Compilation of B^+ Semi-leptonic and Radiative Branching Fractions All branching fractions are in units of 10^{-6}

In F	PDG2014	New since	e PDG2014	(preliminar	ry) Nev	v since PDC	G2014 (publishe	ed)
BPD#	Mode	PDC2014 Avg	BABAB	Bollo	CLEO	CDF	LHCb	Now Avg
363		42.1 ± 1.8	$42.2 \pm 1.4 \pm 1.6$	$425 \pm 31 \pm 24$	$37.6^{+8.9} \pm 2.8$	0.01	Lifeb	42.1 + 1.8
264	$K^{+}(1270)$	42.1 ± 1.0 42 ± 12	$42.2 \pm 1.4 \pm 1.0$	$42.0 \pm 0.1 \pm 2.4$ $42 \pm 0 \pm 0$	57.0 _{-8.3} ± 2.0			42.1 ± 1.0
304	$K_{1}^{+}(1270)^{-\gamma}$	43 ± 13	44.0 - 4.0 - 5.9	$43 \pm 9 \pm 9$ $43 \pm 1.5 \pm 0.0$				43.7 - 6.2
303	$K + \eta \gamma$ $K^{+} \pi \prime \tau$	7.9 ± 0.9	$1.7 \pm 1.0 \pm 0.4$ $1.0^{\pm 1.5} \pm 0.1$	$8.4^{-1.2} \pm 0.9$				7.9 ± 0.9 $2.0^{\pm 1.0}$
300	$K + \eta \gamma$ $K^{+} + \gamma$	2.9 - 0.9	$1.9^{+}_{-1.2} \pm 0.1$	$3.0 \pm 1.2 \pm 0.4$				$2.9^{+}_{-0.9}$
368	$K^+ \varphi \gamma$ $K^+ \pi^- \pi^+ \gamma$	2.7 ± 0.4 27.6 ± 2.2	$3.5 \pm 0.0 \pm 0.4$ 27 2 + 1 0 ^{+1.1} †	$2.48 \pm 0.30 \pm 0.24$ $25.0 \pm 1.8 \pm 2.2 \pm$				2.71 ± 0.34 26.7 + 1.4
369	$K^{*0}\pi^{+} \sim 8$	21.0 ± 2.2 20^{+7}	$26.0^{\pm 1.0} \pm 1.8^{\pm 1.0}$	$20.0 \pm 1.0 \pm 2.2 \pm 20^{+7} \pm 2$				$25.5^{+2.2}$
370	$K^+ a^0 \propto 8$	$\frac{20}{-6}$	$20.0_{-1.3} \pm 1.0$	$20 - 6 \pm 2$				20.0 - 2.1 0 2 + 1 5
	$(K\pi)^{*0}\pi^+\gamma$	New	$11.3 \pm 1.5^{\pm 2.0}$ +	20				$11.3^{+2.5}$
371	$K^{+}\pi^{-}\pi^{+}\gamma(NB)$	< 9.2	$10.8^{\pm 1.0}_{-2.6}$	< 9.2				$10.8^{+2.4}$
011	$K^{*}(1420)\pi^{+}$	Now	-1.5 - 2.5	< <i>5.2</i>				-2.9
372	$K_0^{0} \pi^+ \pi^0 \gamma$	46 ± 5	$0.82 \pm 0.11 - 0.21$					0.02 - 0.24 45.6 ± 5.2
373	$K^{+}_{+}(1400)\gamma$	40 ± 5 < 15	$9.7^{+4.6+3.2}$ +	< 15				$9.7^{+5.6}$
_	$K^{*+}(1410)\gamma$	New	$^{-2.9-1.9}_{23.8}$					$^{-3.5}_{23.8}$
374	$K_{2}^{*}(1430)^{+}\gamma$	14 ± 4	$10.4^{+8.7+6.3}$ †					$10.4^{+10.7}$
375	$K^{*+}(1680)\gamma$	< 1900	72^{+7+16} +					72^{+17}
376	$K_{*}^{*}(1780)^{+}\gamma$	< 39	-6-14	< 39				< 39
378	$\rho^+\gamma$	0.98 ± 0.25	$1.20^{+0.42}_{-0.27} \pm 0.20$	$0.87^{+0.29+0.09}_{-0.27-0.11}$	< 13			$0.98^{+0.25}_{-0.24}$
428	$p\overline{\Lambda}\gamma$	$2.4^{+0.5}$	-0.37	$2.45^{+0.44}_{-0.22} \pm 0.22$				$2.45^{+0.24}_{-0.49}$
432	$n \overline{\Sigma^0} \gamma$	-0.4 < 4.6		-0.38				-0.44 < 4.6
467	$\pi^{+}\ell^{+}\ell^{-}$	< 0.049	< 0.066	< 0.049				< 0.049
468	$\pi^{+}e^{+}e^{-}$	< 0.080	< 0.125	< 0.080				< 0.080
469	$\pi^{+}\mu^{+}\mu^{-}$	< 0.055	< 0.055	< 0.069			$0.023 \pm 0.006 \pm 0.001 \ \P^{-1}$	0.023 ± 0.006
470	$\pi^+ \nu \nu$ $\kappa^+ \ell^+ \ell^-$	< 98 0.451 \pm 0.022	< 100 0.48 \pm 0.00 \pm 0.02	< 98 0.52 ^{+0.06} \pm 0.02			4	< 98 0.51 \pm 0.05
471	$K^+ e^+ e^-$	0.451 ± 0.023	$0.43 \pm 0.09 \pm 0.02$ $0.51^{\pm 0.12} \pm 0.02$	$0.53_{-0.05} \pm 0.03$ 0.57 $^{+0.09} \pm 0.03$	< 2.4			0.51 ± 0.03
472	K e e	0.33 ± 0.07	$0.31_{-0.11} \pm 0.02$ 0.41 $^{+0.16} \pm 0.02$	$0.57 - 0.08 \pm 0.03$	< 2.4	0.45 0.02 0.02	0.420 0.007 0.021	0.33 ± 0.07
473	$K + \mu + \mu$ $V^{\pm} \cdot \cdot \overline{\cdot}$	0.449 ± 0.023	$0.41^{+}_{-0.15} \pm 0.02$	$0.53 \pm 0.08 - 0.03$	< 3.68	$0.45 \pm 0.03 \pm 0.02$	$0.429 \pm 0.007 \pm 0.021$	0.439 ± 0.018
470	$a^+\nu\overline{\nu}$	< 213	< 10	< 213	< 240			< 213
478	$K^{*+}\ell^+\ell^-$	1.29 ± 0.21	$1.40^{+0.40}_{-0.97} \pm 0.09$	$1.24^{+0.23}_{-0.21} \pm 0.13$				$1.29^{+0.22}$
479	$K^{*+}e^{+}e^{-}$	$1.55^{+0.40}$	$1.38^{+0.47}_{-0.47} \pm 0.08$	$1.73^{+0.50}_{-0.40} \pm 0.20$				$1.55^{+0.35}_{-0.21}$
480	$K^{*+}\mu^{+}\mu^{-}$	$^{-0.31}$ 1.12 ± 0.15	$1.46^{+0.42}_{-0.79} \pm 0.12$	$1.11^{+0.32}_{-0.42} \pm 0.10$		$0.89 \pm 0.25 \pm 0.09$	$0.924 \pm 0.093 \pm 0.067$	$0.949^{+0.099}$
481	$K^{*+}\nu\overline{\nu}$	< 40	< 64	$^{-0.27}$ - 0.27				< 40
-	$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	New					$0.436^{+0.029}_{-0.027} \pm 0.028$ ¶ ²	$0.436^{+0.040}_{-0.039}$
-	$K^{+}\phi\mu^{+}\mu^{-}$	New					0.082 + 0.019 + 0.029 = 0.017 - 0.027	$0.082 \substack{+0.035 \\ -0.032}$
484	$\pi^+ e^{\pm} \mu^{\mp}$	< 0.17	< 0.17				-0.011-0.021	< 0.17
485	$\pi^{+}e^{+}\tau^{-}$	< 74	< 74					< 74
486	$\pi^+ e^- \tau^+$ + + \mp	< 20	< 20					< 20
487	$\pi^+ e^- \tau^+$ $\pi^+ \mu^+ \tau^-$	< 62	< 62					< 75
489	$\pi^{+}\mu^{-}\tau^{+}$	< 45	< 45					< 45
490	$\pi^+\mu^\pm \tau^\mp$	< 72	< 72					< 72
491	$K^{+}e^{+}\mu^{-}$	< 0.091	< 0.091					< 0.091
492	$K^+e^-\mu^+$ $K^+e^{\pm}\mu^{\mp}$	< 0.13	< 0.13					< 0.13
494	$K^+e^+\tau^-$	< 43	< 43					< 43
495	$K^+e^-\tau^+$	< 15	< 15					< 15
496	$K^+ e^{\pm} \tau^{\mp}$	< 30	< 30					< 30
497	$K^{+}\mu^{+}\tau^{-}$	< 45	< 45					< 45
498	$K^+ \mu^- \tau^+$ $K^+ \mu^\pm \tau^\mp$	< 28	< 28					< 28
500	$K^{*+}e^{+}\mu^{-}$	< 1.3	< 1.3					< 1.3
501	$K^{*+}e^{-}\mu^{+}$	< 0.99	< 0.99					< 0.99
502	$K^{*+}e^{\pm}\mu^{\mp}_{+}$	< 1.4	< 1.4					< 1.4
503	$\pi e^{+}e^{+}$ $\pi^{-}++$	< 0.023	< 0.023		< 1.6		< 0.004 3	< 0.023
504	$\pi^{-}e^{+}\mu^{+}\mu^{+}$	< 0.15	< 0.15		< 1.4		< 0.004	< 0.15
506	$\rho^-e^+e^+$	< 0.17	< 0.17		< 2.6			< 0.17
507	$\rho^-\mu^+\mu^+$	< 0.42	< 0.42		< 5.0			< 0.42
508	$\rho^{-}e^{+}\mu^{+}$	< 0.47	< 0.47		< 3.3			< 0.47
510	$K e^+e^+$ $K^-\mu^+\mu^+$	< 0.03	< 0.03		< 1.0		< 0.041	< 0.03
511	$K^{-}e^{+}u^{+}$	< 0.16	< 0.16		< 2.0		< 0.041	< 0.16
512	$K^{*-}e^{+}e^{+}e^{+}$	< 0.40	< 0.40		< 2.8			< 0.40
513	$K^{*-}\mu^{+}\mu^{+}$	< 0.59	< 0.59		< 8.3			< 0.59
514	$K^{*-}e^{\pm}\mu^{\pm}$	< 0.30	< 0.30		< 4.4			< 0.30

