark-Mixing Phase Angle alpha, Phys. Rev. Lett. **102** (2009) 141802, arXiv:0901.3522.
- [81] Belle collaboration, J. Zhang *et al.*, Observation of $B^+ \to \rho^+ \rho^0$, Phys. Rev. Lett. **91** (2003) 221801, arXiv:hep-ex/0306007.
- [82] BaBar collaboration, B. Aubert *et al.*, Evidence for charged B meson decays to a[±](1)(1260)π⁰ and a⁰(1)(1260)π[±], Phys. Rev. Lett. **99** (2007) 261801, arXiv:0708.0050.
- [83] Belle collaboration, C.-M. Jen *et al.*, Improved measurements of branching fractions and CP partial rate asymmetries for $B \to \omega K$ and $B \to \omega \pi$, Phys. Rev. D **74** (2006) 111101, arXiv:hep-ex/0609022.

- [84] BaBar collaboration, B. Aubert *et al.*, Observation of $B^+ \to \eta \rho^+$ and search for B^0 decays to $\eta' \eta$, $\eta \pi^0$, η ' π^0 , and $\omega \pi^0$, Phys. Rev. D **78** (2008) 011107, arXiv:0804.2422.
- [85] BaBar collaboration, B. Aubert *et al.*, Search for $B^+ \to \phi \pi^+$ and $B^0 \to \phi \pi^0$ Decays, Phys. Rev. D **74** (2006) 011102, arXiv:hep-ex/0605037.
- [86] Belle collaboration, J. H. Kim *et al.*, Search for $B \to \phi \pi$ decays, Phys. Rev. D 86 (2012) 031101, arXiv:1206.4760.
- [87] BaBar collaboration, B. Aubert *et al.*, Searches for B meson decays to $\phi\phi$, $\phi\rho$, $\phi f_0(980)$, and $f_0(980) f_0(980)$ final states, Phys. Rev. Lett. **101** (2008) 201801, arXiv:0807.3935.
- [88] CLEO collaboration, D. Bortoletto *et al.*, A Search for $b \rightarrow u$ Transitions in Exclusive Hadronic B Meson Decays, Phys. Rev. Lett. **62** (1989) 2436.
- [89] BaBar collaboration, B. Aubert et al., Improved Measurements of the Branching Fractions for B⁰ → π⁺π⁻ and B⁰ → K⁺π⁻, and a Search for B⁰ → K⁺K⁻, Phys. Rev. D 75 (2007) 012008, arXiv:hep-ex/0608003.
- [90] CDF collaboration, T. Aaltonen et al., Observation of New Charmless Decays of Bottom Hadrons, Phys. Rev. Lett. 103 (2009) 031801, arXiv:0812.4271.
- [91] CDF collaboration, T. Aaltonen *et al.*, Evidence for the charmless annihilation decay mode $B_s^0 \to \pi^+\pi^-$, Phys. Rev. Lett. **108** (2012) 211803, arXiv:1111.0485.
- [92] CDF collaboration, T. Aaltonen et al., Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons, Phys. Rev. Lett. 106 (2011) 181802, arXiv:1103.5762.
- [93] LHCb collaboration, R. Aaij et al., Measurement of b-hadron branching fractions for two-body decays into charmless charged hadrons, JHEP 10 (2012) 037, arXiv:1206.2794.
- [94] LHCb collaboration, R. Aaij et al., Observation of the annihilation decay mode $B^0 \to K^+K^-$, Phys. Rev. Lett. **118** (2017) 081801, arXiv:1610.08288.
- [95] BaBar collaboration, J. P. Lees et al., Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons, Phys. Rev. D 87 (2013) 052009, arXiv:1206.3525.
- [96] LHCb collaboration, R. Aaij et al., Search for the $\Lambda_b^0 \to \Lambda \eta'$ and $\Lambda_b^0 \to \Lambda \eta$ decays with the LHCb detector, JHEP **09** (2015) 006, arXiv:1505.03295.
- [97] Belle collaboration, S. Sato *et al.*, Observation of the decay $B^0 \rightarrow \eta' K^*(892)^0$, Phys. Rev. D **90** (2014) 072009, arXiv:1408.6343.
- [98] Belle collaboration, P. Goldenzweig *et al.*, Evidence for Neutral B Meson Decays to ωK^{*0} , Phys. Rev. Lett. **101** (2008) 231801, arXiv:0807.4271.
- [99] BaBar collaboration, B. Aubert *et al.*, Search for Neutral B-Meson Decays to $a_0\pi$, a_0K , $\eta\rho^0$, and $etaf_0$, Phys. Rev. D **75** (2007) 111102, arXiv:hep-ex/0703038.
- [100] BaBar collaboration, J. P. Lees *et al.*, Amplitude Analysis of $B^0 \to K^+\pi^-\pi^0$ and Evidence of Direct CP Violation in $B \to K^*\pi$ decays, Phys. Rev. D 83 (2011) 112010, arXiv:1105.0125.

- [101] Belle collaboration, P. Chang *et al.*, Observation of the decays $B^0 \to K^+\pi^-\pi^0$ and $B^0 \to \rho^- K^+$, Phys. Lett. B **599** (2004) 148, arXiv:hep-ex/0406075.
- [102] BaBar collaboration, B. Aubert *et al.*, Dalitz Plot Analysis of the Decay $B^0(\overline{B}^0) \to K^{\pm}\pi^{\mp}\pi^0$, Phys. Rev. D **78** (2008) 052005, arXiv:0711.4417.
- [103] BaBar collaboration, B. Aubert *et al.*, *Time-dependent amplitude analysis of* $B^0 \to K_S^0 \pi^+ \pi^-$, Phys. Rev. D **80** (2009) 112001, arXiv:0905.3615.
- [104] Belle collaboration, A. Garmash *et al.*, Dalitz Analysis of Three-body Charmless $B^0 \to K^0 \pi^+ \pi^-$ Decay, Phys. Rev. D **75** (2007) 012006, arXiv:hep-ex/0610081.
- [105] LHCb collaboration, R. Aaij et al., Searches for Λ_b^0 and Ξ_b^0 decays to $K_{\rm S}^0 p \pi^-$ and $K_{\rm S}^0 p K^-$ final states with first observation of the $\Lambda_b^0 \to K_{\rm S}^0 p \pi^-$ decay, JHEP **04** (2014) 087, arXiv:1402.0770.
- [106] LHCb collaboration, R. Aaij et al., First observation of the decay $B_s^0 \to K_S^0 K^{*0}(892)$ at LHCb, JHEP **01** (2016) 012, arXiv:1506.08634.
- [107] LHCb collaboration, R. Aaij et al., Updated branching fraction measurements of $B^0_{(s)} \to K^0_{\rm S} h^+ h'^-$ decays, JHEP 11 (2017) 027, arXiv:1707.01665.
- [108] LHCb collaboration, R. Aaij et al., Amplitude analysis of the decay $\overline{B}^0 \to K_S^0 \pi^+ \pi^-$ and first observation of the CP asymmetry in $\overline{B}^0 \to K^*(892)^-\pi^+$, Phys. Rev. Lett. **120** (2018) 261801, arXiv:1712.09320.
- [109] LHCb collaboration, R. Aaij *et al.*, Observation of $B_s^0 \to K^{*\pm}K^{\mp}$ and evidence for $B_s^0 \to K^{*-}\pi^+$ decays, New J. Phys. **16** (2014) 123001, arXiv:1407.7704.
- [110] DELPHI collaboration, W. Adam et al., Study of rare b decays with the DELPHI detector at LEP, Z. Phys. C 72 (1996) 207.
- [111] Belle collaboration, S.-H. Kyeong et al., Measurements of Charmless Hadronic b → s Penguin Decays in the π⁺pi⁻K⁺pi⁻ Final State and Observation of B⁰ → ρ⁰K⁺pi⁻, Phys. Rev. D 80 (2009) 051103, arXiv:0905.0763.
- [112] BaBar collaboration, B. Aubert *et al.*, Measurements of the Branching Fractions of $B^0 \to K^*0$ K^+K^- , $B^0 \to K^*0 \ \pi^+K^-$, $B^0 \to K^*0 \ K^+\pi^-$, and $B^0 \to K^*0 \ \pi^+\pi^-$, Phys. Rev. D **76** (2007) 071104, arXiv:0708.2543.
- [113] BaBar collaboration, J. P. Lees *et al.*, B^0 meson decays to $\rho^0 K^{*0}$, $f_0 K^{*0}$, and $\rho^- K^{*+}$, including higher K^* resonances, Phys. Rev. D **85** (2012) 072005, arXiv:1112.3896.
- [114] Belle collaboration, Y. T. Lai *et al.*, Measurement of branching fraction and final-state asymmetry for the $\overline{B}^0 \to K_S^0 K^{\mp} \pi^{\pm}$ decay, Phys. Rev. D **100** (2019) 011101, arXiv:1904.06835.
- [115] BaBar collaboration, P. del Amo Sanchez *et al.*, Observation of the Rare Decay $B^0 \to K_S^0 K^{\pm} \pi^{\mp}$, Phys. Rev. D 82 (2010) 031101, arXiv:1003.0640.
- [116] BaBar collaboration, B. Aubert *et al.*, Search for the decay of a B^0 or \overline{B}^0 meson to $\overline{K}^{*0}K^0$ or $K^{*0}\overline{K^0}$, Phys. Rev. D **74** (2006) 072008, arXiv:hep-ex/0606050.
- [117] Belle collaboration, V. Gaur *et al.*, Evidence for the decay $B^0 \rightarrow K^+ K^- \pi^0$, Phys. Rev. D 87 (2013) 091101, arXiv:1304.5312.

