Heavy FLavor AV eraging group (HFLAV) - August 2017 Compilation of B^0_s Branching Fractions $(\times 10^{-6})$ - UL at 90% CL

			ZUI4 INEW SI	ince	PUGZU14 (pre	eliminary)	New Since PDG201	4 (publ	ished)		
RPP#	Mode	PDG2014 Avg.	Belle		CDF	D0	LHCb		CMS	ATLAS	Our Avg.
45	$\pi^+\pi^-$	0.76 ± 0.19	< 12	[]	$0.60 \pm 0.17 \pm 0.04$ [‡] [2]		$0.691 \pm 0.083 \pm 0.044$ [‡]	6			0.671 ± 0.083
51	$\phi\phi$	19.1 ± 3.1			$19.1 \pm 2.6 \pm 1.6$ [†] [4]		$18.4 \pm 0.5 \pm 1.8$ $^{\$}$	5			18.6 ± 1.6
52	$\pi^+ K^-$	5.5 ± 0.6	< 26	Ξ	$5.3 \pm 0.9 \pm 0.3^{\dagger}$ [6]		$5.6 \pm 0.6 \pm 0.3$ †	[2]			5.5 ± 0.5
53	K^+K^-	24.9 ± 1.7	$38^{+10}_{-9} \pm 7$	Ξ	$25.9 \pm 2.2 \pm 1.7$ [†] [8]		$23.7\pm1.6\pm1.5$ †	[7]			24.8 ± 1.7
54	$K^0 \overline{K}^0$	< 66	$19.6^{+5.8}_{-5.1} \pm 1.0 \pm 2.0^{\pm}$	[6]							$19.6_{-5.6}^{+6.2}$
55	$K^0\pi^+\pi^-$	19 ± 5					$9.5 \pm 1.3 \pm 1.5 \pm 0.4$ $^{\$}$	[10]			9.5 ± 2.0
56	$K^0K^{-\pi^+}$	97 ± 17					$84.3 \pm 3.5 \pm 7.4 \pm 3.4$ [§]	[10]			84.3 ± 8.9
57	$K^0K^+K^-$	< 4					< 2.5	[10]			< 2.5
	$K^{*\pm}K^{\mp}$						$12.7\pm1.9\pm1.9$	[11]			12.7 ± 2.7
	$K^{*-\pi^+}$						$3.3 \pm 1.1 \pm 0.5$	[11]			3.3 ± 1.2
59	$K^{*0}\overline{K}^{*0}$	$28.1\pm4.6\pm5.6$					$10.8 \pm 1.4 \pm 1.5$ $^{\$}$	[12]			10.8 ± 2.1
09	$\phi \overline{K}^{*0}$	1.13 ± 0.3					$1.13 \pm 0.29 \pm 0.06$ [†]	[13]			1.13 ± 0.30
61	\overline{dd}	$0.028_{-0.017}^{+0.022}$					< 0.015	[14]			< 0.015
63	LL	< 8.7	< 3.1	15]							< 3.1
64	λφ	36 ± 4	$36 \pm 5 \pm 7$	15			$35.1 \pm 3.5 \pm 1.2$ †	[16]			35.2 ± 3.4
65	$\mu^+\mu^-$	0.0031 ± 0.0007		,	$0.013^{+0.009}_{-0.007}$ [17] < 0.012[18]	$0.0030 \pm 0.0006^{+0.0003}_{-0.0002}$	[19] 0.0	$0030^{+0.0010}_{-0.0009}[20]$	$< 0.003^{-1}[21]$	0.0031 ± 0.0007
99	e^+e^-	< 0.28			< 0.28 [22	-					< 0.28
99	$\tau^+ \tau^-$	< 0.28					< 5200	[23]			< 5200
67	$e^{\pm}\mu^{\mp}$	< 0.011			< 0.20 [22		< 0.011	[24]			< 0.011
68	$\mu^+\mu^-\mu^+\mu^-$	< 0.012					< 0.0025 ¹	[25]			$< 0.0025^{-1}$
20	$\phi\mu^+\mu^-$	0.76 ± 0.15				< 3.2 [26]	$0.797^{+0.045}_{-0.043} \pm 0.068$	[27]			$0.797^{+0.082}_{-0.080}$
	$\eta'\eta'$						$33.1\pm7.0\pm1.2$ [†]	[28]			33.1 ± 7.1
	$\pi^+\pi^-\mu^+\mu^-$						$0.086 \pm 0.015 \pm 0.010^{-2}$	5			0.086 ± 0.018
	$K^0\overline{K}^{*0}$						$16.4 \pm 3.4 \pm 2.3$	[29]			16.4 ± 4.1
	$\phi \pi^+ \pi^-$						$3.48 \pm 0.29 \pm 0.35$ ³	[30]			3.48 ± 0.46
	$\phi f_0(980), f_0(980) \to \pi^+ \pi^-$						$1.12 \pm 0.18 \pm 0.11$	[30]			1.12 ± 0.21
	$\phi f_2(1270), f_2(1270) \to \pi^+ \pi$	1					$0.61^{+0.18}_{-0.14} \pm 0.06$	[30]			$0.61_{-0.15}^{+0.19}$
	$\phi \rho^0(770)$						$0.27 \pm 0.07 \pm 0.02$	[30]			0.27 ± 0.07
	$p\overline{\lambda}K^{-} + \overline{p}\lambda K^{+}$						$5.46 \pm 0.61 \pm 0.57 \pm 0.50 \pm 0.32$	$^{4}[31]$			5.46 ± 1.02
	$p\overline{p}K^+K^-$						$4.2 \pm 0.3 \pm 0.2 \pm 0.3 \pm 0.2^{-4}$	[32]			4.2 ± 0.5
	$p\overline{p}K^{+}\pi^{-}$						$1.30 \pm 0.21 \pm 0.11 \pm 0.09 \pm 0.08$	$^{4}[32]$			1.30 ± 0.27
	$p\overline{p}\pi^{+}\pi^{-}$						< 0.66	[32]			< 0.66
	$\mu'\phi$						< 0.82	[33]			< 0.82