 $\begin{array}{c} 1 \\ \uparrow M_{K\pi\pi} < 1.8 \text{ GeV}/c^2; \pm 1.0 < M_{K\pi\pi} < 2.0 \text{ GeV}/c^2; \\ \$ M_{K\pi\pi} < 2.4 \text{ GeV}/c^2. \\ \P \text{ Relative BF converted to absolute BF.} \\ 1 \\ \text{PDG2014 cites only the measurement: } \mathcal{B}(\pi^+\mu^+\mu^-)/\mathcal{B}(K^+\mu^+\mu^-) = 0.053 \pm 0.014 \pm 0.01. \\ 2 \\ \text{ Differential BF in bins of } m(\mu\mu) \text{ is also available.} \end{array}$

³ At 95% C.L. ⁴ PDG considers here the BF measured in $B^+ \to K^+ \mu^+ \mu^-$.

Compilation of B^0 Semi-leptonic and Radiative Branching Fractions All branching fractions are in units of 10^{-6}

In PDG2014 New since PDG2014 (preliminary) New since PDG2014 (published)

RPP#	Mode	PDG2014 Avg.	BABAR	Belle	CLEO	CDF	LHCb	New Avg.
336	$K^0 \eta \gamma$	7.6 ± 1.8	$7.1^{+2.1}_{-2.0} \pm 0.4$	$8.7^{+3.1+1.9}_{-2.7-1.6}$				$7.6^{+1.8}_{-1.7}$
337	$K^0 \eta' \gamma$	< 6.4	< 6.6	< 6.4				< 6.4
338	$K^0 \phi \gamma$	2.7 ± 0.7	< 2.7	$2.74 \pm 0.60 \pm 0.32$				2.74 ± 0.68
339	$K^+\pi^-\gamma$ §	4.6 ± 1.4		$4.6^{+1.3+0.5}_{-1.2-0.7}$				4.6 ± 1.4
340	$K^{*0}\gamma$	43.3 ± 1.5	$44.7 \pm 1.0 \pm 1.6$	$40.1 \pm 2.1 \pm 1.7$	$45.5^{+7.2}_{-6.8} \pm 3.4$			43.3 ± 1.5
341	$K^{*}(1410)^{0}\gamma$	< 130		< 130				< 130
342	$K^+\pi^-\gamma$ (N.R.) §	< 2.6		< 2.6				< 2.6
344	$K^0 \pi^+ \pi^- \gamma$	19.5 ± 2.2	$18.5 \pm 2.1 \pm 1.2 ~\dagger$	$24 \pm 4 \pm 3 \ddagger$				19.5 ± 2.2
345	$K^+\pi^-\pi^0\gamma$	41 ± 4	$40.7 \pm 2.2 \pm 3.1 ~\dagger$					40.7 ± 3.8
346	$K_{1}^{0}(1270)\gamma$	< 58		< 58				< 58
347	$K_{1}^{0}(1400)\gamma$	< 12		< 12				< 12
348	$K_{2}^{*}(1430)^{0}\gamma$	12.4 ± 2.4	$12.2 \pm 2.5 \pm 1.0$	$13\pm5\pm1$				12.4 ± 2.4
350	$K_{3}^{*}(1780)^{0}\gamma$	< 83		< 83				< 83
352	$\rho^0 \gamma$	0.86 ± 0.15	$0.97^{+0.24}_{-0.22} \pm 0.06$	$0.78^{+0.17+0.09}_{-0.16-0.10}$	< 17			$0.86^{+0.15}_{-0.14}$
354	$\omega\gamma$	$0.44^{\pm 0.18}$	$0.50^{+0.27} \pm 0.09$	$0.40^{+0.19} \pm 0.13$	< 9.2			$0.44^{+0.18}$
355	$d\gamma$	< 0.16 < 0.85	-0.23 ± 0.000 < 0.85	-0.17 ± 0.10	< 3.3			< 0.85
_	$n\overline{\Lambda}\pi^{+}\gamma$	New		< 0.65				< 0.65
465	$\pi^{0}\ell^{+}\ell^{-}$	< 0.053	< 0.053	< 0.154				< 0.053
466	$\pi^{0}e^{+}e^{-}$	< 0.084	< 0.084	< 0.227				< 0.084
467	$\pi^{0}\mu^{+}\mu^{-}$	< 0.069	< 0.069	< 0.184				< 0.069
468	$n\ell^+\ell^-$	< 0.064	< 0.064					< 0.064
469	$\eta_e^+e^-$	< 0.108	< 0.108					< 0.108
470	$\eta \mu^+ \mu^-$	< 0.112	< 0.112					< 0.112
471	$\pi^0 \nu \overline{\nu}$	< 69		< 69				< 69
472	$K^0\ell^+\ell^-$	$0.31^{+0.08}_{-0.07}$	$0.21^{+0.15}_{-0.12} \pm 0.02$	$0.34^{+0.09}_{-0.08} \pm 0.02$				$0.31^{+0.08}_{-0.07}$
473	$K^{0}e^{+}e^{-}$	$0.16^{+0.10}_{-0.08}$	$0.08^{+0.13}_{-0.12} \pm 0.01$	$0.20^{+0.14}_{-0.10} \pm 0.01$	< 8.45			$0.16^{+0.10}_{-0.08}$
474	$K^{0}\mu^{+}\mu^{-}$	0.34 ± 0.05	$0.49^{+0.29}_{-0.25} \pm 0.03$	$0.44^{+0.13}_{-0.10} \pm 0.03$	< 6.64	$0.33 \pm 0.08 \pm 0.03$	$0.327 \pm 0.034 \pm 0.017$	0.341 + 0.033
475	$K^0 \nu \overline{\nu}$	< 49	-0.25 < 49	< 194				< 49
476	$\rho^0 \nu \overline{\nu}$	< 208		< 208				< 208
477	$K^{*0}\ell^{+}\ell^{-}$	$0.99^{+0.12}$	$1.03^{+0.22}_{-0.21} \pm 0.07$	$0.97^{+0.13}_{-0.11} \pm 0.07$				$0.99^{+0.13}$