- [118] BaBar collaboration, B. Aubert *et al.*, Search for B^0 Meson Decays to $\pi^0 K_S^0 K_S^0$, $\eta K_S^0 K_S^0$, and $\eta' K_S^0 K_S^0$, Phys. Rev. D **80** (2009) 011101, arXiv:0905.0868.
- [119] LHCb collaboration, R. Aaij *et al.*, Observation of the $\Lambda_b^0 \to \Lambda \phi$ decay, Phys. Lett. B **759** (2016) 282, arXiv:1603.02870.
- [120] LHCb collaboration, R. Aaij et al., Measurement of the branching fraction of the decay $B_s^0 \to K_S^0 K_S^0$, Phys. Rev. D **102** (2020) 012011, arXiv:2002.08229.
- [121] BaBar collaboration, J. P. Lees et al., Amplitude analysis and measurement of the time-dependent CP asymmetry of $B^0 \rightarrow K^0_S K^0_S K^0_S$ decays, Phys. Rev. D 85 (2012) 054023, arXiv:1111.3636.
- [122] BaBar collaboration, B. Aubert *et al.*, Search for the decay $B^0 \rightarrow K_s^0 K_s^0 K_L^0$, Phys. Rev. D 74 (2006) 032005, arXiv:hep-ex/0606031.
- [123] BaBar collaboration, B. Aubert *et al.*, *Time-Dependent and Time-Integrated Angular Analysis* of $B \to \phi K_S \pi^0$ and $B \to \phi K^+ \pi^-$, Phys. Rev. D **78** (2008) 092008, arXiv:0808.3586.
- [124] Belle collaboration, M. Prim *et al.*, Angular analysis of $B^0 \to \phi K^*$ decays and search for CP violation at Belle, Phys. Rev. D 88 (2013) 072004, arXiv:1308.1830.
- [125] LHCb collaboration, R. Aaij *et al.*, First observation of the decay $B_s^0 \to \phi \overline{K}^{*0}$, JHEP **11** (2013) 092, arXiv:1306.2239.
- [126] LHCb collaboration, R. Aaij et al., Measurement of the $B_s^0 \to \phi \phi$ branching fraction and search for the decay $B^0 \to \phi \phi$, JHEP **10** (2015) 053, arXiv:1508.00788.
- [127] LHCb collaboration, R. Aaij et al., Measurement of CP asymmetries and polarisation fractions in $B_s^0 \to K^{*0}\overline{K}^{*0}$ decays, JHEP 07 (2015) 166, arXiv:1503.05362.
- [128] LHCb collaboration, R. Aaij et al., Observation of the $B^0 \to \rho^0 \rho^0$ decay from an amplitude analysis of $B^0 \to (\pi^+\pi^-)(\pi^+\pi^-)$ decays, Phys. Lett. B **747** (2015) 468, arXiv:1503.07770.
- [129] Belle collaboration, C.-C. Chiang *et al.*, Search for $B^0 \to K^{*0}\overline{K}^{*0}$, $B^0 \to K^{*0}K^{*0}$ and $B^0 \to K^+\pi^-K^{\mp}\pi^{\pm}$ Decays, Phys. Rev. D **81** (2010) 071101, arXiv:1001.4595.
- [130] LHCb collaboration, R. Aaij et al., Amplitude analysis of the $B^0_{(s)} \to K^{*0}\overline{K}^{*0}$ decays and measurement of the branching fraction of the $B^0 \to K^{*0}\overline{K}^{*0}$ decay, JHEP 07 (2019) 032, arXiv:1905.06662.
- [131] BaBar collaboration, B. Aubert *et al.*, Observation of $B^0 \to K^{*0}\overline{K}^{*0}$ and search for $B^0 \to K^{*0}K^{*0}$, Phys. Rev. Lett. **100** (2008) 081801, arXiv:0708.2248.
- [132] BaBar collaboration, B. Aubert *et al.*, Search for $B^0 \to K^{*+}K^{*-}$, Phys. Rev. D **78** (2008) 051103, arXiv:0806.4467.
- [133] BaBar collaboration, B. Aubert *et al.*, Search for $B^0 \rightarrow \phi(K + \pi^-)$ decays with large $K^+\pi^$ invariant mass, Phys. Rev. D **76** (2007) 051103, arXiv:0705.0398.
- [134] Belle collaboration, T. Julius *et al.*, Measurement of the branching fraction and CP asymmetry in $B^0 \rightarrow \pi^0 \pi^0$ decays, and an improved constraint on ϕ_2 , Phys. Rev. D **96** (2017) 032007, arXiv:1705.02083.

- [135] Belle collaboration, B. Pal *et al.*, Evidence for the decay $B^0 \rightarrow \eta \pi^0$, Phys. Rev. D **92** (2015) 011101, arXiv:1504.00957.
- [136] BaBar collaboration, J. P. Lees *et al.*, Evidence for the decay $B^0 \to \omega \omega$ and search for $B^0 \to \omega \phi$, Phys. Rev. D 89 (2014) 051101, arXiv:1312.0056.
- [137] LHCb collaboration, R. Aaij *et al.*, Observation of the decay $B_s^0 \to \phi \pi^+ \pi^-$ and evidence for $B^0 \to \phi \pi^+ \pi^-$, Phys. Rev. D **95** (2017) 012006, arXiv:1610.05187.
- [138] LHCb collaboration, R. Aaij et al., Measurement of CP violation in the $B_s^0 \rightarrow \phi \phi$ decay and search for the $B^0 \rightarrow \phi \phi$ decay, arXiv:1907.10003.
- [139] Belle collaboration, A. Kusaka *et al.*, Measurement of CP asymmetries and branching fractions in a time-dependent Dalitz analysis of $B^0 \to (\rho \pi)^0$ and a constraint on the quark mixing angle ϕ_2 , Phys. Rev. D 77 (2008) 072001, arXiv:0710.4974.
- [140] BaBar collaboration, B. Aubert et al., Measurement of branching fractions and charge asymmetries in B[±] → ρ[±]π⁰ and B[±] → ρ⁰π[±] decays, and search for B⁰ → ρ⁰π⁰, Phys. Rev. Lett. **93** (2004) 051802, arXiv:hep-ex/0311049.
- [141] BaBar collaboration, B. Aubert et al., Measurements of branching fractions and CP-violating asymmetries in B⁰ → ρ[±]h[∓] decays, Phys. Rev. Lett. 91 (2003) 201802, arXiv:hep-ex/0306030.
- [142] Belle collaboration, I. Adachi et al., Study of B⁰ → ρ⁰ρ⁰ decays, implications for the CKM angle φ₂ and search for other B⁰ decay modes with a four-pion final state, Phys. Rev. D 89 (2014) 072008, arXiv:1212.4015, [Addendum: Phys.Rev.D 89, 119903 (2014)].
- [143] BaBar collaboration, B. Aubert et al., Measurement of the Branching Fraction, Polarization, and CP Asymmetries in B⁰ → ρ⁰ρ⁰ Decay, and Implications for the CKM Angle α, Phys. Rev. D 78 (2008) 071104, arXiv:0807.4977.
- [144] Belle collaboration, J. Dalseno et al., Measurement of Branching Fraction and First Evidence of CP Violation in B⁰ → a[±]₁(1260)π[∓] Decays, Phys. Rev. D 86 (2012) 092012, arXiv:1205.5957.
- [145] BaBar collaboration, B. Aubert *et al.*, Observation of B^0 Meson Decay to $a_1^{\pm}(1260)\pi^{\mp}$, Phys. Rev. Lett. **97** (2006) 051802, arXiv:hep-ex/0603050.
- [146] Belle collaboration, P. Vanhoefer *et al.*, Study of $B^0 \rightarrow \rho^+ \rho^-$ decays and implications for the *CKM angle* ϕ_2 , Phys. Rev. D **93** (2016) 032010, arXiv:1510.01245, [Addendum: Phys.Rev.D 94, 099903 (2016)].
- [147] BaBar collaboration, B. Aubert *et al.*, A Study of $B^0 \rightarrow \rho^+ \rho^-$ Decays and Constraints on the CKM Angle α , Phys. Rev. D **76** (2007) 052007, arXiv:0705.2157.
- [148] BaBar collaboration, B. Aubert *et al.*, Search for the decay $B^0 \rightarrow a_1^{\pm} \rho^{\pm}$, Phys. Rev. D 74 (2006) 031104, arXiv:hep-ex/0605024.
- [149] BaBar collaboration, B. Aubert *et al.*, Observation and Polarization Measurement of $B^0 \rightarrow a_1(1260)^+ a_1(1260)^-$ Decay, Phys. Rev. D 80 (2009) 092007, arXiv:0907.1776.
- [150] LHCb collaboration, R. Aaij et al., Study of the rare B_s^0 and B^0 decays into the $\pi^+\pi^-\mu^+\mu^$ final state, Phys. Lett. B **743** (2015) 46, arXiv:1412.6433.

