Compilation of B_s^0 Branching Fractions $(\times 10^{-6})$ - UL at 90% CL 14 New since PDG2014 (preliminary) New since PDG2014 (published) Heavy Flavor Averaging Group - October 2016 In PDG2014

	Our Avg.	0.671 ± 0.083	18.6 ± 1.6	5.5 ± 0.5	24.8 ± 1.7	$19.6^{+9.7}_{-9.3}$	19 ± 5	97 ± 16	< 4 ‡	12.7 ± 2.7	3.3 ± 1.2	10.8 ± 2.1	1.13 ± 0.30	$0.0280^{+0.0220}_{-0.0170}$	< 3.1	35.2 ± 3.4	$0.0029^{+0.0007}_{-0.0006}$	< 0.28	$< 0.011^{\dagger}$	< 0.012	$0.797^{+0.082}_{-0.080}$	33.1 ± 7.1	0.086 ± 0.018	16.4 ± 4.1	3.48 ± 0.46	1.12 ± 0.21	$0.61_{-0.15}^{+0.19}$	0.27 ± 0.07
	ATLAS																$< 0.003^{+1}$											
hourse d	CMS																$0.0030^{+0.0010}_{-0.0009}$											
TOPO T DOTTO M	LHCb	$0.691 \pm 0.083 \pm 0.044$ [‡]	$18.4 \pm 0.5 \pm 1.8^{*}$	$5.6 \pm 0.6 \pm 0.3 \ddagger$	$23.7 \pm 1.6 \pm 1.5$ ‡		$19\pm5\pm2$	$97 \pm 12 \pm 12 \ ^{\ddagger}$	$< 4^{+}$	$12.7 \pm 1.9 \pm 1.9$ †	$3.3 \pm 1.1 \pm 0.5$ †	$10.8 \pm 1.4 \pm 1.5$ * [†]	$1.13\pm0.29\pm0.06^{ au}$	$0.0284 \pm 0.0203 \pm 0.0085 \pm 0.0188 \pm 0.0188 \pm 0.0018$))))))	$35.1 \pm 3.5 \pm 1.2$ ‡	$0.0029 \pm 0.0011 \pm 0.0003 \\ -0.0010 - 0.0001$		$< 0.011^{\dagger}$	< 0.012	$0.797^{\pm 0.045}_{-0.043} \pm 0.068^{\dagger}$	$33.1 \pm 7.0 \pm 1.2$ [‡]	$0.086 \pm 0.015 \pm 0.010^{-2}$	$16.4 \pm 3.4 \pm 2.3$ †	$3.48 \pm 0.29 \pm 0.35$ ^{4†}	$1.12 \pm 0.18 \pm 0.11^{\dagger}$	$0.61^{+0.18}_{-0.14} \pm 0.06^{\dagger}$	$0.27 \pm 0.07 \pm 0.02^{\dagger}$
y) +10	D0																$< 0.012 \ddagger$				$< 3.2^{+}$							
minima d' i ro	CDF	$0.60 \pm 0.17 \pm 0.04$ [‡]	$19.1 \pm 2.6 \pm 1.6 \ddagger$	$5.3 \pm 0.9 \pm 0.3 \ddagger$	$25.9 \pm 2.2 \pm 1.7 ~^{\ddagger}$												$0.013^{+0.009}_{-0.007}$	< 0.28	< 0.20									
	Belle	< 12		< 26	$38^{+10}_{-9} \pm 7$	$19.6^{+5.8}_{-5.1} \pm 1.0 \pm 2.0$ \diamond									< 3.1	$36 \pm 5 \pm 7$												
	PDG2014 Avg.	0.76 ± 0.19	19.1 ± 3.1	5.5 ± 0.6	24.9 ± 1.7	< 66	19 ± 5	97 ± 17	< 4	New	New	$28.1\pm4.6\pm5.6$	1.13 ± 0.3	$0.028^{+0.022}_{-0.017}$	< 8.7	36 ± 4	0.0031 ± 0.0007	< 0.28	< 0.011	< 0.012	0.76 ± 0.15							
1111	Mode	$\pi^+\pi^-$	$\phi\phi$	$\pi^+ K^-$	K^+K^-	$K^0\overline{K}^0$	$K^0 \pi^+ \pi^-$	$K^0K^{-\pi}$	$K^0 K^+ K^-$	$K^{*\pm}K^{\mp}$	$K^{*}-\pi^{+}$	$K^{*0}\overline{K}^{*0}$	$\phi \overline{K}^{*0}$	\overline{dd}	λλ	$\lambda \phi$	$\mu^+\mu^-$	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-\mu^+\mu^-$	$\phi \mu^+ \mu^-$	η' η'	$\pi^+\pi^-\mu^+\mu^-$	$K^0\overline{K}^{*0}$	$\phi \pi^+ \pi^-$	$\phi f_0(980), f_0(980) \to \pi^+ \pi^-$	$\phi f_2(1270), f_2(1270) \rightarrow \pi^+ \pi^-$	$\phi \rho^0(770)$
	RPP#	45	51	52	53	54	55	56	57	I	I	59	60	61	63	64	65	66	67	68	20	-						

 \ddagger The first error is experimental, the second is from reference BF.

