List of other measurements that are not included in the tables:

- $B^+ \to K^+ \pi^- \pi^+ \gamma$: LHCb has measured the up-down asymmetries in bins of the $K \pi \pi \gamma$ mass [1].
- In [2], LHCb has also measured the branching fraction of $B^+ \to K^+ e^- e^+$ in the $m^2(\ell \ell)$ bin [1,6] GeV²/c⁴.
- In the $B^+ \to \pi^+ \mu^+ \mu^-$ paper [3], LHCb has also measured the differential branching fraction in bins of $m^2(\ell\ell)$.
- For $B \to K\ell^-\ell^+$, LHCb has measured F_H and $A_{\rm FB}$ in 17 (5) bins of $m^2(\ell\ell)$ for the K^+ (K_S^0) final state [4]. Belle has measured F_L and $A_{\rm FB}$ in 6 $m^2(\ell\ell)$ bins [64].
- For the $B \to K^* \ell^- \ell^+$ analyses, partial branching fractions and angular observables in bins of $m^2(\ell \ell)$ are also available:
 - $-B^0 \rightarrow K^{*0}e^-e^+$: LHCb has measured F_L , $A_T^{(2)}$, A_T^{Im} , A_T^{Re} in the [0.002, 1.120] GeV²/c⁴ bin of $m^2(\ell\ell)$ [5], and has also determined the branching fraction in the dilepton mass region [10, 1000] MeV/c² [2].
 - $-B \rightarrow K^* \ell^- \ell^+$: Belle has measured F_L , $A_{\rm FB}$, isospin asymmetry in 6 $m^2(\ell\ell)$ bins [6] [41] and P'_4 , P'_5 , P'_6 , P'_8 in 4 $m^2(\ell\ell)$ bins [7]. In a more recent paper [8], they report measurements of P'_4 and P'_5 , separately for $\ell = \mu$ or e, in 4 $m^2(\ell\ell)$ bins and in the region [1,6] GeV²/c⁴ bin of $m^2(\ell\ell)$. The measurements use both B^0 and B^+ decays. They also measure the LFV observables $Q_i = P^{\mu}_i - P^e_i$, for i = 4, 5. BABAR has measured F_L , $A_{\rm FB}$, P_2 in 5 $m^2(\ell\ell)$ bins [9].
 - − $B^0 \rightarrow K^{*0} \mu^- \mu^+$: LHCb has measured F_L , $A_{\rm FB}$, $S_3 S_9$, $A_3 A_9$, $P_1 P_3$, $P'_4 P'_8$ in 8 $m^2(\ell\ell)$ bins [10]. CMS has measured F_L and $A_{\rm FB}$ in 7 $m^2(\ell\ell)$ bins [11].
- For $B \to X_s \ell^- \ell^+$ (X_s is a hadronic system with an *s* quark), Belle has measured $A_{\rm FB}$ in bins of $m^2(\ell\ell)$ with a sum of 10 exclusive final states [12].
- $B^0 \to K^+ \pi^- \mu^+ \mu^-$, with 1330 < $m(K^+ \pi^-)$ < 1530 GeV/ c^2 : LHCb has measured the partial branching fraction in bins of $m^2(\mu^- \mu^+)$ in the range [0.1, 8.0] GeV²/ c^4 , and has also determined angular moments [13].
- In [14], LHCb measures the phase difference between the short- and long-distance contributions to the $B^+ \to K^+ \mu^+ \mu^-$ decay. The measurement is based on the analysis of the dimuon mass distribution in the regions of the J/ψ and $\psi(2S)$ resonances and far from their poles, to probe long and short distance effects, respectively.
- In [15] LHCb performs a search for a hypothetical new scalar particle χ , assumed to have a narrow width, through the decay $B^+ \to \chi(\mu^+\mu^-)$ in the ranges of mass $250 < m(\chi) < 4700 \text{ MeV}/c^2$ and lifetime $0.1 < \tau(\chi) < 1000 \text{ ps}$. Upper limits are given as a function of $m(\chi)$ and $\tau(\chi)$.

References

- [1] R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 112, 161801, (2014), arXiv:1402.6852
 [hep-ex].
- [2] R. Aaij et al., (LHCb collaboration), JHEP 05, 159, (2013), arXiv:1304.3035 [hep-ex].

- [3] R. Aaij et al., (LHCb collaboration), JHEP 10, 034, (2015), arXiv:1509.00414 [hep-ex].
- [4] R. Aaij et al., (LHCb collaboration), JHEP 05, 082, (2014), arXiv:1403.8045 [hep-ex].
- [5] R. Aaij et al., (LHCb collaboration), JHEP 04, 064, (2015), arXiv:1501.03038 [hep-ex].
- [6] J. T. Wei *et al.*, (Belle collaboration), Phys. Rev. Lett. **103**, 171801, (2009), arXiv:0904.0770
 [hep-ex].
- [7] A. Abdesselam *et al.*, (Belle collaboration), arXiv:1604.04042 [hep-ex], (2016).
- [8] S. Wehle *et al.*, (Belle collaboration), Phys. Rev. Lett. **118**, no. 11, 111801, (2017), arXiv:1612.05014 [hep-ex].
- [9] J. P. Lees *et al.*, (BABAR collaboration), Phys. Rev. D93, 052015, (2016), arXiv:1508.07960 [hep-ex].
- [10] R. Aaij et al., (LHCb collaboration), JHEP 02, 104, (2016), arXiv:1512.04442 [hep-ex].
- [11] V. Khachatryan *et al.*, (CMS collaboration), Phys. Lett. **B753**, 424, (2016), arXiv:1507.08126
 [hep-ex].
- [12] Y. Sato *et al.*, (Belle collaboration), Phys. Rev. D93, 032008, (2016), arXiv:1402.7134
 [hep-ex], Addendum ibid. D93, 059901, (2016).
- [13] R. Aaij et al., (LHCb collaboration), JHEP 12, 065, (2016), arXiv:1609.04736 [hep-ex].
- [14] R. Aaij et al., (LHCb collaboration), Eur. Phys. J. C77, no. 3, 161, (2017), arXiv:1612.06764 [hep-ex].
- [15] R. Aaij et al., (LHCb collaboration), Phys. Rev. D95, no. 7, 071101, (2017), arXiv:1612.07818 [hep-ex].