- [151] Belle collaboration, J. T. Wei *et al.*, Study of $B^+ \to p\overline{p}K^+$ and $B^+ \to p\overline{p}\pi^+$, Phys. Lett. B **659** (2008) 80, arXiv:0706.4167.
- [152] BaBar collaboration, B. Aubert *et al.*, Evidence for the $B^0 \to p\overline{p}K^{*0}$ and $B^+ \to \eta_c K^{*+}$ decays and Study of the Decay Dynamics of B Meson Decays into $p\overline{p}h$ final states, Phys. Rev. D **76** (2007) 092004, arXiv:0707.1648.
- [153] LHCb collaboration, R. Aaij *et al.*, Evidence for CP Violation in $B^+ \to p\overline{p}K^+$ Decays, Phys. Rev. Lett. **113** (2014) 141801, arXiv:1407.5907.
- [154] Belle collaboration, K. Chu *et al.*, Study of $B \rightarrow p\bar{p}\pi\pi$, Phys. Rev. D **101** (2020) 052012, arXiv:1912.05999.
- [155] ARGUS collaboration, H. Albrecht et al., Observation of the Charmless B Meson Decays, Phys. Lett. B 209 (1988) 119.
- [156] BaBar collaboration, B. Aubert *et al.*, Measurement of the $B^+ \to p\bar{p}K^+$ branching fraction and study of the decay dynamics, Phys. Rev. D **72** (2005) 051101, arXiv:hep-ex/0507012.
- [157] LHCb collaboration, R. Aaij et al., Measurements of the branching fractions of $B^+ \to p\overline{p}K^+$ decays, Eur. Phys. J. C **73** (2013) 2462, arXiv:1303.7133.
- [158] Belle collaboration, J. H. Chen *et al.*, Observation of $B^0 \to p\overline{p}K^{*0}$ with a large K^{*0} polarization, Phys. Rev. Lett. **100** (2008) 251801, arXiv:0802.0336.
- [159] LHCb collaboration, R. Aaij et al., Evidence for the two-body charmless baryonic decay $B^+ \rightarrow p\overline{A}$, JHEP 04 (2017) 162, arXiv:1611.07805.
- [160] Belle collaboration, Y.-T. Tsai *et al.*, Search for $B^0 \to p\overline{p}$, $A\overline{A}$ and $B \to p\overline{A}$ at Belle, Phys. Rev. D **75** (2007) 111101, arXiv:hep-ex/0703048.
- [161] Belle collaboration, M.-Z. Wang *et al.*, Study of $B \to p\overline{\Lambda}\gamma$, $p\overline{\Lambda}\pi^0$ and $B^0 \to p\overline{\Lambda}pi^-$, Phys. Rev. D **76** (2007) 052004, arXiv:0704.2672.
- [162] Belle collaboration, P. Chen *et al.*, Observation of $B^+ \to p\overline{A}\pi^+\pi^-$ at Belle, Phys. Rev. D 80 (2009) 111103, arXiv:0910.5817.
- [163] Belle collaboration, P.-C. Lu *et al.*, Observation of $B^+ \to p\overline{\Lambda}K^+K^-$ and $B^+ \to \overline{p}\Lambda K^+K^+$, Phys. Rev. D **99** (2019) 032003, arXiv:1807.10503.
- [164] Belle collaboration, Y.-W. Chang *et al.*, Observation of $B^0 \to \Lambda \overline{\Lambda} K^0$ and $B^0 to \Lambda \overline{\Lambda} K^{*0}$ at Belle, Phys. Rev. D **79** (2009) 052006, arXiv:0811.3826.
- [165] LHCb collaboration, R. Aaij *et al.*, First Observation of the Rare Purely Baryonic Decay $B^0 \rightarrow p\overline{p}$, Phys. Rev. Lett. **119** (2017) 232001, arXiv:1709.01156.
- [166] BaBar collaboration, B. Aubert *et al.*, Search for the decay $B^0 \rightarrow p\overline{p}$, Phys. Rev. D **69** (2004) 091503, arXiv:hep-ex/0403003.
- [167] LHCb collaboration, R. Aaij *et al.*, Observation of charmless baryonic decays $B^0_{(s)} \rightarrow p\overline{p}h^+h'^-$, Phys. Rev. D **96** (2017) 051103, arXiv:1704.08497.
- [168] Belle collaboration, B. Pal *et al.*, Evidence for the decay $B^0 \rightarrow p\bar{p}\pi^0$, Phys. Rev. D **99** (2019) 091104, arXiv:1904.05713.

- [169] BaBar collaboration, J. P. Lees *et al.*, Search for the decay mode $B^0 \rightarrow pp\overline{pp}$, Phys. Rev. D 98 (2018) 071102, arXiv:1803.10378.
- [170] BaBar collaboration, B. Aubert *et al.*, Measurement of the Branching Fraction and A Polarization in $B^0 \to \overline{A}p\pi^-$, Phys. Rev. D **79** (2009) 112009, arXiv:0904.4724.
- [171] Belle collaboration, M. Z. Wang *et al.*, Observation of $B^0 \rightarrow p\overline{\Lambda}\pi^-$, Phys. Rev. Lett. **90** (2003) 201802, arXiv:hep-ex/0302024.
- [172] LHCb collaboration, R. Aaij et al., Measurement of the differential branching fraction of the decay $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$, Phys. Lett. B **725** (2013) 25, arXiv:1306.2577.
- [173] CDF collaboration, T. Aaltonen *et al.*, Observation of the Baryonic Flavor-Changing Neutral Current Decay $\Lambda_b \to \Lambda \mu^+ \mu^-$, Phys. Rev. Lett. **107** (2011) 201802, arXiv:1107.3753.
- [174] LHCb collaboration, R. Aaij *et al.*, Observation of the suppressed decay $\Lambda_b^0 \to p\pi^-\mu^+\mu^-$, JHEP **04** (2017) 029, arXiv:1701.08705.
- [175] LHCb collaboration, R. Aaij *et al.*, Test of lepton universality with $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decays, JHEP **05** (2020) 040, arXiv:1912.08139.
- [176] LHCb collaboration, R. Aaij *et al.*, First Observation of the Radiative Decay $\Lambda_b^0 \to \Lambda \gamma$, Phys. Rev. Lett. **123** (2019) 031801, arXiv:1904.06697.
- [177] LHCb collaboration, R. Aaij et al., Observations of $\Lambda_b^0 \to \Lambda K^+ \pi^-$ and $\Lambda_b^0 \to \Lambda K^+ K^-$ decays and searches for other Λ_b^0 and Ξ_b^0 decays to $\Lambda h^+ h'^-$ final states, JHEP **05** (2016) 081, arXiv:1603.00413.
- [178] LHCb collaboration, R. Aaij et al., Measurement of branching fractions of charmless four-body Λ_b^0 and Ξ_b^0 decays, JHEP 02 (2018) 098, arXiv:1711.05490.
- [179] LHCb collaboration, R. Aaij et al., Differential branching fraction and angular analysis of Λ⁰_b → Λμ⁺μ⁻ decays, JHEP 06 (2015) 115, arXiv:1503.07138, [Erratum: JHEP 09, 145 (2018)].
- [180] LHCb collaboration, R. Aaij *et al.*, Observation of the decay $\Xi_b^- \to pK^-K^-$, Phys. Rev. Lett. **118** (2017) 071801, arXiv:1612.02244.
- [181] LHCb collaboration, R. Aaij et al., Angular moments of the decay $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$ at low hadronic recoil, JHEP **09** (2018) 146, arXiv:1808.00264.
- [182] LHCb collaboration, R. Aaij et al., Search for baryon-number-violating Ξ_b^0 oscillations, arXiv:1708.05808.
- [183] Belle collaboration, C.-C. Peng et al., Search for $B_s^0 \to hh$ Decays at the $\Upsilon(5S)$ Resonance, Phys. Rev. D 82 (2010) 072007, arXiv:1006.5115.
- [184] L3 collaboration, M. Acciarri et al., Search for neutral charmless B decays at LEP, Phys. Lett. B 363 (1995) 127.
- [185] SLD collaboration, K. Abe et al., Search for charmless hadronic decays of B mesons with the SLD detector, Phys. Rev. D 62 (2000) 071101, arXiv:hep-ex/9910050.
- [186] LHCb collaboration, R. Aaij *et al.*, Search for the $B_s^0 \rightarrow \eta' \phi$ decay, JHEP **05** (2017) 158, arXiv:1612.08110.