478	$K^{*0}e^{+}e^{-}$	$1.03^{+0.11}_{-0.17}$	$0.86^{+0.21}_{-0.24} \pm 0.05$	$1.18^{+0.27}_{-0.22} \pm 0.09$				$1.03^{+0.11}_{-0.17}$
479	$K^{*0}\mu^{+}\mu^{-}$	1.05 ± 0.10	$1.35^{+0.44}_{-0.37} \pm 0.10$	$1.06^{+0.12}_{-0.14} \pm 0.07$		$1.14 \pm 0.09 \pm 0.06$		$1.13^{+0.10}_{-0.09}$
480	$K^{*0}\nu\overline{\nu}$	< 55	< 120	< 55				< 55
481	$\phi \nu \overline{\nu}$	< 127		< 127				< 127
483	$\pi^0 e^{\pm} \mu^{\mp}$	< 0.14	< 0.14					< 0.14
484	$K^0 e^{\pm} \mu^{\mp}$	< 0.27	< 0.27					< 0.27
485	$K^{*0}e^{\pm}\mu^{\mp}$	< 0.53	< 0.53					< 0.53

 $\dagger M_{K\pi\pi} < 1.8 \text{ GeV}/c^2$; $\ddagger 1.0 < M_{K\pi\pi} < 2.0 \text{ GeV}/c^2$; $\S 1.25 \text{ GeV}/c^2 < M_{K\pi} < 1.6 \text{ GeV}/c^2$

Compilation of B Semi-leptonic and Radiative Branching Fractions All branching fractions are in units of 10^{-6}

In PDG2014 New since PDG2014 (preliminary) New since PDG2014 (published)

RPP#	Mode	PDG2014 Avg.	BABAR	Belle	CLEO	CDF	New Avg.
66	$K\eta\gamma$	$8.5^{+1.8}_{-1.6}$		$8.5^{+1.3}_{-1.2} \pm 0.9$			$8.5^{+1.6}_{-1.5}$
68	$K_{2}^{*}(1430)\gamma$	17^{+6}_{-5}			$17\pm 6\pm 1$		17 ± 6
70	$K_3^*(1780)\gamma$	< 37		< 2.8 §			< 2.8 §
77	$s\gamma$	360 ± 23	$300\pm14\pm20$	$345\pm15\pm40$	$321 \pm 43^{+32}_{-29}$		$343 \pm 21 \pm 7$
78	$d\gamma$	9.2 ± 3.0	$9.2\pm2.0\pm2.3$				9.2 ± 3.0
84	$ ho\gamma$	1.39 ± 0.25	$1.73^{+0.34}_{-0.32} \pm 0.17$	$1.21^{+0.24}_{-0.22} \pm 0.12$	< 14		$1.39^{+0.22}_{-0.21}$
85	$ ho/\omega\gamma$	1.30 ± 0.23	$1.63^{+0.30}_{-0.28} \pm 0.16$	$1.14 \pm 0.20^{+0.10}_{-0.12}$	< 14		$1.30^{+0.18}_{-0.19}$
119	se^+e^- ‡	4.7 ± 1.3	$7.69^{+0.82+0.71}_{-0.77-0.60}$	$4.56 \pm 1.15^{+0.33}_{-0.40}$	< 57		6.44 ± 0.76
120	$s\mu^+\mu^-$ ‡	4.3 ± 1.2	$4.41^{+1.31+0.63}_{-1.17-0.50}$	$1.91 \pm 1.02^{+0.16}_{-0.18}$	< 58		2.90 ± 0.80
121	$s\ell^+\ell^-$ ‡	4.5 ± 1.0	$6.73\substack{+0.70+0.60\\-0.64-0.56}$	$3.33 \pm 0.80^{+0.19}_{-0.24}$	< 42		4.97 ± 0.59
122	$\pi \ell^+ \ell^-$	< 0.059	< 0.059	< 0.062			< 0.059
123	πe^+e^-	< 0.110	< 0.110				< 0.110
124	$\pi\mu^+\mu^-$	< 0.050	< 0.050				< 0.050
125	Ke^+e^-	0.44 ± 0.06	$0.39^{+0.09}_{-0.08} \pm 0.02$	$0.48^{+0.08}_{-0.07} \pm 0.03$			0.44 ± 0.06
126	$K^*e^+e^-$	1.19 ± 0.20	$0.99^{+0.23}_{-0.21} \pm 0.06$	$1.39^{+0.23}_{-0.20} \pm 0.12$			$1.19^{+0.17}_{-0.16}$
127	$K\mu^+\mu^-$	0.44 ± 0.04	$0.41^{+0.13}_{-0.12} \pm 0.02$	$0.50 \pm 0.06 \pm 0.03$		$4.2\pm0.4\pm0.2$	0.55 ± 0.06
128	$K^*\mu^+\mu^-$	1.06 ± 0.09	$1.35^{+0.35}_{-0.33} \pm 0.10$	$1.10^{+0.16}_{-0.14} \pm 0.08$		$10.1\pm1.0\pm0.5$	1.33 ± 0.16
129	$K\ell^+\ell^-$	0.48 ± 0.04	$0.47 \pm 0.06 \pm 0.02$	$0.48^{+0.05}_{-0.04} \pm 0.03$	< 1.7		0.48 ± 0.04
130	$K^*\ell^+\ell^-$	1.05 ± 0.10	$1.02^{+0.14}_{-0.13} \pm 0.05$	$1.07^{+0.11}_{-0.10} \pm 0.09$	< 3.3		1.05 ± 0.10
131	$K\nu\overline{\nu}$	< 17	< 17				< 17
132	$K^* \nu \overline{\nu}$	< 76	< 76				< 76
134	$\pi e^{\pm} \mu^{\mp}$	< 0.092	< 0.092		< 1.6		< 0.092
135	$ ho e^{\pm} \mu^{\mp}$	< 3.2			< 3.2		< 3.2
136	$Ke^{\pm}\mu^{\mp}$	< 0.038	< 0.038		< 1.6		< 0.038
137	$K^* e^{\pm} \mu^{\mp}$	< 0.51	< 0.51		< 6.2		< 0.51
	$s\gamma$ with baryons	_			< 38 ~†		$< 38 \dagger$