[†] Relative BF converted to absolute BF. [¶] Sum of charge conjugate states.

* Last error takes into account $BF(B^0 \to \phi K^{*0})$ and $\frac{f_d}{f_s}$ $^{\diamond}$ Last error represents the uncertainty due to the total number of $B_s^0 \bar{B}_s^0$ pairs.

¹ Limit at 95% C.L ² Muon pairs do not originate from resonances and $0.5 < m(\pi^+\pi^-) < 1.3$ GeV/c. ³ The average is done between the combined LHCb and CMS result, $0.0028^{+0.0007}_{-0.0006}$ (Ref. [45]) and CDF.

 4 In the mass range 400 $< m(\pi^+\pi^-) < 1600~{\rm GeV}/c.$

Heavy Flavor Averaging Group - October 2016 Compilation of B_s^0 Relative Branching Fractions New since PDG2014 (preliminary) New since PDG2014 (published)

In PDG2014

RPP#	Mode	PDG2014 Avg.	CDF	LHCb	Our Avg.
45	$f_s \mathcal{B}(B^0_s \to \pi^+\pi^-)/f_d \mathcal{B}(B^0 \to K^+\pi^-)$		$0.008 \pm 0.002 \pm 0.001$	$(9.15 \pm 0.71 \pm 0.83) \times 10^{-3}$	0.008 ± 0.002
45	$f_s \mathcal{B}(B_s^0 \to \pi^+\pi^-)/f_d \mathcal{B}(B^0 \to \pi^+\pi^-)$			$0.050^{+0.011}_{-0.009} \pm 0.004$	$0.050^{+0.012}_{-0.010}$
51	$\mathcal{B}(B^0_s \to \phi \phi) / \mathcal{B}(B^0_s \to J/\psi \phi)$		$0.0178 \pm 0.0014 \pm 0.0020$		0.0180 ± 0.0020
	$\mathcal{B}(B_{s}^{0} \to \phi \phi) / \mathcal{B}(B^{0} \to \phi K^{*})$			$1.84 \pm 0.05 \pm 0.13$	1.84 ± 0.14
52	$f_s \mathcal{B}(B^0_s \to K^+\pi^-)/f_d \mathcal{B}(B^0_d \to K^+\pi^-)$		$0.071 \pm 0.010 \pm 0.007$	$0.074 \pm 0.006 \pm 0.006$	0.073 ± 0.007
53	$f_s \mathcal{B}(B^0_s \to K^+ K^-) / f_d \mathcal{B}(B^0_d \to K^+ \pi^-)$		$0.347 \pm 0.020 \pm 0.021$	$0.316 \pm 0.009 \pm 0.019$	0.327 ± 0.017
55	$f_s \mathcal{B}(B^0_s \to K^0 \pi^+ \pi^-) / f_d \mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$			$0.29 \pm 0.06 \pm 0.04$	0.29 ± 0.07
56	$f_s \mathcal{B}(B^0_s \to K^0 K^- \pi^+) / f_d \mathcal{B}(B^0 \to K^0 K^- \pi^+) \P$			$1.48 \pm 0.12 \pm 0.14$	1.48 ± 0.18
57	$f_s \mathcal{B}(B_s^0 \to K^0 K^+ K^-) / f_d \mathcal{B}(B^0 \to K^0 K^+ K^-)$			< 0.068	< 0.068
_	$\mathcal{B}(B^0_s \to K^{*-}K^+)/\mathcal{B}(B^0 \to K^{*+}\pi^-)$	New		$1.49 \pm 0.22 \pm 0.18$	1.49 ± 0.28
-	$\mathcal{B}(B^0_s \to K^{*-}\pi^+)/\mathcal{B}(B^0 \to K^{*+}\pi^-)$	New		$0.39 \pm 0.13 \pm 0.05$	0.39 ± 0.14
59	$\mathcal{B}(B^0_s \to K^{*0}\overline{K}^{*0})/\mathcal{B}(B^0 \to K^{*+}\pi^-)$	New		$1.11 \pm 0.22 \pm 0.13$	1.11 ± 0.26
60	$\mathcal{B}(B^0_s \to \phi \overline{K}^{*0}) / \mathcal{B}(B^0 \to \phi K^{*0})$			$0.113 \pm 0.024 \pm 0.016$	0.113 ± 0.029
64	$\mathcal{B}(B^0_s \to \phi \gamma) / \mathcal{B}(B^0 \to K^{*0} \gamma)$			$0.81 \pm 0.04 \pm 0.07$	0.81 ± 0.08
70	$\mathcal{B}(B^0_s \to \phi \mu^+ \mu^-) / \mathcal{B}(B^0_s \to J/\psi \phi) \times 10^4$	7.1 ± 1.3		$7.41^{+0.42}_{-0.40} \pm 0.29$	$7.41^{+0.51}_{-0.49}$
-	$\mathcal{B}(B^0_s \to K^0_S K^{*0}) / \mathcal{B}(B^0 \to K^0_S \pi^+ \pi^-)$			$0.33 \pm 0.07 \pm 0.04^{\dagger}$	0.33 ± 0.08