- [187] CDF collaboration, T. Aaltonen *et al.*, Measurement of Polarization and Search for *CP-Violation in* $B_s^0 \rightarrow \phi \phi$ Decays, Phys. Rev. Lett. **107** (2011) 261802, arXiv:1107.4999.
- [188] Belle collaboration, B. Pal *et al.*, Observation of the decay $B_s^0 \to K^0 \overline{K}^0$, Phys. Rev. Lett. **116** (2016) 161801, arXiv:1512.02145.
- [189] LHCb collaboration, R. Aaij *et al.*, Amplitude analysis of $B_s^0 \to K_S^0 K^{\pm} \pi^{\mp}$ decays, JHEP 06 (2019) 114, arXiv:1902.07955.
- [190] LHCb collaboration, R. Aaij et al., First observation of a baryonic B⁰_s decay, Phys. Rev. Lett. 119 (2017) 041802, arXiv:1704.07908.
- [191] Belle collaboration, D. Dutta *et al.*, Search for $B_s^0 \to \gamma \gamma$ and a measurement of the branching fraction for $B_s^0 \to \phi \gamma$, Phys. Rev. D **91** (2015) 011101, arXiv:1411.7771.
- [192] LHCb collaboration, R. Aaij *et al.*, Measurement of the ratio of branching fractions $BR(B_0 \to K^{*0}\gamma)/BR(B_{s0} \to \phi\gamma)$ and the direct CP asymmetry in $B_0 \to K^{*0}\gamma$, Nucl. Phys. B **867** (2013) 1, arXiv:1209.0313.
- [193] ATLAS collaboration, M. Aaboud et al., Study of the rare decays of B⁰_s and B⁰ mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098, arXiv:1812.03017.
- [194] LHCb collaboration, R. Aaij et al., Measurement of the $B_s^0 \to \mu^+\mu^-$ branching fraction and effective lifetime and search for $B^0 \to \mu^+\mu^-$ decays, Phys. Rev. Lett. **118** (2017) 191801, arXiv:1703.05747.
- [195] CMS collaboration, A. M. Sirunyan et al., Measurement of properties of $B_s^0 \to \mu^+\mu^-$ decays and search for $B^0 \to \mu^+\mu^-$ with the CMS experiment, JHEP **04** (2020) 188, arXiv:1910.12127.
- [196] CDF collaboration, T. Aaltonen et al., Search for B⁰_s → μ⁺μ⁻ and B⁰ → μ⁺μ⁻ decays with the full CDF Run II data set, Phys. Rev. D 87 (2013) 072003, arXiv:1301.7048, [Erratum: Phys.Rev.D 97, 099901 (2018)].
- [197] LHCb collaboration, R. Aaij *et al.*, Search for the Rare Decays $B_s^0 \rightarrow e^+e^-$ and $B^0 \rightarrow e^+e^-$, Phys. Rev. Lett. **124** (2020) 211802, arXiv:2003.03999.
- [198] CDF collaboration, T. Aaltonen *et al.*, Search for the Decays $B_s^0 \rightarrow e^+\mu^-$ and $B_s^0 \rightarrow e^+e^-$ in CDF Run II, Phys. Rev. Lett. **102** (2009) 201801, arXiv:0901.3803.
- [199] LHCb collaboration, R. Aaij *et al.*, Search for the decays $B_s^0 \to \tau^+ \tau^-$ and $B^0 \to \tau^+ \tau^-$, Phys. Rev. Lett. **118** (2017) 251802, arXiv:1703.02508.
- [200] LHCb collaboration, R. Aaij et al., Search for decays of neutral beauty mesons into four muons, JHEP 03 (2017) 001, arXiv:1611.07704.
- [201] LHCb collaboration, R. Aaij et al., Branching Fraction Measurements of the Rare $B_s^0 \rightarrow \phi \mu^+ \mu^$ and $B_s^0 \rightarrow f'_2(1525)\mu^+\mu^-$ - Decays, Phys. Rev. Lett. **127** (2021) 151801, arXiv:2105.14007.
- [202] LHCb collaboration, R. Aaij *et al.*, Evidence for the decay $B_S^0 \to \overline{K}^{*0} \mu^+ \mu^-$, JHEP **07** (2018) 020, arXiv:1804.07167.
- [203] LHCb collaboration, R. Aaij *et al.*, Search for the lepton-flavour violating decays $B^0_{(s)} \rightarrow e^{\pm}\mu^{\mp}$, JHEP **03** (2018) 078, arXiv:1710.04111.

- [204] LHCb collaboration, R. Aaij et al., Search for the lepton-flavour-violating decays $B_s^0 \to \tau^{\pm} \mu^{\mp}$ and $B^0 \to \tau^{\pm} \mu^{\mp}$, Phys. Rev. Lett. **123** (2019) 211801, arXiv:1905.06614.
- [205] Belle collaboration, N. K. Nisar *et al.*, Search for the decay $Bs0 \rightarrow \eta \dot{\eta}$, Phys. Rev. D **104** (2021) L031101, arXiv:2106.09695.
- [206] CMS Collaboration, LHCb Collaboration, ATLAS Collaboration, Combination of the ATLAS, CMS and LHCb results on the $B^0_{(s)} \rightarrow \mu^+ \mu^-$ decays, CERN, Geneva, 2020.
- [207] LHCb collaboration, R. Aaij et al., Study of charmonium production in b-hadron decays and first evidence for the decay $B_s^0 \rightarrow \phi \phi \phi$, Eur. Phys. J. C 77 (2017) 609, arXiv:1706.07013.
- [208] LHCb collaboration, R. Aaij et al., Angular analysis and differential branching fraction of the decay $B_s^0 \rightarrow \phi \mu^+ \mu^-$, JHEP **09** (2015) 179, arXiv:1506.08777.
- [209] LHCb collaboration, R. Aaij et al., First experimental study of photon polarization in radiative B⁰_s decays, Phys. Rev. Lett. **118** (2017) 021801, arXiv:1609.02032.
- [210] LHCb collaboration, R. Aaij *et al.*, Search for B_c^+ decays to the $p\overline{p}\pi^+$ final state, Phys. Lett. B **759** (2016) 313, arXiv:1603.07037.
- [211] LHCb collaboration, R. Aaij et al., Study of B_c^+ decays to the $K^+K^-\pi^+$ final state and evidence for the decay $B_c^+ \to \chi_{c0}\pi^+$, Phys. Rev. D 94 (2016) 091102, arXiv:1607.06134.
- [212] LHCb collaboration, R. Aaij *et al.*, Observation of the Decay $B_c^+ \rightarrow B_s^0 \pi^+$, Phys. Rev. Lett. **111** (2013) 181801, arXiv:1308.4544.
- [213] Belle collaboration, T. Horiguchi *et al.*, Evidence for Isospin Violation and Measurement of CP Asymmetries in $B \to K^*(892)\gamma$, Phys. Rev. Lett. **119** (2017) 191802, arXiv:1707.00394.
- [214] BaBar collaboration, B. Aubert et al., Measurement of Branching Fractions and CP and Isospin Asymmetries in B → K^{*}(892)γ Decays, Phys. Rev. Lett. **103** (2009) 211802, arXiv:0906.2177.
- [215] CLEO collaboration, T. E. Coan et al., Study of exclusive radiative B meson decays, Phys. Rev. Lett. 84 (2000) 5283, arXiv:hep-ex/9912057.
- [216] BaBar collaboration, P. del Amo Sanchez *et al.*, Time-dependent analysis of $B^0 \to K_S^0 \pi^- \pi^+ \gamma$ decays and studies of the $K^+\pi^-\pi^+$ system in $B^+ \to K^+\pi^-\pi^+\gamma$ decays, Phys. Rev. D **93** (2016) 052013, arXiv:1512.03579.
- [217] Belle collaboration, H. Yang *et al.*, Observation of $B^+ \to K_1(1270)^+\gamma$, Phys. Rev. Lett. **94** (2005) 111802, arXiv:hep-ex/0412039.
- [218] BaBar collaboration, B. Aubert *et al.*, Branching Fractions and CP-Violating Asymmetries in Radiative B Decays to $\eta K\gamma$, Phys. Rev. D **79** (2009) 011102, arXiv:0805.1317.
- [219] Belle collaboration, S. Nishida *et al.*, Observation of $B^+ \to K^+ \eta \gamma$, Phys. Lett. B **610** (2005) 23, arXiv:hep-ex/0411065.
- [220] Belle collaboration, R. Wedd *et al.*, Evidence for $B \to K\eta'\gamma$ Decays at Belle, Phys. Rev. D 81 (2010) 111104, arXiv:0810.0804.
- [221] BaBar collaboration, B. Aubert *et al.*, Measurement of branching fractions in radiative B decays to $\eta K \gamma$ and search for B decays to $eta' K \gamma$, Phys. Rev. D **74** (2006) 031102, arXiv:hep-ex/0603054.