 $\dagger E_{\gamma} > 2.0 \text{ GeV}.$

Compilation of B^+ and B^0 Leptonic Branching Fractions All branching fractions are in units of 10^{-6}

In PDG	2014	New since PD)G2014	(prelimi	nary)	New since	PDG2014	(published
RPP#	Mode	PDG2014 Avg.	BABAR	Belle	CDF	LHCb	CMS	New Avg.
29	$e^+\nu$	< 0.98	< 1.9	< 0.98 †				$< 0.98 \dagger$
30	$\mu^+ u$	< 1.0	< 1.0	< 1.7 ~†				< 1.0
31	$\tau^+ \nu$	114 ± 27	179 ± 48 ‡	$96 \pm 26 \ddagger$				114 ± 22
32	$\ell^+ \nu_\ell \gamma$	< 15.6	< 15.6					< 15.6
33	$e^+\nu_e\gamma$	< 17	< 17					< 17
34	$\mu^+ u_\mu\gamma$	< 24	< 24					< 24
457	$\gamma\gamma$	< 0.32	< 0.32	< 0.62				< 0.32
458	e^+e^-	< 0.083	< 0.113	< 0.19	< 0.083			< 0.083
459	$e^+e^-\gamma$	< 0.12	< 0.12					< 0.12
460	$\mu^+\mu^-$	< 0.00063	< 0.052	< 0.16	< 0.0038	< 0.00063	< 0.00092	< 0.00063
460	$\mu^+\mu^-$	CMS-LHCb comb.				$0.00039^{+0.00016}_{-0.00014}$ §	$0.00039^{+0.00016}_{-0.00014}$	§
461	$\mu^+\mu^-\gamma$	< 0.16	< 0.16					< 0.16
462	$\mu^+\mu^-\mu^+\mu^-$	< 0.0053				< 0.0053		< 0.0053
464	$\tau^+\tau^-$	< 4100	< 4100					< 4100
482	$e^{\pm}\mu^{\mp}$	< 0.0028	< 0.092	< 0.17	< 0.064	< 0.0028		< 0.0028
488	$e^{\pm}\tau^{\mp}$	< 28	< 28					< 28
489	$\mu^{\pm} \tau^{\mp}$	< 22	< 22					< 22
490	$ u ar{ u}$	< 24	< 24	< 130				< 24
491	$ uar u\gamma$	< 17	< 17					< 17

† More recent results exist, with hadronic tagging (Ref. [39]). It does not improve the limits (< 3.4 and < 2.7 for $e^+\nu$ and $\mu^+\nu$, respectively).

[‡] The authors average their results with the earlier PRD 81 051101 (BABAR) and PRD 82, 071101 (Belle).

§ Relative BF converted to absolute BF.

Compilation of B^+ Relative Semi-leptonic and Radiative Branching Fractions (UL 90% CL)

In	PDG2	014 New since PDG2014 (preli	minary) N	lew s	since	PDG2014 ((published	ł)
	RPP#	Mode	PDG2012 Avg.	CDF	DØ	LHCb	New avg.	
	-	$10^4 \times \mathcal{B}(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-) / \mathcal{B}(B^+ \to \psi(2S)K^+)$	New			$6.95^{+0.46}_{-0.43} \pm 0.34$	$6.95^{+0.57}_{-0.55}$	
	-	$10^4 \times \mathcal{B}(B^+ \to K^+ \phi \mu^+ \mu^-) / \mathcal{B}(B^+ \to \psi(2S)K^+)$	New			$1.58_{-0.32-0.07}^{+0.36+0.19}$	$1.58^{+0.41}_{-0.33}$	

Compilation of $B \to \bar{b} \to \bar{q}$ gluon Branching Fractions All branching fractions are in units of 10^{-6}

In	PDG20)14	New since PD	G2014 (prelimit	nary) No	ew since PDG2014	4 (published
	RPP#	Mode	PDG2014 Avg.	BABAR	Belle	CLEO	New Avg.
	80	ηX	260^{+50}_{-80}		$261 \pm 30^{+44}_{-74}$	§ < 440	261^{+53}_{-79}
	81	$\eta' X$	420 ± 90	$390\pm80\pm90~\dagger$		$460 \pm 110 \pm 60 \dagger$	423 ± 86
	82	K^+X	< 187	$< 187 \ddagger$			< 187 ‡
	83	K^0X	195^{+71}_{-67}	$195^{+51}_{-45} \pm 50 \ddagger$			195^{+71}_{-67}
	94	$\pi^+ X$	370 ± 80	$372^{+50}_{-47} \pm 59$ ¶			372_{-75}^{+77}
	§ 0.4	$4 < m_X$	$< 2.6 \mathrm{GeV}/c;$	$\dagger 2.0 < p^*(\eta') < 2.7$	7 GeV/c.		
	$\ddagger m_{\lambda}$	x < 1.69)GeV/ c ;	$m_X < 1.71 \text{GeV}/c$	·		

Heavy Flavor Averaging Group August 2014 Isospin Asymmetry

In PDG2014 New since PDG2014 (preliminary) New since PDG2014 (published)