Results for CDF, D0, LHCb, CMS and ATLAS are relative BFs converted to absolute BFs.

 † The first error is experimental, and the second is from the reference BF.

[‡] Last error represents the uncertainty due to the total number of $B_s^0 \bar{B}_s^0$ pairs. [§] Last error takes into account error the reference BF and f_d/f_s . [¶] Includes two distinct decay processes: $\mathcal{B}(B_s^0 \to f) + \mathcal{B}(B_s^0 \to \bar{f})$. ¹ UL at 95% CL.

² Muon pairs do not originate from resonances and 0.5 < $m(\pi^+\pi^-) < 1.3$ GeV/ c^2 . ³ In the mass range 400 < $m(\pi^+\pi^-) < 1600$ GeV/ c^2 . ⁴ The third error is due to the reference BF and the fourth to f_d/f_s .

Heavy FLavor AV eraging group (HFLAV) - August 2017 Compilation of B_s^0 Relative Branching Fractions

In PDG2014 New since PDG2014 (preliminary) New since PDG2014 (published)

RPP#	Mode	PDG2014 Avg.	CDF	LHCb	Our Avg.
45	$f_s \mathcal{B}(B_s^0 \to \pi^+\pi^-)/f_d \mathcal{B}(B^0 \to K^+\pi^-)$		$0.008 \pm 0.002 \pm 0.001$ [2]	$0.00915 \pm 0.00071 \pm 0.00083$ [3]	0.00880 ± 0.00090
45	$f_s \mathcal{B}(B_s^0 \to \pi^+\pi^-)/f_d \mathcal{B}(B^0 \to \pi^+\pi^-)$			$0.050^{+0.011}_{-0.009} \pm 0.004 $ [7]	$0.050^{+0.012}_{-0.010}$
51	$\mathcal{B}(B^0_s \to \phi \phi) / \mathcal{B}(B^0_s \to J/\psi \phi)$		$0.0178 \pm 0.0014 \pm 0.0020[4]$		0.0180 ± 0.0020
	$\mathcal{B}(B^0_s \to \phi \phi) / \mathcal{B}(B^0 \to \phi K^*)$			$1.84 \pm 0.05 \pm 0.13$ [5]	1.84 ± 0.14
52	$f_s \mathcal{B}(B_s^0 \to K^+\pi^-)/f_d \mathcal{B}(B_d^0 \to K^+\pi^-)$		$0.071 \pm 0.010 \pm 0.007$ [6]	$0.074 \pm 0.006 \pm 0.006$ [7]	0.073 ± 0.007
53	$f_s \mathcal{B}(B_s^0 \to K^+ K^-) / f_d \mathcal{B}(B_d^0 \to K^+ \pi^-)$		$0.347 \pm 0.020 \pm 0.021$ [8]	$0.316 \pm 0.009 \pm 0.019$ [7]	0.327 ± 0.017