- [222] Belle collaboration, H. Sahoo *et al.*, First Observation of Radiative $B^0 \rightarrow \phi K^0 \gamma$ Decays and Measurements of Their Time-Dependent CP Violation, Phys. Rev. D 84 (2011) 071101, arXiv:1104.5590.
- [223] BaBar collaboration, B. Aubert *et al.*, Measurement of B Decays to $\phi K\gamma$, Phys. Rev. D **75** (2007) 051102, arXiv:hep-ex/0611037.
- [224] Belle collaboration, S. Nishida *et al.*, Radiative B meson decays into $K\pi\gamma$ and $K\pi\pi\gamma$ final states, Phys. Rev. Lett. **89** (2002) 231801, arXiv:hep-ex/0205025.
- [225] D. Aston *et al.*, A study of $K^-\pi^+$ scattering in the reaction $K^-p \to K^-\pi + n$ at 11 GeV/c, Nucl. Phys. **B296** (1988) 493.
- [226] BaBar collaboration, B. Aubert *et al.*, Measurement of branching fractions and mass spectra of $B \to K\pi\pi\gamma$, Phys. Rev. Lett. **98** (2007) 211804, arXiv:hep-ex/0507031, [Erratum: Phys.Rev.Lett. 100, 189903 (2008), Erratum: Phys.Rev.Lett. 100, 199905 (2008)].
- [227] BaBar collaboration, B. Aubert *et al.*, Measurement of the $B^0 \rightarrow K_2^*(1430)^0 \gamma$ and $B^+ \rightarrow K_2^*(1430)^+ \gamma$ branching fractions, Phys. Rev. D **70** (2004) 091105, arXiv:hep-ex/0409035.
- [228] ARGUS collaboration, H. Albrecht *et al.*, Search for $b \to s\gamma$ in Exclusive Decays of B Mesons, Phys. Lett. B **229** (1989) 304.
- [229] Belle collaboration, N. Taniguchi et al., Measurement of branching fractions, isospin and CP-violating asymmetries for exclusive b → dγ modes, Phys. Rev. Lett. 101 (2008) 111801, arXiv:0804.4770, [Erratum: Phys.Rev.Lett. 101, 129904 (2008)].
- [230] BaBar collaboration, B. Aubert *et al.*, Measurements of Branching Fractions for $B^+ \to \rho^+ \gamma$, $B^0 \to \rho^0 \gamma$, and $B^0 \to \omega \gamma$, Phys. Rev. D **78** (2008) 112001, arXiv:0808.1379.
- [231] Belle collaboration, Y.-J. Lee *et al.*, Observation of $B^+ \to p\overline{\Lambda}\gamma$, Phys. Rev. Lett. **95** (2005) 061802, arXiv:hep-ex/0503046.
- [232] Belle collaboration, J.-T. Wei *et al.*, Search for $B \to \pi \ell^+ \ell^-$ Decays at Belle, Phys. Rev. D 78 (2008) 011101, arXiv:0804.3656.
- [233] BaBar collaboration, J. P. Lees *et al.*, Search for the rare decays $B \to \pi \ell^+ \ell^-$ and $B^0 \to \eta \ell^+ \ell^-$, Phys. Rev. D 88 (2013) 032012, arXiv:1303.6010.
- [234] LHCb collaboration, R. Aaij et al., First measurement of the differential branching fraction and CP asymmetry of the $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ decay, JHEP **10** (2015) 034, arXiv:1509.00414.
- [235] Belle collaboration, J. Grygier et al., Search for B → hvv decays with semileptonic tagging at Belle, Phys. Rev. D 96 (2017) 091101, arXiv:1702.03224, [Addendum: Phys.Rev.D 97, 099902 (2018)].
- [236] BaBar collaboration, B. Aubert *et al.*, A search for the decay $B^+ \to K^+ \nu \overline{\nu}$, Phys. Rev. Lett. 94 (2005) 101801, arXiv:hep-ex/0411061.
- [237] LHCb collaboration, R. Aaij et al., Differential branching fractions and isospin asymmetries of $B \to K^{(*)}\mu^+\mu^-$ decays, JHEP 06 (2014) 133, arXiv:1403.8044.
- [238] BELLE collaboration, S. Choudhury et al., Test of lepton flavor universality and search for lepton flavor violation in $B \to K\ell\ell$ decays, JHEP **03** (2021) 105, arXiv:1908.01848.
- [239] BaBar collaboration, B. Aubert *et al.*, Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays $B \to K^{(*)}\ell^+\ell^-$, Phys. Rev. Lett. **102** (2009) 091803, arXiv:0807.4119.
- [240] BaBar collaboration, J. P. Lees *et al.*, Search for $B^+ \to K^+ \tau^- \tau^-$ at the BaBar experiment, Phys. Rev. Lett. **118** (2017) 031802, arXiv:1605.09637.
- [241] BaBar collaboration, J. P. Lees *et al.*, Search for $B \to K^{(*)}\nu\overline{\nu}$ and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005, arXiv:1303.7465.
- [242] Belle-II collaboration, F. Abudinén *et al.*, Search for $B^+ \to K^+ \nu \overline{\nu}$ decays using an inclusive tagging method at Belle II, arXiv:2104.12624.
- [243] Belle collaboration, J.-T. Wei *et al.*, Measurement of the Differential Branching Fraction and Forward-Backward Asymmetry for $B \to K^{(*)}\ell^+\ell^-$, Phys. Rev. Lett. **103** (2009) 171801, arXiv:0904.0770.
- [244] Belle collaboration, O. Lutz *et al.*, Search for $B \to h^{(*)}\nu\overline{\nu}$ with the full Belle $\Upsilon(4S)$ data sample, Phys. Rev. D 87 (2013) 111103, arXiv:1303.3719.
- [245] LHCb collaboration, R. Aaij *et al.*, First observations of the rare decays $B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^$ and $B^+ \to \phi K^+ \mu^+ \mu^-$, JHEP **10** (2014) 064, arXiv:1408.1137.
- [246] BaBar collaboration, J. P. Lees *et al.*, Search for $B^- \to A \overline{p} \nu \overline{\nu}$ with the BaBar experiment, Phys. Rev. D **100** (2019) 111101, arXiv:1908.07425.
- [247] Belle collaboration, H. J. Hyun *et al.*, Search for a Low Mass Particle Decaying into $\mu^+\mu^-$ in $B^0 \to K^{*0}X$ and $B^0 \to \rho^0 X$ at Belle, Phys. Rev. Lett. **105** (2010) 091801, arXiv:1005.1450.
- [248] Belle collaboration, Z. King et al., Search for the decay $B^0 \beta \phi \gamma$, Phys. Rev. D 93 (2016) 111101, arXiv:1603.06546.
- [249] BaBar collaboration, B. Aubert *et al.*, Search for the radiative decay $B \rightarrow \phi \gamma$, Phys. Rev. D 72 (2005) 091103, arXiv:hep-ex/0501038.
- [250] Belle collaboration, Y. T. Lai *et al.*, Search for $B^0 \rightarrow p\overline{\Lambda}\pi^-\gamma$ at Belle, Phys. Rev. D 89 (2014) 051103, arXiv:1312.4228.
- [251] LHCb collaboration, R. Aaij et al., Measurements of the S-wave fraction in $B^0 \to K^+\pi^-\mu^+\mu^$ decays and the $B^0 \to K^*(892)^0\mu^+\mu^-$ differential branching fraction, JHEP **11** (2016) 047, arXiv:1606.04731, [Erratum: JHEP 04, 142 (2017)].
- [252] BaBar collaboration, B. Aubert *et al.*, Search for the rare decay $B \to \pi \ell^+ \ell^-$, Phys. Rev. Lett. **99** (2007) 051801, arXiv:hep-ex/0703018.
- [253] BaBar collaboration, B. Aubert et al., Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays B → Kℓ⁺ℓ⁻ and B → K^{*}ℓ⁺ℓ⁻, Phys. Rev. D 73 (2006) 092001, arXiv:hep-ex/0604007.
- [254] Belle collaboration, S. Sandilya *et al.*, Search for the lepton-flavor-violating decay $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$, Phys. Rev. D **98** (2018) 071101, arXiv:1807.03267.
- [255] BaBar collaboration, P. del Amo Sanchez et al., Searches for the baryon- and lepton-number violating decays B⁰ → Λ⁺_cℓ⁻, B⁻ → Λℓ⁻, and B⁻ → Λℓ⁻, Phys. Rev. D 83 (2011) 091101, arXiv:1101.3830.