Parameter	PDG2014 Avg.	BABAR	Belle	LHCb	New Avg.
$\Delta_{0^{-}}(X_s\gamma)$	-0.01 ± 0.06	-0.01 ± 0.06 §			-0.01 ± 0.06
$\Delta_{0^+}(K^*\gamma)$	0.052 ± 0.026	$0.066 \pm 0.021 \pm 0.022$	$0.012 \pm 0.044 \pm 0.026$		0.012 ± 0.051
$\Delta_{\rho\gamma}$	-0.46 ± 0.17	$-0.43^{+0.25}_{-0.22} \pm 0.10$	$-0.48^{+0.21+0.08}_{-0.19-0.09}$		$-0.48^{+0.23}_{-0.21}$
$\Delta_{0-}(K\ell\ell)$ †	-0.37 ± 0.13	$-0.58^{+0.29}_{-0.37}\pm0.02$	$-0.31^{+0.17}_{-0.14}\pm0.08$	$-0.35^{+0.23}_{-0.27}$	-0.32 ± 0.14
$\Delta_{0-}(K^*\ell\ell) \dagger$	-0.22 ± 0.10	$-0.25^{+0.20}_{-0.17}\pm0.03$	$-0.29 \pm 0.16 \pm 0.09$	-0.15 ± 0.16	-0.21 ± 0.12
$\Delta_{0-}(K^{(*)}\ell\ell) \dagger$	-0.45 ± 0.17	$-0.64^{+0.15}_{-0.14}\pm0.03$	$-0.30^{+0.12}_{-0.11}\pm0.08$		-0.30 ± 0.14

† See the references for precise $q^2 = m_{\ell\ell}^2$ region. In all measurements $m_{\ell\ell} < m_{J/\psi}$ § Average of two independent measurements from BABAR.

Isospin Asymmetry (A_I) for $K^{(*)}\ell^+\ell^-$ modes in bins of $q^2 = m_{\ell\ell}^2$

New since PDG2014 (preliminary) New since PDG2014 (published) In PDG2014

Mode	$q^2 \; [({\rm GeV}/c^2)^2] \dagger$	PDG2014 Avg.	BABAR	Belle	CDF ‡	LHCb ‡	New Avg.
$K\ell^+\ell^-$	< 2.0		$-0.51^{+0.49}_{-0.95}$	$-0.33^{+0.34}_{-0.26}$	$0.19 \pm 0.34 \pm 0.05$	$-0.55^{+0.40}_{-0.56}$	$-0.24^{+0.18}_{-0.19}$
	[2.0, 4.3]		$-0.73^{+0.48}_{-0.55}$	$-0.47^{+0.50}_{-0.39}$	$-0.07 \pm 0.34 \pm 0.07$	$-0.76^{+0.45}_{-0.79}$	$-0.42^{+0.20}_{-0.22}$
	[4.3, 8.68]		$-0.32^{+0.27}_{-0.30}$	$-0.19^{+0.26}_{-0.22}$	$-0.20 \pm 0.26 \pm 0.08$	$0.00^{+0.14}_{-0.15}$	-0.11 ± 0.11
	[10.09, 12.86]		$-0.05^{+0.25}_{-0.29}$	$-0.29^{+0.37}_{-0.29}$	$-0.27 \pm 0.37 \pm 0.08$	$-0.15_{-0.22}^{+0.19}$	$-0.16^{+0.14}_{-0.15}$
	[14.18, 16.00]		$0.05_{-0.43}^{+0.32}$	$-0.40^{+0.61}_{-0.69}$	$0.04 \pm 0.23 \pm 0.05$	-0.40 ± 0.22	$-0.17_{-0.15}^{+0.14}$
	> 16.00		$-0.93_{-4.99}^{+0.83}$	$0.11^{+0.25}_{-0.22}$	$-0.29 \pm 0.28 \pm 0.06$	$-0.52^{+0.18}_{-0.22}$	$-0.28^{+0.12}_{-0.13}$
	[1.00, 6.00]		$-0.41^{+0.25}_{-0.01}$	$-0.41_{-0.21}^{+0.26}$	$-0.06 \pm 0.24 \pm 0.07$	$-0.35_{-0.27}^{+0.23}$	-0.30 ± 0.12
$K\ell^+\ell^-$ §	0.1 - 2.0					$-0.37^{+0.18}_{-0.21}\pm0.02$	$-0.37^{+0.18}_{-0.21}$
	2.0 - 4.0					$-0.15^{+0.13}_{-0.15} \pm 0.02$	$-0.15^{+0.13}_{-0.15}$
	4.0 - 6.0					$-0.10^{+0.13}_{-0.16}\pm0.02$	$-0.10^{+0.13}_{-0.16}$
	6.0 - 8.0					$0.09^{+0.10}_{-0.11} \pm 0.02$	$0.09^{+0.10}_{-0.11}$
	11.0 - 12.5					$-0.16^{+0.15}_{-0.18} \pm 0.03$	$-0.16^{+0.15}_{-0.18}$
	15.0 - 17.0					$-0.04^{+0.11}_{-0.13} \pm 0.02$	$-0.04^{+0.11}_{-0.13}$
	17.0 - 22.0					$-0.12^{+0.10}_{-0.11} \pm 0.02$	$-0.12^{+0.10}_{-0.11}$
	1.1 - 6.0					$-0.10^{+0.08}_{-0.09} \pm 0.02$	$-0.10\substack{+0.08\\-0.09}$
	15.0 - 22.0		10.00	10.10		$-0.09^{+0.08}_{-0.08} \pm 0.02$	-0.09 ± 0.08
$K^*\ell^+\ell^-$	< 2.0		$-0.17^{+0.29}_{-0.24}$	$-0.67^{+0.19}_{-0.17}$	$0.15 \pm 0.32 \pm 0.06$	$0.05^{+0.27}_{-0.21}$	$-0.25^{+0.12}_{-0.11}$
	[2.0, 4.3]		$-0.06^{+0.56}_{-0.36}$	$1.45^{+1.04}_{-1.15}$	$0.00 \pm 0.39 \pm 0.07$	$-0.27^{+0.29}_{-0.18}$	$-0.12^{+0.23}_{-0.17}$
	[4.3, 8.68]		$0.03^{+0.43}_{-0.32}$	$-0.34^{+0.32}_{-0.30}$	$0.29 \pm 0.41 \pm 0.13$	$-0.06^{+0.19}_{-0.14}$	$-0.06^{+0.14}_{-0.11}$
	[10.09, 12.86]		$-0.48^{+0.23}_{-0.19}$	$0.00^{+0.22}_{-0.23}$	$0.43 \pm 0.35 \pm 0.10$	$-0.16^{+0.17}_{-0.16}$	-0.14 ± 0.11
	[14.18, 16.00]		$0.24^{+0.01}_{-0.39}$	$0.16^{+0.31}_{-0.36}$	$0.17 \pm 0.29 \pm 0.07$	$0.02^{+0.23}_{-0.21}$	$0.11^{+0.15}_{-0.14}$
	> 16.00		$1.07^{+4.28}_{-1.01}$	$-0.02^{+0.22}_{-0.23}$	$-0.23 \pm 0.23 \pm 0.06$	$0.02^{+0.21}_{-0.20}$	-0.05 ± 0.13
	[1.00, 6.00]		$-0.20^{+0.30}_{-0.23}$	$0.33^{+0.38}_{-0.44}$	$-0.26 \pm 0.21 \pm 0.07$	-0.15 ± 0.16	$-0.16^{+0.12}_{-0.11}$
$K^*\ell^+\ell^-$ §	0.1 - 2.0					$0.11^{+0.12}_{-0.11} \pm 0.02$	$0.11^{+0.12}_{-0.11}$
	2.0 - 4.0					$-0.20^{+0.16}_{-0.12} \pm 0.03$	$-0.20^{+0.10}_{-0.12}$
	4.0 - 6.0					$0.23^{+0.21}_{-0.18} \pm 0.02$	$0.23^{+0.21}_{-0.18}$
	6.0 - 8.0					$0.19^{+0.11}_{-0.15} \pm 0.02$	$0.19^{+0.11}_{-0.15}$
	11.0 - 12.5					$-0.25^{+0.00}_{-0.08} \pm 0.03$	$-0.25^{+0.10}_{-0.09}$
	15.0 - 17.0					$-0.10^{+0.09}_{-0.09} \pm 0.03$	-0.10 ± 0.10
	17.0 - 19.0					$0.51_{-0.24} \pm 0.02$	$0.51_{-0.24}$
	1.1 - 6.0					$0.00^{+0.12}_{-0.10} \pm 0.02$	$0.00^{+0.12}_{-0.10}$
	15.0 - 19.0					$0.06_{-0.09}^{+0.10} \pm 0.02$	$0.06_{-0.09}^{+0.10}$

