Equation (15) of Grossman, Nir, and Perez [PRL 103, 071602 (2009)] is

$$
\left(1-\left|\frac{q}{p}\right|^{4}\right)^{2}\left[\frac{1+\left(\frac{y}{x}\right)^{4} \tan ^{2} \phi}{\sin ^{2} \phi}\right]=16\left(\frac{y}{x}\right)^{2}\left|\frac{q}{p}\right|^{4}+\left[1+\left(\frac{y}{x}\right)^{2}\right]^{2}\left(1-\left|\frac{q}{p}\right|^{4}\right)^{2}
$$

Defining $z \equiv|q / p|^{4}$ and $r \equiv(y / x)^{2}$ gives

$$
\begin{align*}
(1-z)^{2}\left(\frac{1+r^{2} \tan ^{2} \phi}{\sin ^{2} \phi}\right) & =16 r z+(1+r)^{2}(1-z)^{2} \tag{1}\\
(1-z)^{2}\left[\frac{1+r^{2} \tan ^{2} \phi}{\sin ^{2} \phi}-(1+r)^{2}\right] & =16 r z .
\end{align*}
$$

This can be written in the standard quadratic form $\alpha z^{2}+\beta z+\gamma=0$, where

$$
\begin{aligned}
& \alpha=\left[\frac{1+r^{2} \tan ^{2} \phi}{\sin ^{2} \phi}-(1+r)^{2}\right] \\
& \beta=-16 r-2 \alpha \\
& \gamma=\alpha .
\end{aligned}
$$

Thus $z=\left(-\beta \pm \sqrt{\beta^{2}-4 \alpha \gamma}\right) / 2 \alpha$, and $|q / p|=z^{1 / 4}$. Note that there is a two-fold ambiguity in z arising from the quadratic equation. We find that usually the solution with the positive sign is the correct one, but not always.

From Eq. (1) we obtain

$$
\frac{(1-z)^{2}}{16 r z+(1+r)^{2}(1-z)^{2}}=\frac{\sin ^{2} \phi}{1+r^{2} \tan ^{2} \phi} .
$$

Defining the left-hand side as ξ gives

$$
\begin{aligned}
\xi+\xi r^{2} \tan ^{2} \phi & =\sin ^{2} \phi \\
\xi \cos ^{2} \phi+\xi r^{2} \sin ^{2} \phi & =\sin ^{2} \phi \cos ^{2} \phi \\
\xi-\xi \sin ^{2} \phi+\xi r^{2} \sin ^{2} \phi & =\sin ^{2} \phi-\sin ^{4} \phi
\end{aligned}
$$

Defining $u \equiv \sin ^{2} \phi$, we can write this in the quadratic form $\alpha u^{2}+\beta u+\gamma=0$, where

$$
\begin{aligned}
\alpha & =1 \\
\beta & =\xi r^{2}-\xi-1 \\
\gamma & =\xi
\end{aligned}
$$

Thus $u=\left(-\beta-\sqrt{\beta^{2}-4 \alpha \gamma}\right) / 2 \alpha$, and $\phi=\sin ^{-1}(\pm \sqrt{u})$. Note that there is a sign ambiguity in ϕ that cannot be resolved by this method. In principle there is a two-fold ambiguity in u arising from the quadratic equation; however, we find that the solution with the negative sign is always the correct one.