- [256] Belle collaboration, A. Limosani et al., Measurement of Inclusive Radiative B-meson Decays with a Photon Energy Threshold of 1.7-GeV, Phys. Rev. Lett. 103 (2009) 241801, arXiv:0907.1384.
- [257] BaBar collaboration, J. P. Lees et al., Precision Measurement of the $B \to X_s \gamma$ Photon Energy Spectrum, Branching Fraction, and Direct CP Asymmetry $A_{CP}(B \to X_{s+d}\gamma)$, Phys. Rev. Lett. 109 (2012) 191801, arXiv:1207.2690.
- [258] Belle collaboration, T. Saito *et al.*, Measurement of the $\overline{B} \to X_s \gamma$ Branching Fraction with a Sum of Exclusive Decays, Phys. Rev. D **91** (2015) 052004, arXiv:1411.7198.
- [259] BaBar collaboration, J. P. Lees et al., Exclusive Measurements of $b \rightarrow s\gamma$ Transition Rate and Photon Energy Spectrum, Phys. Rev. D 86 (2012) 052012, arXiv:1207.2520.
- [260] CLEO collaboration, S. Chen *et al.*, Branching fraction and photon energy spectrum for $b \rightarrow s\gamma$, Phys. Rev. Lett. **87** (2001) 251807, arXiv:hep-ex/0108032.
- [261] BaBar collaboration, B. Aubert et al., Measurement of the B → X_sγ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103, arXiv:0711.4889.
- [262] BaBar collaboration, P. del Amo Sanchez *et al.*, Study of $B \to X\gamma$ Decays and Determination of $|V_{td}/V_{ts}|$, Phys. Rev. D 82 (2010) 051101, arXiv:1005.4087.
- [263] BaBar collaboration, J. P. Lees et al., Measurement of the B → X_sl⁺l⁻ branching fraction and search for direct CP violation from a sum of exclusive final states, Phys. Rev. Lett. **112** (2014) 211802, arXiv:1312.5364.
- [264] Belle collaboration, M. Iwasaki *et al.*, Improved measurement of the electroweak penguin process $B \to X_s l^+ l^-$, Phys. Rev. D **72** (2005) 092005, arXiv:hep-ex/0503044.
- [265] O. Buchmuller and H. Flacher, Fit to moment from B → X_cℓn̄u and B → X_sγ decays using heavy quark expansions in the kinetic scheme, Phys. Rev. D 73 (2006) 073008, arXiv:hep-ph/0507253.
- [266] BaBar collaboration, J. P. Lees et al., Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B → K^(*)l⁺l⁻, Phys. Rev. D 86 (2012) 032012, arXiv:1204.3933.
- [267] CLEO collaboration, K. W. Edwards et al., Search for lepton flavor violating decays of B mesons, Phys. Rev. D 65 (2002) 111102, arXiv:hep-ex/0204017.
- [268] Belle collaboration, N. Satoyama *et al.*, A Search for the rare leptonic decays $B^+ \to \mu^+ \nu_{\mu}$ and $B^+ \to e^+ \nu_e$, Phys. Lett. B 647 (2007) 67, arXiv:hep-ex/0611045.
- [269] BaBar collaboration, B. Aubert *et al.*, Search for the Rare Leptonic Decays $B^+ \to \ell^+ \nu_l$ $(l = e, \mu)$, Phys. Rev. D **79** (2009) 091101, arXiv:0903.1220.
- [270] Belle collaboration, M. T. Prim *et al.*, Search for $B^+ \to \mu^+ \nu_{\mu}$ and $B^+ \to \mu^+ N$ with inclusive tagging, Phys. Rev. D 101 (2020) 032007, arXiv:1911.03186.
- [271] Belle collaboration, A. Sibidanov *et al.*, Search for $B^- \to \mu^- \overline{\nu}_{\mu}$ Decays at the Belle Experiment, Phys. Rev. Lett. **121** (2018) 031801, arXiv:1712.04123.

- [272] Belle collaboration, I. Adachi et al., Evidence for $B^- \to \tau^- \overline{\nu}_{\tau}$ with a Hadronic Tagging Method Using the Full Data Sample of Belle, Phys. Rev. Lett. **110** (2013) 131801, arXiv:1208.4678.
- [273] Belle collaboration, B. Kronenbitter et al., Measurement of the branching fraction of B⁺ → τ⁺ν_τ decays with the semileptonic tagging method, Phys. Rev. D 92 (2015) 051102, arXiv:1503.05613.
- [274] BaBar collaboration, J. P. Lees *et al.*, Evidence of $B^+ \to \tau^+ \nu$ decays with hadronic B tags, Phys. Rev. D 88 (2013) 031102, arXiv:1207.0698.
- [275] BaBar collaboration, B. Aubert *et al.*, A Search for $B^+ \to \ell^+ \nu_{\ell}$ Recoiling Against $B^- \to D^0 \ell^- \overline{\nu} X$, Phys. Rev. D 81 (2010) 051101, arXiv:0912.2453.
- [276] Belle collaboration, M. Gelb *et al.*, Search for the rare decay of $B^+ \to \ell^+ \nu_\ell \gamma$ with improved hadronic tagging, Phys. Rev. D **98** (2018) 112016, arXiv:1810.12976.
- [277] BaBar collaboration, B. Aubert *et al.*, A Model-independent search for the decay $B^+ \rightarrow \ell^+ \nu_l \gamma$, Phys. Rev. D 80 (2009) 111105, arXiv:0907.1681.
- [278] BaBar collaboration, P. del Amo Sanchez *et al.*, Search for the Decay $B^0 \rightarrow \gamma \gamma$, Phys. Rev. D 83 (2011) 032006, arXiv:1010.2229.
- [279] Belle collaboration, S. Villa *et al.*, Search for the decay $B^0 \rightarrow \gamma \gamma$, Phys. Rev. D **73** (2006) 051107, arXiv:hep-ex/0507036.
- [280] BaBar collaboration, B. Aubert *et al.*, Search for decays of B^0 into mesons into e^+e^- , $\mu^+\mu^-$, and $e^{\pm}\mu^{\mp}$ final states, Phys. Rev. D **77** (2008) 032007, arXiv:0712.1516.
- [281] Belle collaboration, M. C. Chang *et al.*, Search for $B^0 \rightarrow \ell^+ \ell^-$ at BELLE, Phys. Rev. D 68 (2003) 111101, arXiv:hep-ex/0309069.
- [282] BaBar collaboration, B. Aubert *et al.*, Search for the decays $B^0 \rightarrow e^+e^-\gamma$ and $B^0 \rightarrow \mu^+\mu^-\gamma$, Phys. Rev. D 77 (2008) 011104, arXiv:0706.2870.
- [283] BaBar collaboration, B. Aubert *et al.*, A search for the rare decay $B^0 \rightarrow \tau^+ \tau^-$ at BABAR, Phys. Rev. Lett. **96** (2006) 241802, arXiv:hep-ex/0511015.
- [284] BaBar collaboration, J. P. Lees *et al.*, Improved Limits on B^0 Decays to Invisible Final States and to $\nu \overline{\nu} \gamma$, Phys. Rev. D 86 (2012) 051105, arXiv:1206.2543.
- [285] Belle collaboration, Y. Ku *et al.*, Search for B^0 decays to invisible final states $(+\gamma)$ at Belle, Phys. Rev. D **102** (2020) 012003, arXiv:2004.03826.
- [286] LHCb collaboration, R. Aaij *et al.*, Search for the rare decay $B^+ \rightarrow \mu^+ \mu^- \mu^+ \nu_{\mu}$, Eur. Phys. J. C **79** (2019) 675, arXiv:1812.06004.
- [287] LHCb collaboration, R. Aaij et al., Test of lepton universality in beauty-quark decays, arXiv:2103.11769.
- [288] Belle collaboration, A. Abdesselam *et al.*, Test of Lepton-Flavor Universality in $B \to K^* \ell^+ \ell^-$ Decays at Belle, Phys. Rev. Lett. **126** (2021) 161801, arXiv:1904.02440.
- [289] LHCb collaboration, R. Aaij et al., Test of lepton universality with $B^0 \to K^{*0}\ell^+\ell^-$ decays, JHEP 08 (2017) 055, arXiv:1705.05802.