† See the papers for the exact $q^2 = M^2(\mu^+\mu^-)$ selection. ‡ Muon mode only $(\ell = \mu)$. § Results in two different sets of q^2 bins are available.

Heavy Flavor Averaging Group August 2014 Forward-backward Asymmetry (A_{FB})

New since PDG2014 (preliminary) New since PDG2014 (published) In PDG2014

New Avg.	$-0.00^{+0.06}_{-0.05}$	$0.09^{+0.08}_{-0.06}$	$-0.02^{+0.04}_{-0.05}$	-0.05 ± 0.06	$-0.03^{+0.06}_{-0.04}$	$-0.09^{+0.07}_{-0.09}$	0.02 ± 0.11	$0.03^{+0.09}_{-0.07}$	$0.03 \pm 0.03 \\ -0.03$	0.04 ± 0.11	$-0.29^{\pm 0.41}_{-0.18}$	-0.15 ± 0.07	0.15 ± 0.04	$0.29^{+0.05}_{-0.04}$	0.48 ± 0.04	0.36 ± 0.04	-0.11 ± 0.05
ATLAS ‡												$0.22 \pm 0.28 \pm 0.14$	$0.24 \pm 0.13 \pm 0.01$	$0.09 \pm 0.09 \pm 0.03$	$0.48 \pm 0.19 \pm 0.05$	$0.16 \pm 0.10 \pm 0.03$	$0.07 \pm 0.20 \pm 0.07$
CMS ‡											$-0.29^{+0.37}_{-0.00} \pm 0.18$	$-0.07 \pm 0.20 \pm 0.02$	$-0.01 \pm 0.11 \pm 0.03$	$0.40 \pm 0.08 \pm 0.05$	$0.29 \pm 0.09 \pm 0.05$	$0.41 \pm 0.05 \pm 0.03$	$-0.07 \pm 0.12 \pm 0.01$
LHCb ‡	$0.00^{+0.06+0.03}_{-0.05-0.01}$	$_{0.07\pm0.08\pm0.02}^{+0.08\pm0.02}$	$-0.02^{+0.03}_{-0.05}\pm0.03$	$-0.03 \pm 0.07 \pm 0.01$	$-0.01^{+0.12}_{-0.06} \pm 0.01$	$-0.09^{+0.07+0.02}_{-0.09-0.01}$	$0.02 \pm 0.11 \pm 0.01$		$0.02 \substack{+0.05 \pm 0.02 \\ -0.03 -0.01}$	$-0.02 \pm 0.12 \pm 0.01$		$-0.20 \pm 0.08 \pm 0.01$	$0.16^{+0.06}_{-0.05} \pm 0.01$	$0.28^{+0.07}_{-0.06} \pm 0.02$	$0.51^{+0.07}_{-0.05} \pm 0.02$	$0.30 \pm 0.08^{+0.01}_{-0.02}$	$-0.17 \pm 0.06 \pm 0.01$
CDF ‡	$-0.19^{+0.37}_{-0.45} \pm 0.09$	$0.32^{+0.17}_{-0.13} \pm 0.10$	$0.08^{+0.08}_{-0.09} \pm 0.01$	$-0.04^{+0.12}_{-0.10} \pm 0.03$	$-0.07^{+0.08}_{-0.08} \pm 0.01$			$0.05^{+0.18}_{-0.10} \pm 0.05$	$0.13^{+0.11}_{-0.10} \pm 0.02$	$0.05^{+0.28}_{-0.27} \pm 0.10$		$-0.11^{+0.34}_{-0.41} \pm 0.16$	$0.09^{+0.14}_{-0.14} \pm 0.04$	$0.44 \frac{+0.12}{-0.13} \pm 0.08$	$0.53^{+0.09}_{-0.09} \pm 0.07$	$0.35^{+0.17}_{-0.19} \pm 0.06$	$0.19^{\pm 0.17}_{-0.21} \pm 0.05$
Belle	$0.06^{+0.32}_{-0.35} \pm 0.02$	$-0.43^{+0.38}_{-0.40} \pm 0.09$	$-0.20^{+0.12}_{-0.14} \pm 0.03$	$-0.21^{+0.17}_{-0.15} \pm 0.06$	$0.04^{+0.13}_{-0.16} \pm 0.05$			$0.02^{+0.11}_{-0.08} \pm 0.02$	$-0.04^{+0.13}_{-0.16} \pm 0.05$	$0.47^{+0.26}_{-0.32} \pm 0.03$		$0.11^{+0.31}_{-0.36} \pm 0.07$	$0.45^{+0.15}_{-0.21} \pm 0.15$	$0.43^{+0.18}_{-0.20}\pm 0.03$	$0.70^{+0.16}_{-0.22} \pm 0.10$	$0.66^{+0.11}_{-0.16} \pm 0.04$	$0.26^{+0.27}_{-0.30} \pm 0.07$
PDG2014 Avg.	$0.00^{+0.06}_{-0.05}$	$0.09^{+0.10}_{-0.07}$	-0.04 ± 0.04	-0.05 ± 0.06	$-0.02^{+0.07}_{-0.05}$	$-0.09^{+0.07}_{-0.09}$	0.02 ± 0.11	$0.04^{+0.09}_{-0.07}$	$0.034 \pm 0.029 - 0.029$	-0.01 ± 0.14	$0.45 \substack{+0.26 \\ -0.30}$	-0.15 ± 0.07	$0.13 \substack{+0.05 \\ -0.06}$	0.34 ± 0.05	0.47 ± 0.07 -0.06	0.40 ± 0.06	-0.12 ± 0.07
$q^2 \left[(\text{GeV}/c^2)^2 \right] \dagger$	< 2.0	[2.0, 4.3]	[4.3, 8.68]	[10.09, 12.86]	[14.18, 16.00]	[16.0, 18.0]	[18.0, 22.0]	> 16.00	[1.00, 6.00]	< 2.0	[1.0, 2.0]	[2.0, 4.3]	[4.3, 8.68]	[10.09, 12.86]	[14.18, 16.00]	[16.0, 19.0]	[1.00, 6.00]
Mode	$K\ell^+\ell^-$									$K^*\ell^+\ell^-$							

 \dagger see the original paper for the exact q^2 selection. \ddagger muon mode only $(\ell = \mu)$.