55	$\mathcal{B}(B^0_s \to K^0 \pi^+ \pi^-) / \mathcal{B}(B^0 \to K^0 \pi^+ \pi^-)$			$0.191 \pm 0.027 \pm 0.031 \pm 0.011[10]$	0.191 ± 0.043
56	$\mathcal{B}(B^0_s \to K^0 K^- \pi^+) / \mathcal{B}(B^0 \to K^0 K^- \pi^+)^{\dagger}$			$1.70 \pm 0.07 \pm 0.11 \pm 0.10$ [10]	1.70 ± 0.16
57	$\mathcal{B}(B_s^0 \to K^0 K^+ K^-) / \mathcal{B}(B^0 \to K^0 K^+ K^-)$			< 0.051 [10]	< 0.051
	$\mathcal{B}(B^0_s \to K^{*-}K^+)/\mathcal{B}(B^0 \to K^{*+}\pi^-)$			$1.49 \pm 0.22 \pm 0.18$ [11]	1.49 ± 0.28
	$\mathcal{B}(B^0_s \to K^{*-}\pi^+)/\mathcal{B}(B^0 \to K^{*+}\pi^-)$			$0.39 \pm 0.13 \pm 0.05$ [11]	0.39 ± 0.14
59	$\mathcal{B}(B_s^0 \to K^{*0}\overline{K}^{*0})/\mathcal{B}(B^0 \to K^{*+}\pi^-)$			$1.11 \pm 0.22 \pm 0.13$ [12]	1.11 ± 0.26
60	$\mathcal{B}(B^0_s \to \phi \overline{K}^{*0}) / \mathcal{B}(B^0 \to \phi K^{*0})$			$0.113 \pm 0.024 \pm 0.016$ [13]	0.113 ± 0.029
64	$\mathcal{B}(B^0_s \to \phi \gamma) / \mathcal{B}(B^0 \to K^{*0} \gamma)$			$0.81 \pm 0.04 \pm 0.07$ [16]	0.81 ± 0.08
70	$\mathcal{B}(B^0_s \to \phi \mu^+ \mu^-) / \mathcal{B}(B^0_s \to J/\psi \phi) \times 10^4$	7.1 ± 1.3		$7.41_{-0.40}^{+0.42} \pm 0.29 $ [27]	$7.41^{+0.51}_{-0.49}$
	$\mathcal{B}(B^0_s \to K^0_S K^{*0}) / \mathcal{B}(B^0 \to K^0_S \pi^+ \pi^-)^{\dagger}$			$0.33 \pm 0.07 \pm 0.04$ [29]	0.33 ± 0.08
	$\mathcal{B}(B^0_s \to p\overline{\overline{p}}K^+\pi^-)/\mathcal{B}(B^0 \to \overline{p}\overline{p}K^+\pi^-)$			$0.22 \pm 0.04 \pm 0.02 \pm 0.01$ [32]	0.22 ± 0.05
	$\mathcal{B}(B^0_s \to p\overline{p}K^+\pi^-)/\mathcal{B}(B^0_s \to p\overline{p}K^+K^-)$			$0.31 \pm 0.05 \pm 0.02$ [32]	0.31 ± 0.05

[†] Numerator includes two distinct decay processes: $\mathcal{B}(B^0_s \to f) + \mathcal{B}(B^0_s \to \bar{f})$.