- [290] Belle collaboration, K. Nishimura *et al.*, First Measurement of Inclusive $B \to X_s \eta$ Decays, Phys. Rev. Lett. **105** (2010) 191803, arXiv:0910.4751.
- [291] CLEO collaboration, T. E. Browder *et al.*, Observation of high momentum η' production in B decay, Phys. Rev. Lett. **81** (1998) 1786, arXiv:hep-ex/9804018.
- [292] BaBar collaboration, B. Aubert *et al.*, Study of high momentum η' production in $B \to \eta' X_s$, Phys. Rev. Lett. **93** (2004) 061801, arXiv:hep-ex/0401006.
- [293] CLEO collaboration, G. Bonvicini *et al.*, Study of the charmless inclusive $B \rightarrow eta'X$ decay, Phys. Rev. D 68 (2003) 011101, arXiv:hep-ex/0303009.
- [294] BaBar collaboration, P. del Amo Sanchez et al., Measurement of partial branching fractions of inclusive charmless B meson decays to K⁺, K⁰, and π⁺, Phys. Rev. D 83 (2011) 031103, arXiv:1012.5031.
- [295] Belle collaboration, S. Watanuki et al., Measurements of isospin asymmetry and difference of direct CP asymmetries in inclusive B → X_sγ decays, Phys. Rev. D 99 (2019) 032012, arXiv:1807.04236.
- [296] BaBar collaboration, B. Aubert et al., Measurements of the B → X_sγ branching fraction and photon spectrum from a sum of exclusive final states, Phys. Rev. D 72 (2005) 052004, arXiv:hep-ex/0508004.
- [297] BaBar collaboration, J. P. Lees *et al.*, A search for the decay modes $B^{+-} \rightarrow h^{+-}\tau^{+-}l$, Phys. Rev. D 86 (2012) 012004, arXiv:1204.2852.
- [298] LHCb collaboration, R. Aaij *et al.*, Search for Lepton-Flavor Violating Decays $B^+ \to K^+ \mu^{\pm} e^{\mp}$, Phys. Rev. Lett. **123** (2019) 241802, arXiv:1909.01010.
- [299] LHCb collaboration, R. Aaij *et al.*, Search for the lepton flavour violating decay $B^+ \to K^+ \mu^- \tau^+$ using B_{s2}^{*0} decays, JHEP **06** (2020) 129, arXiv:2003.04352.
- [300] BaBar collaboration, J. P. Lees *et al.*, Search for lepton-number violating processes in $B^+ \rightarrow h^- l^+ l^+$ decays, Phys. Rev. D 85 (2012) 071103, arXiv:1202.3650.
- [301] LHCb collaboration, R. Aaij et al., Search for Majorana neutrinos in $B^- \to \pi^+ \mu^- \mu^-$ decays, Phys. Rev. Lett. **112** (2014) 131802, arXiv:1401.5361.
- [302] BaBar collaboration, J. P. Lees *et al.*, Search for lepton-number violating $B^+ \to X^- \ell^+ \ell'^+$ decays, Phys. Rev. D 89 (2014) 011102, arXiv:1310.8238.
- [303] LHCb collaboration, R. Aaij *et al.*, Search for the lepton number violating decays $B^+ \rightarrow \pi^- \mu^+ \mu^+$ and $B^+ \rightarrow K^- \mu^+ \mu^+$, Phys. Rev. Lett. **108** (2012) 101601, arXiv:1110.0730.
- [304] BELLE collaboration, O. Seon *et al.*, Search for Lepton-number-violating $B^+ \rightarrow D^- l^+ l'^+$ Decays, Phys. Rev. D 84 (2011) 071106, arXiv:1107.0642.
- [305] LHCb collaboration, R. Aaij et al., Searches for Majorana neutrinos in B⁻ decays, Phys. Rev. D 85 (2012) 112004, arXiv:1201.5600.
- [306] BaBar collaboration, B. Aubert *et al.*, Searches for the decays $B^0 \to \ell^{\pm} \tau^{\mp}$ and $B^+ \to \ell^+ \nu$ (*l=e*, μ) using hadronic tag reconstruction, Phys. Rev. D **77** (2008) 091104, arXiv:0801.0697.

- [307] LHCb collaboration, R. Aaij et al., Observation of Photon Polarization in the $b \rightarrow s\gamma$ Transition, Phys. Rev. Lett. **112** (2014) 161801, arXiv:1402.6852.
- [308] LHCb collaboration, R. Aaij et al., Angular analysis of charged and neutral $B \to K\mu^+\mu^$ decays, JHEP 05 (2014) 082, arXiv:1403.8045.
- [309] LHCb collaboration, R. Aaij et al., Strong constraints on the $b \to s\gamma$ photon polarisation from $B^0 \to K^{*0}e^+e^-$ decays, JHEP 12 (2020) 081, arXiv:2010.06011.
- [310] LHCb collaboration, R. Aaij et al., Measurement of the $B^0 \to K^{*0}e^+e^-$ branching fraction at low dilepton mass, JHEP 05 (2013) 159, arXiv:1304.3035.
- [311] Belle collaboration, A. Abdesselam *et al.*, Angular analysis of $B^0 \to K^*(892)^0 \ell^+ \ell^-$, arXiv:1604.04042.
- [312] Belle collaboration, S. Wehle *et al.*, Lepton-Flavor-Dependent Angular Analysis of $B \to K^* \ell^+ \ell^-$, Phys. Rev. Lett. **118** (2017) 111801, arXiv:1612.05014.
- [313] BABAR collaboration, J. P. Lees et al., Measurement of angular asymmetries in the decays $B \to K^* \ell^+ \ell^-$, Phys. Rev. **D93** (2016) 052015, arXiv:1508.07960.
- [314] LHCb collaboration, R. Aaij et al., Angular analysis of the $B^0 \to K^{*0}\mu^+\mu^-$ decay using 3 fb⁻¹ of integrated luminosity, JHEP **02** (2016) 104, arXiv:1512.04442.
- [315] LHCb collaboration, R. Aaij *et al.*, Measurement of CP-averaged observables in the $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decay, Phys. Rev. Lett. **125** (2020) 011802, arXiv:2003.04831.
- [316] CMS collaboration, V. Khachatryan *et al.*, Angular analysis of the decay $B^0 \to K^{*0}\mu^+\mu^-$ from pp collisions at $\sqrt{s} = 8$ TeV, Phys. Lett. **B753** (2016) 424, arXiv:1507.08126.
- [317] CMS collaboration, A. M. Sirunyan et al., Measurement of angular parameters from the decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV, arXiv:1710.02846.
- [318] ATLAS collaboration, M. Aaboud *et al.*, Angular analysis of $B_d^0 \to K^* \mu^+ \mu^-$ decays in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, JHEP **10** (2018) 047, arXiv:1805.04000.
- [319] LHCb collaboration, R. Aaij *et al.*, Angular Analysis of the $B^+ \rightarrow K^{*+}\mu^+\mu^-$ Decay, Phys. Rev. Lett. **126** (2021) 161802, arXiv:2012.13241.
- [320] CMS collaboration, A. M. Sirunyan *et al.*, Angular analysis of the decay $B^+ \to K^{*+}(892)\mu^+\mu^$ in proton-proton collisions at $\sqrt{s} = 8$ TeV, JHEP **04** (2021) 124, arXiv:2010.13968.
- [321] Belle collaboration, Y. Sato et al., Measurement of the lepton forward-backward asymmetry in B → X_sℓ⁺ℓ⁻ decays with a sum of exclusive modes, Phys. Rev. D93 (2016) 032008, arXiv:1402.7134, Addendum ibid. D93, 059901, (2016).
- [322] LHCb collaboration, R. Aaij et al., Differential branching fraction and angular moments analysis of the decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in the $K^*_{0,2}(1430)^0$ region, JHEP **12** (2016) 065, arXiv:1609.04736.
- [323] LHCb collaboration, R. Aaij et al., Measurement of the phase difference between short- and long-distance amplitudes in the B⁺ → K⁺μ⁺μ⁻ decay, Eur. Phys. J. C77 (2017) 161, arXiv:1612.06764.