	New Avg.	$0.33^{+0.08}_{-0.07}$	$0.60^{\pm 0.19}_{-0.34}$	0.66 ± 0.07	0.59 ± 0.05	0.44 ± 0.05	$0.36\substack{+0.06\\-0.05}$	0.35 ± 0.04	0.62 ± 0.05	
olished)	ATLAS ‡			$0.26 \pm 0.18 \pm 0.06$	$0.37 \pm 0.11 \pm 0.02$	$0.50 \pm 0.09 \pm 0.04$	$0.28 \pm 0.16 \pm 0.03$	$0.35 \pm 0.08 \pm 0.02$	$0.18\pm 0.15\pm 0.03$	
PDG2014 (pul	CMS ‡		$0.60^{+0.00}_{-0.28}\pm0.19$	$0.65 \pm 0.17 \pm 0.03$	$0.81^{+0.13}_{-0.12}\pm 0.05$	$0.45^{+0.10}_{-0.11} \pm 0.04$	$0.53 \pm 0.12 \pm 0.03$	$0.44 \pm 0.07 \pm 0.03$	$0.68\pm 0.10\pm 0.02$	
r) New since	LHCb ‡	$0.37\substack{+0.11\\-0.09}$		$0.74\substack{+0.10\\-0.09}$	$0.57 \pm 0.07 \pm 0.03$	$0.48^{+0.08}_{-0.09}\pm0.03$	$0.33^{+0.08}_{-0.07}\pm0.02$	$0.38^{+0.09}_{-0.08}\pm0.03$	$0.65^{+0.08}_{-0.07}\pm 0.03$	
l4 (preliminary	CDF ‡	$0.25^{+0.14}_{-0.13} \pm 0.04$		$0.71^{+0.15}_{-0.17}\pm 0.07$	$0.72^{+0.12}_{-0.13}\pm 0.05$	$0.38^{+0.11}_{-0.11} \pm 0.04$	$0.40^{+0.11}_{-0.11} \pm 0.04$	$0.19^{+0.12}_{-0.11} \pm 0.07$	$0.76^{+0.12}_{-0.14}\pm 0.07$	<i>0</i> / -
w since PDG20.	Belle	$0.29^{+0.21}_{-0.18} \pm 0.02$		$0.71 \pm 0.24 \pm 0.05$	$0.64^{+0.23}_{-0.24}\pm 0.07$	$0.17^{+0.17}_{-0.15} \pm 0.03$	$-0.15^{+0.27}_{-0.23} \pm 0.07$	$0.12^{+0.15}_{-0.13}\pm 0.02$	$0.67 \pm 0.23 \pm 0.05$	-
DG2014 Ner	PDG2014 Avg.	$0.34\substack{+0.08\\-0.07}$	$0.60^{+0.00}_{-0.28} \pm 0.19$	0.69 ± 0.08	0.64 ± 0.06	0.43 ± 0.06	0.35 ± 0.08	0.37 ± 0.06	0.66 ± 0.06	- 6 -
In P.	$q^2 \left[(\text{GeV}/c^2)^2 \right] \dagger$	< 2.0	[1.0, 2.0]	[2.0, 4.3]	[4.3, 8.68]	[10.09, 12.86]	[14.18, 16.00]	[16.0, 19.0]	[1.00, 6.00]	۲ <u>ـ</u>
	Mode	$K^*\ell^+\ell^-$								- . .

 \dagger see the original paper for the exact q^2 selection. \ddagger muon mode only $(\ell = \mu)$.

Heavy Flavor Averaging Group August 2014 Fraction of the Longitudinal Polarization (F_L)

Heavy Flavor Averaging Group August 2014 a down Asymmetry in $B^+ \rightarrow K^+ \pi^-$

Up-down Asymmetry in $B^+ \to K^+ \pi^- \pi^+ \gamma$

In PDG2014 New since PDG2014 (preliminary) New since PDG2014 (published)

Mode	$m_{K^+\pi^-\pi^+}$ [(GeV/c ²) ²]	PDG2014 Avg.	LHCb	New Avg.
$K^+\pi^-\pi^+\gamma$	1.1-1.3		6.9 ± 1.7	6.9 ± 1.7
	1.3-1.4		4.9 ± 2.0	4.9 ± 2.0
	1.4-1.6		5.6 ± 1.8	5.6 ± 1.8
	1.6-1.9		-4.5 ± 1.9	-4.5 ± 1.9
	1.1-1.3		-1.1 ± 1.7	-1.1 ± 1.7
	1.3-1.4		7.2 ± 2.0	7.2 ± 2.0
	1.4-1.6		6.4 ± 1.8	6.4 ± 1.8
	1.6-1.9		-3.9 ± 1.9	-3.9 ± 1.9

Radiative and Leptonic Decays: BABAR References

- [1] BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 103, 211802 (2009).
- [2] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 78, 112001 (2008).
- [3] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 73, 092001 (2006).
- [4] BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 94, 101801 (2005).
- [5] BABAR Collaboration (B. Aubert *et al.*), Phys. Rev. D 77, 032007 (2008).
- [6] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 74, 031102 (2006).
- [7] BABAR Collaboration (B. Aubert *et al.*), Phys. Rev. D 70, 091105 (2004).
- [8] BABAR Collaboration (J.P. Lees et al.), Phys. Rev. Lett. 112, 211802 (2014).
- [9] BABAR Collaboration (J.P. Lees et al.), Phys. Rev. D 88, 031102 (2013).
- [10] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 77, 091104 (2008).
- [11] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 72, 091103 (2005).
- [12] BABAR Collaboration (J.P. Lees *et al.*), Phys. Rev. D 86, 051105 (2012).
- [13] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 72, 052004 (2005).
- [14] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 83, 032006 (2011).
- [15] BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 98, 211804 (2007).
- [16] BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 96, 241802 (2006).
- [17] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 75, 051102 (2007).
- [18] BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 99, 051801 (2007).
- [19] BABAR Collaboration (P. del Amo Sanchez et al.), Phys. Rev. D 83, 031103 (2011).
- [20] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 77, 011104 (2008).
- [21] BABAR Collaboration (J. P. Lees et al.), Phys. Rev. D 86, 012004 (2012).
- [22] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 79, 011102 (2009).
- [23] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 79, 091101 (2009).
- [24] Eli Ben-Haim for the BABAR collaboration, presented in Moriond EW, March 2014; Simon Akar (Ph.D. thesis), BABAR THESIS-14/002.
- [25] BABAR Collaboration (P. del Amo Sanchez et al.), Phys. Rev. D 82, 051101 (2010).
- [26] BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 80, 111105 (2009).
- [27] BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 102, 091803 (2009).
- [28] BABAR Collaboration (J. P. Lees et al.), Phys. Rev. D 85, 071103 (2012).