References

- [1] C. C. Peng et al., (Belle collaboration), Phys. Rev. D82, 072007, (2010), arXiv:1006.5115 [hep-ex].
- [2] T. Aaltonen *et al.*, (CDF collaboration), Phys. Rev. Lett. **108**, 211803, (2012), arXiv:1111.0485 [hep-ex].
- [3] R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 118, 081801, (2017), arXiv:1610.08288 [hep-ex].
- [4] T. Aaltonen *et al.*, (CDF collaboration), Phys. Rev. Lett. **107**, 261802, (2011), arXiv:1107.4999 [hep-ex].
- [5] R. Aaij et al., (LHCb collaboration), Phys. Lett. B743, 46, (2015), arXiv:1412.6433 [hep-ex].
- [6] T. Aaltonen *et al.*, (CDF collaboration), Phys. Rev. Lett. **103**, 031801, (2009), arXiv:0812.4271 [hep-ex].
- [7] R. Aaij et al., (LHCb collaboration), JHEP 10, 037, (2012), arXiv:1206.2794 [hep-ex].
- [8] T. Aaltonen *et al.*, (CDF collaboration), Phys. Rev. Lett. **106**, 181802, (2011), arXiv:1103.5762 [hep-ex].
- [9] B. Pal et al., (Belle collaboration), Phys. Rev. Lett. 116, 161801, (2016), arXiv:1512.02145 [hep-ex].
- [10] R. Aaij et al., (LHCb collaboration), arXiv:1707.01665 [hep-ex], (2017).
- [11] R. Aaij et al., (LHCb collaboration), New J. Phys. 16, 123001, (2014), arXiv:1407.7704 [hep-ex].
- [12] R. Aaij et al., (LHCb collaboration), JHEP 07, 166, (2015), arXiv:1503.05362 [hep-ex].
- [13] R. Aaij et al., (LHCb collaboration), JHEP 11, 092, (2013), arXiv:1306.2239 [hep-ex].
- [14] Slides from a conference talk given by E. Rodriguez on behalf of the LHCb collaboration at EPS-HEP, July, 2017.

- [15] D. Dutta et al., (Belle collaboration), Phys. Rev. D91, 011101, (2015), arXiv:1411.7771 [hep-ex].
- [16] R. Aaij et al., (LHCb collaboration), Nucl. Phys. B867, 1, (2013), arXiv:1209.0313 [hep-ex].
- [17] T. Aaltonen *et al.*, (CDF collaboration), Phys. Rev. D87, 072003, (2013), arXiv:1301.7048 [hep-ex].
- [18] V. M. Abazov et al., (D0 collaboration), Phys. Rev. D87, 072006, (2013), arXiv:1301.4507 [hep-ex].
- [19] R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 118, no. 19, 191801, (2017), arXiv:1703.05747 [hep-ex].
- [20] S. Chatrchyan *et al.*, (CMS collaboration), Phys. Rev. Lett. **111**, 101804, (2013), arXiv:1307.5025 [hep-ex].
- [21] M. Aaboud *et al.*, (ATLAS collaboration), Eur. Phys. J. C76, 513, (2016), arXiv:1604.04263 [hep-ex].
- [22] T. Aaltonen *et al.*, (CDF collaboration), Phys. Rev. Lett. **102**, 201801, (2009), arXiv:0901.3803 [hep-ex].
- [23] R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 118, no. 25, 251802, (2017), arXiv:1703.02508 [hep-ex].
- [24] R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 111, 141801, (2013), arXiv:1307.4889 [hep-ex].
- [25] R. Aaij et al., (LHCb collaboration), JHEP 03, 001, (2017), arXiv:1611.07704 [hep-ex].
- [26] V. M. Abazov *et al.*, (D0 collaboration), Phys. Rev. D74, 031107, (2006), arXiv:hep-ex/0604015 [hep-ex].
- [27] R. Aaij et al., (LHCb collaboration), JHEP 09, 179, (2015), arXiv:1506.08777 [hep-ex].
- [28] R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 115, 051801, (2015), arXiv:1503.07483 [hep-ex].
- [29] R. Aaij et al., (LHCb collaboration), JHEP 01, 012, (2016), arXiv:1506.08634 [hep-ex].
- [30] R. Aaij et al., (LHCb collaboration), Phys. Rev. D95, 012006, (2017), arXiv:1610.05187 [hep-ex].
- [31] R. Aaij et al., (LHCb collaboration), Phys. Rev. Lett. 119, no. 4, 041802, (2017), arXiv:1704.07908 [hep-ex].
- [32] R. Aaij *et al.*, (LHCb collaboration), arXiv:1704.08497 [hep-ex], (2017).
- [33] R. Aaij et al., (LHCb collaboration), JHEP 05, 158, (2017), arXiv:1612.08110 [hep-ex].