- [324] CMS collaboration, A. M. Sirunyan *et al.*, Angular analysis of the decay $B^+ \rightarrow K^+ \mu^+ \mu^-$ in proton-proton collisions at $\sqrt{s} = 8$ TeV, Phys. Rev. **D98** (2018) 112011, arXiv:1806.00636.
- [325] LHCb collaboration, R. Aaij *et al.*, Search for hidden-sector bosons in $B^0 \to K^{*0} \mu^+ \mu^-$ decays, Phys. Rev. Lett. **115** (2015) 161802, arXiv:1508.04094.
- [326] LHCb collaboration, R. Aaij et al., Search for long-lived scalar particles in $B^+ \to K^+ \chi(\mu^+ \mu^-)$ decays, Phys. Rev. **D95** (2017) 071101, arXiv:1612.07818.
- [327] CLEO collaboration, S. Chen et al., Measurement of charge asymmetries in charmless hadronic in b meson decays, Phys. Rev. Lett. 85 (2000) 525, arXiv:hep-ex/0001009.
- [328] LHCb collaboration, R. Aaij et al., Measurement of CP Violation in the Decay $B^+ \to K^+ \pi^0$, Phys. Rev. Lett. **126** (2021) 091802, arXiv:2012.12789.
- [329] LHCb collaboration, R. Aaij et al., Measurements of CP violation in the three-body phase space of charmless B[±] decays, Phys. Rev. D 90 (2014) 112004, arXiv:1408.5373.
- [330] Belle collaboration, K.-F. Chen *et al.*, Measurement of polarization and triple-product correlations in $B \to \phi K^*$ decays, Phys. Rev. Lett. **94** (2005) 221804, arXiv:hep-ex/0503013.
- [331] LHCb collaboration, R. Aaij et al., Measurement of CP asymmetries in the decays $B^0 \to K^{*0}\mu^+\mu^-$ and $B^+ \to K^+\mu^+\mu^-$, JHEP **09** (2014) 177, arXiv:1408.0978.
- [332] LHCb collaboration, R. Aaij et al., Observation of CP violation in two-body B⁰_(s)-meson decays to charged pions and kaons, JHEP 03 (2021) 075, arXiv:2012.05319.
- [333] CDF collaboration, T. A. Aaltonen et al., Measurements of Direct CP-Violating Asymmetries in Charmless Decays of Bottom Baryons, Phys. Rev. Lett. 113 (2014) 242001, arXiv:1403.5586.
- [334] Belle collaboration, J. Dalseno *et al.*, *Time-dependent Dalitz Plot Measurement of CP* Parameters in $B^0 \to K_S^0 \pi^+ \pi^-$ Decays, Phys. Rev. D **79** (2009) 072004, arXiv:0811.3665.
- [335] LHCb collaboration, R. Aaij et al., Measurement of CP asymmetries in two-body $B^0_{(s)}$ -meson decays to charged pions and kaons, Phys. Rev. D **98** (2018) 032004, arXiv:1805.06759.
- [336] Belle collaboration, K. Abe et al., Observation of B decays to two kaons, Phys. Rev. Lett. 98 (2007) 181804, arXiv:hep-ex/0608049.
- [337] BABAR collaboration, J. P. Lees *et al.*, Measurement of CP-violating asymmetries in $B^0 \rightarrow (\rho \pi)^0$ decays using a time-dependent Dalitz plot analysis, Phys. Rev. **D88** (2013) 012003, arXiv:1304.3503.
- [338] Belle collaboration, A. Kusaka et al., Measurement of CP Asymmetry in a Time-Dependent Dalitz Analysis of $B0 \rightarrow (\rho\pi)0$ and a Constraint on the Quark Mixing Matrix Angle ϕ_2 , Phys. Rev. Lett. **98** (2007) 221602, arXiv:hep-ex/0701015.
- [339] BaBar collaboration, B. Aubert *et al.*, Measurements of CP-Violating Asymmetries in $B^0 \rightarrow a^{+}(1)$ (1260) π^{\mp} decays, Phys. Rev. Lett. **98** (2007) 181803, arXiv:hep-ex/0612050.
- [340] BaBar collaboration, J. P. Lees et al., Measurements of direct CP asymmetries in $B \to X_s \gamma$ decays using sum of exclusive decays, Phys. Rev. D **90** (2014) 092001, arXiv:1406.0534.

- [341] Belle collaboration, L. Pesántez et al., Measurement of the direct CP asymmetry in $\overline{B} \to X_{s+d}\gamma$ decays with a lepton tag, Phys. Rev. Lett. **114** (2015) 151601, arXiv:1501.01702.
- [342] LHCb collaboration, R. Aaij *et al.*, Search for CP violation in $\Lambda_b^0 \to pK^-$ and $\Lambda_b^0 \to p\pi^$ decays, Phys. Lett. B **787** (2018) 124, arXiv:1807.06544.
- [343] LHCb collaboration, R. Aaij et al., Measurement of matter-antimatter differences in beauty baryon decays, Nature Phys. 13 (2017) 391, arXiv:1609.05216.
- [344] LHCb collaboration, R. Aaij et al., Observation of the decay $\Lambda_b^0 \to pK^-\mu^+\mu^-$ and a search for CP violation, JHEP 06 (2017) 108, arXiv:1703.00256.
- [345] LHCb collaboration, R. Aaij et al., Search for CP violation using triple product asymmetries in $\Lambda_b^0 \to pK^-\pi^+\pi^-$, $\Lambda_b^0 \to pK^-K^+K^-$ and $\Xi_b^0 \to pK^-K^-\pi^+$ decays, arXiv:1805.03941.
- [346] LHCb collaboration, R. Aaij et al., Measurements of CP asymmetries in charmless four-body Λ_h^0 and Ξ_h^0 decays, Submitted to: Eur. Phys. J. (2019) arXiv:1903.06792.
- [347] LHCb collaboration, R. Aaij et al., Study of the $B^0 \rightarrow \rho(770)^0 K^*(892)^0$ decay with an amplitude analysis of $B^0 \rightarrow (\pi^+\pi^-)(K^+\pi^-)$ decays, JHEP **05** (2019) 026, arXiv:1812.07008.
- [348] LHCb collaboration, R. Aaij et al., Measurement of polarization amplitudes and CP asymmetries in $B^0 \rightarrow \phi K^*(892)^0$, JHEP **05** (2014) 069, arXiv:1403.2888.
- [349] LHCb collaboration, R. Aaij et al., Angular analysis of the $B^0 \rightarrow K^{*0}e^+e^-$ decay in the low-q² region, JHEP **04** (2015) 064, arXiv:1501.03038.
- [350] LHCb collaboration, R. Aaij et al., First measurement of the CP-violating phase $\phi_s^{d\overline{d}}$ in $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ decays, JHEP **03** (2018) 140, arXiv:1712.08683.
- [351] LHCb collaboration, R. Aaij et al., Measurement of CP violation in the $B_s^0 \rightarrow \phi \phi$ decay and search for the $B^0 \rightarrow \phi \phi$ decay, JHEP **12** (2019) 155, arXiv:1907.10003.