- [29]
- [30] BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 93, 061801 (2004).
- [31] BABAR Collaboration (J. P. Lees et al.), Phys. Rev. D 86, 032012 (2012).
- [32] BABAR Collaboration (J. P. Lees et al.), Phys. Rev. D 86, 112008 (2012).
- [33] BABAR Collaboration (J.P. Lees et al.), Phys. Rev. D 87, 112005 (2013).
- [34] BABAR Collaboration (J.P. Lees et al.), Phys. Rev. D 88, 032012 (2013).
- [35] BABAR Collaboration (J.P. Lees et al.), Phys. Rev. D 89, 011102 (2014).

[36]

- [37]
- [38]

Belle References

- [39] Belle Collaboration (Y. Yook et al.), arXiv:1406.6356 [hep-ex] (2014).
- [40] Belle Collaboration (Y.-T. Lai, M.-Z. Wang et al.), Phys. Rev. D 89, 051103 (2014).
- [41] Belle Collaboration (J.-T. Wei, P. Chang et al.), Phys. Rev. Lett. 103, 171801 (2009).
- [42] Belle Collaboration (M. Nakao et al.), Phys. Rev. D 69, 112001 (2004).
- [43] Belle Collaboration (S. Nishida et al.), Phys. Rev. Lett. 89, 231801 (2002).
- [44] Belle Collaboration (K. Hara *et al.*), Phys. Rev. Lett. **110**, 131801 (2013).
- [45] Belle Collaboration (K. Abe *et al.*), Phys. Lett. B **647**, 67 (2007).
- [46] Belle Collaboration (M.-C. Chang et al.), Phys. Rev. D 68, 111101 (2003).
- [47] Belle Collaboration (A. Limosani et al.), Phys. Rev. Lett. 103, 241801 (2009).
- [48] Belle Collaboration, talk by T. Iijima presented at Lepton Photon (2009).
- [49] Belle Collaboration (H. Sahoo, T.E. Browder et al.), Phys. Rev. D 84, 071101 (2011).
- [50] Belle Collaboration (O. Lutz *et al.*), Phys. Rev. D 87, 111103 (2013).
- [51] Belle Collaboration (Y.-J. Lee, M.-Z. Wang *et al.*), Phys. Rev. Lett. **95**, 061802 (2005).
- [52] Belle Collaboration (H. Yang et al.), Phys. Rev. Lett. 94, 111802 (2005).
- [53] Belle Collaboration (S. Nishida *et al.*), Phys. Lett. B **610**, 23 (2005).
- [54] Belle Collaboration (N. Taniguchi, M. Nakao, S. Nishida et al.), Phys. Rev. Lett. 101, 111801 (2008).
- [55] Belle Collaboration (M.-Z. Wang, Y.-J. Lee *et al.*), Phys. Rev. D **76**, 052004 (2007).
- [56] Belle Collaboration (J.-T. Wei, K.-F. Chen *et al.*), Phys. Rev. D 78, 011101 (2008).
- [57] Belle Collaboration (R. Wedd *et al.*), Phys. Rev. D **81**, 111104 (2010).
- [58] Belle Collaboration (S. Villa *et al.*), Phys. Rev. D **73**, 051107 (2006).
- [59] Belle Collaboration (K. Nishimura, T.E. Browder et al.), Phys. Rev. Lett. 105, 191803 (2010).
- [60] Belle Collaboration (C.-L. Hsu, P. Chang *et al.*), Phys. Rev. D 86, 032002 (2012).

CLEO References

- [61] CLEO Collaboration (M. Artuso et al.), Phys. Rev. Lett. 75, 785 (1995).
- [62] CLEO Collaboration (T.E. Coan et al.), Phys. Rev. Lett. 84, 5283 (2000).
- [63] CLEO Collaboration (S. Anderson *et al.*), Phys. Rev. Lett. 87, 181803 (2001).
- [64] CLEO Collaboration (T. Browder *et al.*), Phys. Rev. Lett. **86**, 2950 (2001).
- [65] CLEO Collaboration (K.W. Edwards et al.), Phys. Rev. D 65, 111102R (2002).
- [66] CLEO Collaboration (T. Bergfeld et al.), Phys. Rev. D 62, 091102R (2000).
- [67] CLEO Collaboration (S. Chen et al.), Phys. Rev. Lett. 87, 251807 (2002).
- [68] CLEO Collaboration (S. Glenn et al.), Phys. Rev. Lett. 80, 2289 (1998).
- [69] CLEO Collaboration (K.W. Edwards et al.), Phys. Rev. D 65, 111102 (2002).
- [70] CLEO Collaboration (K.W. Edwards et al.), Phys. Rev. D 68, 011102 (2003).
- [71] CLEO Collaboration (T. Browder et al.), Phys. Rev. D 56, 11 (1997).
- [72] CLEO Collaboration (A. Bornheim *et al.*), Phys. Rev. Lett. **93**, 241802 (2004).
- [73] CLEO Collaboration (G. Bonvicini *et al.*), Phys. Rev. D 68, 011101 (2003).

[74]

[75]

CDF References

- [76] CDF Collaboration (A. Aaltonen *et al.*), Phys. Rev. Lett. 87, 072003 (2013).
- [77] CDF Collaboration (A. Aaltonen et al.), Phys. Rev. Lett. 102, 201801 (2009).
- [78] CDF Collaboration (A. Aaltonen et al.), Phys. Rev. Lett. 107, 201802 (2011).
- [79] Hideki Miyake for the CDF Collaboration, presented at ICHEP, July 2012.

[80]

LHCb References

- [81] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 111, 101805 (2013).
- [82] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 111, 141801 (2013).
- [83] LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 108, 101601 (2012).
- [84] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 110, 211801 (2013).
- [85] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1207, 133 (2012).
- [86] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1212, 125 (2012).
- [87] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1302, 105 (2013).
- [88] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1308, 131 (2013).
- [89] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1406, 133 (2014).
- [90] LHCb Collaboration, (R. Aaij et al.), Phys. Rev. Lett. 112, 131802 (2014).
- [91] LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 112, 161801 (2014).
- [92] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1410, 064 (2014).
- [93] LHCb Collaboration (R. Aaij et al.), J. High Energ. Phys. 1305, 159 (2013).

[94]

- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]
- [104]
- [105]

[106]

[107]

[108]

[109]

ATLAS and CMS References

- [111] CMS Collaboration (S. Chatrchyan *et al.*), Phys. Rev. Lett. **111**, 101804 (2013).
- [112] CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 727, 77 (2013).
- [113]
- [114] ATLAS Collaboration, ATLAS-CONF-2013-038 (2013).
- [115]

Combination of results from several experiments

- [116] LHCb Collaboration (V. Khachatryan et al.), arXiv:1411.4413 [hep-ex] (2014).
- [117] CMS Collaboration (V. Khachatryan et al.), arXiv:1411.4413 [hep-ex] (2014).