¶ Sum of charge conjugate states in the numerator.
† Sum of charge conjugate states in the numerator and denominator.

Charmless B_s^0 Decays: CDF References

- [1] CDF Collaboration (A. Aaltonen et al.), Phys. Rev. Lett. 87, 072003 (2013).
- [2] CDF Collaboration, (A. Aaltonen et al.), Phys. Rev. Lett. 103, 031801 (2009).
- [3] CDF Collaboration (A. Aaltonen *et al.*), Phys. Rev. Lett. **102**, 201801 (2009).
- [4]
- [5] CDF Collaboration, (A. Aaltonen et al.), Phys. Rev. Lett. 107, 261802 (2011).
- [6] CDF Collaboration, (A. Aaltonen et al.), Phys. Rev. Lett. 108, 211803 (2012).
- [7] CDF Collaboration, (T. Aaltonen *et al.*), Phys. Rev. Lett. **106**, 181802 (2011).
- [8]
- [9]

DØ References

- [10] DØ Collaboration (V. Abazov et al.), Phys. Rev. D 87, 072006 (2013).
- [11] DØ Collaboration (V. Abazov et al.), Phys. Rev. D 74, 031107 (2006).

Belle References

- [12] Belle Collaboration (D. Dutta *et al.*) Phys. Rev. D **91**, 011101 (2015).
- [13] Belle Collaboration (C.-C. Peng *et al.*) Phys. Rev. D 82, 072007 (2010).
- [14] Belle Collaboration (B. Pal et al.) Phys. Rev. Lett. 116, 161801 (2016).
- [15]
- [16]
- [17]
- [18]
- [19]

LHCb References

- [20] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 111, 101805 (2013).
- [21] LHCb Collaboration, (R. Aaij et al.), J. High Energ. Phys. 07, 166 (2015).
- [22] LHCb Collaboration, (R. Aaij et al.), J. High Energ. Phys. 1210, 037 (2012).
- [23] LHCb Collaboration, (R. Aaij et al.), Nucl. Phys. B 867, 1 (2013).
- [24] LHCb Collaboration, (R. Aaij et al.), J. High Energ. Phys. 1509, 179 (2015).
- [25] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 110, 211801 (2013).

- [26] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1310, 143 (2013).
- [27] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1311, 092 (2013).
- [28] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 111, 141801 (2013).
- [29] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1310, 005 (2013).
- [30] LHCb Collaboration (R. Aaij et al.), New J. Phys. 16 123001 (2014).
- [31] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 115, 051801 (2015).
- [32] LHCb Collaboration (R. Aaij *et al.*), Phys. Lett. B **743**, 46 (2015).
- [33] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1601, 012 (2016).
- [34] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1510, 053 (2015).
- [35] LHCb Collaboration (R. Aaij et al.), arXiv:1610.05187 [hep-ex] (2016).
- [36] LHCb Collaboration (R. Aaij et al.), arXiv:1610.08288 [hep-ex].
- [37] LHCb Collaboration (R. Aaij et al.), arXiv:1609.02032 [hep-ex].
- [38]

[39]

CMS/ATLAS References

- [40] CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 111, 101804 (2013).
- [41] ATLAS Collaboration (M. Aaboud et al.), arXiv:1604.04263 [hep-ex] (2016).
- [42]
- [43]
- [44]

Combination of results from several experiments

- [45] CMS and LHCb Collaborations (V. Khachatryan et al.), Nature 522, 68-72 (2015).
- [46]
- [47]